
SCCS: A SCALABLE CLUSTERED CAMERA SYSTEM FOR MULTIPLE OBJECT
TRACKING COMMUNICATING VIA MESSAGE PASSING INTERFACE

Senem Velipasalar∗, Jason Schlessman∗, Cheng-Yao Chen∗, Wayne Wolf ∗, Jaswinder Pal Singh†

∗Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
†Princeton University, Dept. of Computer Science, Princeton, NJ 08544
{svelipas, jschless, chengc, wolf}@princeton.edu, jps@cs.princeton.edu

ABSTRACT

We introduce the Scalable Clustered Camera System, a peer-
to-peer multi-camera system for multi-object tracking, where
different CPUs are used to process inputs from distinct cam-
eras. Instead of transferring control of tracking jobs from one
camera to another, each camera in our system performs its
own tracking and keeps its own tracks for each target ob-
ject, thus providing fault tolerance. A fast and robust track-
ing method is proposed to perform tracking on each camera
view, while maintaining consistent labeling. In addition, we
introduce a new communication protocol, where the decisions
about when and with whom to communicate are made such
that frequency and size of transmitted messages are mini-
mized. This protocol incorporates variable synchronization
capabilities, so as to allow flexibility with accuracy trade-
offs. We discuss our implementation, consisting of a parallel
computing cluster, with communication between the cameras
performed by MPI. We present experimental results which
demonstrate the success of the proposed peer-to-peer multi-
camera tracking system, with accuracy of 95% for a high
frequency of synchronization, as well as a worst-case of 15
frames of latency in recovering correct labels at low synchro-
nization frequencies.

1. INTRODUCTION

Reliable and efficient tracking of objects by multiple cameras
is an important and challenging problem which finds wide-
ranging application areas and has attracted much attention
from the research community. However, using multiple cam-
eras poses the additional challenge of establishing correspon-
dences between moving objects in different views.

Many existing systems assume that multiple cameras are
processed on a single CPU or by a centralized server. These
are not scalable approaches. For a single CPU system, the
amount of processing necessary to track multiple objects on
multiple camera views can be excessive for real-time perfor-
mance. Furthermore, scalability is debilitated as each ad-
ditional camera imposes greater performance requirements.
Server-based multi-camera systems are not practical in many

This work has been funded by NSF ITR grant 325119, NSF grant CCR-
0329810, and ARO grant #W911NF-05-1-0480.

realistic environments and have high installation costs. In
general, multi-camera systems will operate on peer-to-peer
computing systems where different CPUs are used to pro-
cess different cameras. There may be significant communica-
tion delays between the CPUs, which necessitates the design
of tracking algorithms requiring relatively little inter-process
communication. Also, efficient protocols are needed which
alleviate the problems caused by communication delays.

Chang et al. [1] propose a multi-camera system which
is implemented on an SGI workstation. They use Bayesian
networks to combine modalities for matching objects across
multiple camera views.

Atsushi et al. [2] use multiple cameras attached to differ-
ent PCs connected to a network. They use calibrated cameras
and track the objects in world-coordinates. They send mes-
sage packets between stations. Ellis [3] also uses a network
of calibrated cameras. But, they do not discuss the type of
communication, synchronization, or communication delays.

Nguyen et al. [4] propose a system using multiple cam-
eras with processors embedded in them. A main controller on
a PC is used to retain the current state of the scene. Once an
algorithm on a camera terminates, the results are returned to
the main controller. The controller and cameras use a TCP/IP
based system to communicate. The cameras do not commu-
nicate directly, rather, they go through the main controller.

We present a scalable peer-to-peer multi-camera system
and introduce: a) an improved, more efficient tracking al-
gorithm that uses sparse communication, b) a novel protocol
that coordinates multiple tracking components across the dis-
tributed system.

2. TRACKING IN SINGLE CAMERA VIEW

In the proposed system, we incorporate parallel tracking pro-
cessors which communicate with each other as needed. That
is, instead of a tracking task being transferred from one cam-
era to the other, each camera performs its own tracking and
keeps its own tracks for each target object. This provides im-
proved tracking as well as distributed processing. Keeping
tracks of objects in each view as long as possible also makes
the system fault tolerant.

