
AUTOMATIC SEMANTIC ANNOTATION OF IMAGES USING SPATIAL HIDDEN MARKOV
MODEL

Feiyang Yu1 and Horace H S Ip1,2

Image Computing Group,Department of Computer Science

Center for Innovative Applications of Internet and Multimedia Technologies (AIMtech Centre)

City University of Hong Kong, HONG KONG

ABSTRACT

This paper presents a new spatial-HMM(SHMM)for automat-

ically classifying and annotating natural images. Our model

is a 2D generalization of the traditional HMM in the sense

that both vertical and horizontal transitions between hidden

states are taken into consideration. The three basic problems

with HMM-liked model are also solved in our model. Given a

sequence of visual features, our model automatically derives

annotations from keywords associated with the most appro-

priate concept class, and with no need of a pre-defined length

threshold. Our experiments showed that our model outper-

formed the previous 2D MHMM in recognition accuracy and

also achieved a high annotation accuracy.

1. INTRODUCTION

With the growing maturity of content-based image retrieval

(CBIR), researchers gradually come to a realization of its lim-

itations. CBIR systems, which adopt visual features for sim-

ilarity comparison, assume that there is an inherent mapping

between low-level features and high-level semantics. It be-

comes clear that this assumption does not hold for many ap-

plications. How to narrow down the semantic gap still re-

mains an open issue.

Automatic image annotation has emerged as a major ap-

proach to bridge the semantic gap. Most works in this field

focus on directly deriving semantic content from low-level

features. J.Li et al. [2] proposed a new 2D MHMM to clas-

sify images into categories and propagate annotations from

keywords which were manually assigned to those categories.

On the other hand, some researchers regard the annotation

task as an unsupervised learning problem. D.Blei et al. [1]

and K.Barnard et al. [3] attempted to discover the statistical

relationships between keywords and image features, and infer

potential annotations from the joint distribution of features

and keywords. However, the prerequisite of these works is

to segment images semantically, which is still an error prone

process.

We regard the annotation task as a multi-classification prob-

lem. The two most crucial problems with this approach are

how to build a statistical model for each concept class, and

how to propagate annotations from keywords associated with

some specific classes. We propose a new spatial-HMM to de-

scribe the spatial relationships of objects and investigate the

semantic structures of concepts in natural scene images. At

the same time, we solve the second problem by automatically

deriving annotations from available keywords.

The remainder of the paper is organized as follows. Sec-

tion 2 elaborates our approach for representing image fea-

tures. In Section 3, we describe the mechanism of our new

spatial-HMM for modeling semantic contents of natural im-

ages. Experimental results are presented in Section 4. Finally,

we conclude this paper in Section 5.

2. REPRESENTATION OF IMAGES

To analyze the texture patterns of natural scene images, a

bank of Gabor filters are used in our work. Gabor filter is

well-known for its orientation and frequency selective prop-

erties, and its optimal joint resolution in both spatial and fre-

quency domains. We adopt the family of two-dimensional

Gabor functions in [5].

gξ,η,θ,ϕ(x, y) = exp(−x′2 + γ2y′2

2σ2
) cos(

2πx′

λ
+ ϕ)

x′ = (x − ξ) cos θ − (y − η) sin θ (1)

y′ = (x − ξ) sin θ + (y − η) cos θ

Our bank of Gabor filters are configured with eight equidis-

tant preferred orientations (θ=0, θ=π/8, θ=2π/8 . . . θ=7π/8)

and two preferred spatial frequencies (λ0=5.65 λ1=3.77; im-

age block size=32 × 32 pixels). For the frequency λ and ori-

entation θ, the outputs of a pair of corresponding Gabor fil-

ters with initial phases 0 and −π/2 are denoted by γλ,θ,0 and

γλ,θ,−pi/2respectively. The combination of these two quanti-

ties yields the so called Gabor energy [6].

eλ,θ =
√

γ2
λ,θ,0(i, j) + γ2

λ,θ,−π/2(i, j) (2)

The total local Gabor energy E for a block can then be calcu-
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lated as:

E =
32∑

i=1

32∑
j=1

√
r2
λ,θ,0(i, j) + r2

λ,θ,−π/2(i, j) (3)

Consequently, for each block, a 16-dimentional texture

description vector can be derived. In addition to texture in-

formation, mean values of every color component of the RGB

color system are also used for our representation. Appending

the three color component values to feature vector described

above, we finally obtained a 19-dimensional feature vector.

3. SPATIAL HIDDEN MARKOV MODEL

To capture both the visual variations across blocks and the

spatial relationships of objects across a sequence of blocks,

we propose a new form of HMM, which we called Spatial

HMM (SHMM). The idea is that the sequence of feature vec-

tors corresponding to all blocks in an image can be modeled

as a stochastic process. We assume that the feature vectors be-

longing to one semantic concept follow a multivariate Gaus-

sian distribution. Each semantic concept is mapped to a hid-

den state in our model,which is a strict 1:1 correspondence.

Given a test image, the task is to find the best state/label se-

quence which best explains the corresponding feature vector

sequence. Our focus is on describing the 2D spatial relation-

ships of hidden states in a plane, and unlike 2D MHMM [2],

multi-resolution information of the image across scales is not

used.

Our model is a 2D generalization of the HMM[4]. The

HMM was originally developed for characterizing transitions

between hidden states along the 1D time axis, which is inad-

equate for the case of 2D images. In order to describe tran-

sitions along two orthogonal directions in a plane, we intro-

duce the concept of vertical transition, which is defined as the

probability of the state of a block reached by transition from

the hidden state of its immediately upper block. Just like the

HMM, the horizontal transition is defined as the probability

of a state reached by transition from its immediately preced-

ing state. Our Markov assumption can be formalized by a

combination of the above two kinds of transitions.

P (ql,m|Ql,m�1) = P (ql,m|ql�1,mql,m�1)
= P (ql,m|ql,m�1))︸ ︷︷ ︸

h

P (ql,m|ql�1,m)︸ ︷︷ ︸
v

(4)

where the sign � denotes precedence relations in a raster

scan, ql,m denotes the state for block(l, m), and Ql,m�1 de-

notes the sequence of states from block(1, 1) to block(l, m � 1).
The underlying idea is that the state of a block only depends

on the states of two previously observed neighbor blocks in

a raster scan. This assumption,which is appropriate for hori-

zontally layered natural images, differs dramatically from that

used in second-order Markov mesh models[6]. The com-

plete specification of a spatial HMM λ requires a specifica-

tion of the number of states N(the collection of available hid-

den states is denoted by S), and the four probability measures

such as H(horizontal transition matrix), V(vertical transition

matrix), B and π. For convenience, we denote λ in short-

hand as λ = (H, V, B, π).Given an observation sequence,

the test image is regarded as belonging to the concept class

which has the highest probability to generate its observation

sequence. To find this generation probability, we need to

extend the Forward-Backward algorithm for HMM. For an

L×M image,we denote its observation sequence as: OL,M =
o11 . . . o1Mo21 . . . o2M . . . oLM . we define the forward vari-

able as

αl,m(k) = P (Ol,m, ql,m = Sk|λ) (5)

To facilitate our calculation, we define an auxiliary variable.

gl,m(i, j) = P (Ol,m�1, ql,m�1 = Si, ql�1,m = Sj , |λ) (6)

By conditional probability calculation, we can derive the re-

cursive relationship for g.

gl,m(i, j) =
∑
t,u,w

P (Ol,m�2, t, u, w, i, j)bs(ol,m�1)

=
∑
t,u,w

P (Ol,m�2, t, u, w)hu,jvt,jhw,ivu,ibs(ol,m�1) (7)

Please refer to Fig. 1 for the definition of t, u, w. Let us denote

the first term in the above equation as Pt,u,w. Then it follows:

Pt,u,w = P (Ol�1,m�1, u)P (C, B, w, t|Ol�1,m�1, u)

= gl,m�1(u, t)
gl�1,m(w, u)
αl�1,m�1(u)

(8)

Therefore, we can solve the generation probability problem

iteratively:

⎧⎪⎪⎨
⎪⎪⎩

α1,1(k) = πkbk(oll)
α1,m(k) =

∑N
i=1 α1,m�1(i)hi,kbk(o1,m)

αl,m(k) =
∑

i,j g1,m�1(i, j)hi,kvj,kbk(o1,m)
2 ≤ l ≤ L

(9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2,1(i, j) = P (O1,M , q1,1 = i, q1,M = j)
g2,m(i, j) =

∑
u,w g2,m�1(w, u)hu,jhw,ivu,ibi(o2,m)

gl,1(i, j) = P (Ol�1,M , ql�1,1 = i, ql�1,M = j)
2 ≤ l ≤ L

gl,m(i, j) =
∑

t,u,w
gl,m�1(w,u)gl�1,m(u,t)

αl�1,m�1(u) hu,jvt,j

hw,ivu,ibi(ol,m�1)
2 ≤ l ≤ L

(10)

where the range of parameter m runs from 1 to M . Summing

all the forward variables for the last block, we can obtain the

conditional probability of P (OL,M |λ).
Likewise, we extend the traditional Viterbi algorithm for

SHMM accordingly.
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Fig. 1. Illustration of (a) observation sequence and hidden

states. (b)horizontal and vertical transitions between neighbor

states.

1)Initialization
δ1,1(i) = πibi(o1,1) 1 ≤ i ≤ N (11)

2)Recursion

δ1,m(k) = max
1≤i≤N

[δ1,m�1(i)hij ] bk(ol,m)

δl,1(k) = max
1≤i≤N

[δl−1,M (i)hikδl−1,m(j∗)νj∗k] bk(ol,m)

δl,m(k) = max
1≤i≤N

[δl,m�1(i)hikδl−1,m(j∗)νj∗k] bk(ol,m)

ψl,m(k) = argmax
1≤i≤N

[δl,m�1(i)hikδl−1,m(j∗)νj∗k]

j∗ = ψl−1,m⊕1(. . . (ψl,m�1︸ ︷︷ ︸
L−1

(i)) . . .)

1 ≤ l ≤ L, 1 ≤ m ≤ M, 1 ≤ n ≤ N (12)

3)Termination

P ∗ = max
1≤i≤N

[δL,M (i)]

q∗L,M = argmax
1≤i≤N

[δL,M (i)] (13)

4)Path (state sequence) backtracking

q∗L,M = ψl,m⊕1(q∗l,m⊕1) 1 ≤ l ≤ L, 1 ≤ m ≤ M (14)

A key issue for HMM-like model is to determine the model

parameters to maximize the probability of the observation se-

quence given the model. Since in supervised training, the la-

bels for each image have been provided by experts, the esti-

mation problem is then reduced to a simple maximum likeli-

hood estimate of parameters.

4. EXPERIMENTAL RESULTS

The spatial-HMM approach was implemented and tested against

a number of COREL images. More specifically, four COREL

CDs, i.e. Beaches, Buses, Elephants, and Mountains, was

used for our experiment. Each of these CD contains one hun-

dred high-resolution images. To compare our method with

the 2D MHMM method, we down-sampled these image to

the size of 384×256 and transformed them into JPEG format.

Before further processing,each image was then divided

into equivalent blocks of the size of 32×32 pixels. The choice

of the block size is a tradeoff between the integrity of seman-

tic meanings and processing cost.Manual annotations are pro-

vided for all blocks in each training image.For each concept

category, we arrived at a collection of semantic labels.As we

mentioned in Sec.3, one Markov model is built to represent

the semantic content of each concept category.In Table 1, we

listed all semantic labels used in this work.

Table 1. The set of semantic labels used in our experiments

Class Semantic Labels

Beaches Sky(SK), Water(WT), Sand(SD), Peo-

ple(PP),Rock(RK),Building(BD),Boat(BT),

Tree(TR),Equipment(EQ), Junction(JC)

Buses Bus(BS), Building(BD), People(PP),

Advertisement(AD), Sky(SK), Tree(TR),

Ground(GD), Junction(JC)

Elephant Sky(SK), Elephant(ET), Tree(TR), Wa-

ter(WT), Plain(PL), Junction(JC)

Mountains Sky(SK), Snow(SN), Tree(TR), Moun-

tain(MT),Junction(JC)

Gabor filters used in this work was implemented in the

spatial domain with the mask size of 9×9. Since our block

size is 32×32, the available radial frequencies for configu-

ration of Gabor filters are
√

2, 2
√

2, 4
√

2, 8
√

2. We adopted

4
√

2 and 8
√

2 , because
√

2 and 2
√

2 are too low to capture

local texture features. For color features, we have evaluated

the CIE LAB, CIE LUV and RGB color systems. Our ex-

periments showed that the RGB system is more appropriate

for this work.It is because the distance between two distinct

points in the feature vector is multiplied by the inverse of the

covariance matrix associated with a hidden state.

Fig. 2. An example of semantic labeling using SHMM.

To verify our method, we conducted the same experiment

as that in [2]. That is, 40 images were selected for training

each concept, and the remaining 60 images in that category
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were used for testing.Keywords listed in Table 1 were used

to manually annotate blocks in these training images. One

snapshot of SHMM annotation result is shown in Fig. 2. More

example annotated images are shown in Fig. 3. To the right

of these images, labels occurred in their annotation are listed.

Fig. 3. Example annotations generated by our SHMM.

Our experimental results are shown in Table 2. The term

”R-rate” is defined as the ratio of correctly recognized im-

ages to the number of total test images in one concept cate-

gory, while the term ”A-rate” is defined as the mean annota-

tion accuracy, which is the ratio of correctly labeled blocks

to all blocks (12×8) in a test image, over all correctly recog-

nized images in one concept category. It can be seen that the

R-rate and A-rate are both high for images of mountains by

the two methods. This can be attributed to the fact that im-

ages in the mountain category have many areas dominated by

brown rocky mountains which have roughly similar color and

texture characteristics. Such homogeneous feature simplifies

the recognition task to a certain extent. We also noticed that

the two rates are both low for images of elephants due to the

greater visual variation of animals and backgrounds in these

images.

Table 2. Performance comparison of 2DMHMM and SHMM

Class 2D-MHMM SHMM

R-rate R-rate A-rate

Beach 32% 76% 71.6%

Bus 46% 86% 78.5%

Elephant 40% 72% 70.4%

Mountains 84% 85% 85.9%

Our results also indicate that the SHMM consistently out-

performs the 2D MHMM method for all cases. Compared

with 2D MHMM, our approach improved the recognition ac-

curacy by 1%-44%. Our method also achieved about 70%-

86% annotation accuracy. Especially for categories such as

bus, beach, and elephant, which have a distinctive layered

structure, the performance of our method is much superior

to that of the 2D MHMM. Let us use beach as an exam-

ple. For images coming from that category, the upper area

is occupied by sky; the middle area is occupied by ”sea wa-

ter”; the lower area is occupied by ”sandy beach”. The gen-

eral structure of semantic labels for beach remains constant

across all images.By taking into account of both the horizon-

tal and vertical arrangement of semantic labels,our spatial-

HMM achieved as high as 76% recognition accuracy,while it

is hard for 2D MHMM to classify images with such complex

semantic structure.This demonstrates that spatial-HMM suc-

cessfully captures the spatial relationships of semantic labels

in an image which enables it to better cope with visual varia-

tions in complex images compared with 2D MHMM.

Another major advantage of our approach is the automatic

selection of keywords for annotation. The most frequently

used method for keyword selection is to determine a thresh-

old for the length of keywords and to get rid of extra words

which exceed the limit. However, short annotations may not

provide enough information while long annotations tend to in-

troduce redundant information. In our system, the keywords

used for annotation are automatically selected by the models

themselves. Generally speaking, the length of annotation key-

words for the category of elephant and mountain is 4, while

the lengths for bus and beach are 5 and 7 respectively.

5. CONCLUSION

A new spatial-HMM model is presented here to analyze and

annotate the semantic content of Corel images. The tradi-

tional Viterbi and Forward-Backward algorithm have been ex-

tended accordingly for the spatial-HMM. In terms of recogni-

tion and annotation accuracy, the spatial-HMM achieves bet-

ter performance compared with the 2D MHMM since the for-

mer captures and takes into account more contextual informa-

tion. Some deficiencies associated with previous approaches

of image annotation have also been overcome using this new

approach.
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