We utilize a robust and fast algorithm which efficiently
tracks moving objects. First, foreground (FG) objects are

2771­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006



segmented from the background in each camera view by us-
ing the background subtraction (BGS) algorithm presented by
Stauffer and Grimson [5]. Then, connected component anal-
ysis is performed, which results in FG blobs. When a new
FG blob is detected within the camera view, a new tracker is
created, and a mask for the tracker is built where the FG pix-
els from this blob and background pixels are set to be 1 and 0
respectively. The box surrounding the FG pixels is called the
bounding box. Then, the color histogram of the blob learned
from the input image is saved as the model histogram of the
tracker. It is first determined if this object is visible by any
other camera, as explained in Section 3.3. If the object is vis-
ible only by the current camera, the tracker is assigned a new
label.

For each existing tracker, the algorithm evaluates detected
FG blobs. If the boundary box of a blob intersects with that
of the model mask of the tracker, the Bhattacharya coefficient
between the model histogram of the tracker and the color his-
togram of the FG blob is calculated. The Bhattacharya coef-
ficient ρ(y) is defined as:

ρ(y) ≡ ρ[p(y), q] =

∫ √
pz(y)qzdz, (1)

where qz is the density function of the feature z representing
the color of the target model while pz(y) is the feature distri-
bution of the FG blob centered at y. The tracker is assigned
to the FG blob which results in the highest Bhattacharya co-
efficient, and the mask of the tracker is updated. The Bhat-
tacharya coefficient with which the tracker is matched to its
object is called the similarity coefficient. If the similarity co-
efficient is greater than a predefined distribution update thresh-
old, the model histogram of the tracker is updated to be the
color histogram of the FG blob to which it is matched.

When objects merge, multiple trackers are matched to one
FG blob, and the labels of all matched trackers are displayed
on this FG blob, as shown in Figures 1 and 2, and the masks of
the trackers are updated in the previously discussed fashion.
The trackers that are matched to the same FG blob are put
into a merge state, and in this state their model histogram is
not updated. When objects split from each other, trackers are
matched to their targets based on boundary box intersection
and Bhattacharya coefficient criteria mentioned above.

There may be rare but unfavorable cases where a FG ob-
ject, appearing after the split of merged objects, may not be
matched to its tracker. We deal with these cases as follows:
Let’s denote two trackers by T1 and T2, and their target ob-
jects by O1 and O2 respectively. When these objects merge,
O1∪2 is formed, and T1 and T2 are both matched to O1∪2.
After O1 and O2 split, BTiOj

are calculated, where {i, j} ∈
{1, 2}, and BTiOj

denotes the Bhattacharya coefficient calcu-
lated between the histograms of Ti and Oj . Based on BTiOj

,
both T1 and T2 can still be matched to O2, for instance, and
stay in the merge state. Let’s denote the similarity coefficient
of Ti by STi

. Thus, in this case, ST1
= B12 and ST2

= B22.
This can happen because the model distributions of the track-
ers are not updated during the merge state, and there may be

changes in the color of O1 during and after the merge. An-
other reason may be O1 and O2 having similar colors from the
outset. When this occurs, O1 is compared against the trackers
which are in the merge state, and intersect with the bounding
box of O1. That is, it is compared against T1 and T2, and
BT1O1

and BT2O1
are calculated. Then, O1 is assigned to the

tracker Ti∗ , where:
i
∗ = argmin

i∈{1,2}
(STi

− BTiO1
). (2)

If a FG blob cannot be matched to any of the trackers, and
if there are trackers in the merge state, the unmatched object
is compared against those trackers by using the logic in (2),
which is also applicable if there are more than two trackers in
the merge state as shown in Fig. 2.

(a) Frame 530 (b) Frame 570 (c) Frame 580 (d) Frame 590

(e) Frame 530 (f) Frame 570 (g) Frame 580 (h) Frame 590

Fig. 1. Example of successfully resolving a merge. First and second
rows show the original images, and the tracked objects with their
labels respectively.

(a) Frame 795 (b) Frame 815 (c) Frame 877

(d) Frame 920 (e) Frame 950

Fig. 2. Example of resolving the merge of multiple objects.

3. INTER-CAMERA COMMUNICATION

Our system provides a means for communication between the
camera nodes by using the MPI library [7]. We take advan-
tage of the proven usefulness of this library, and treat it as a
transparent interface between the camera nodes. This reduces
both the overhead and development time of a fully custom
communication protocol. The proposed method is based on
four primary design criteria: the communication infrastruc-
ture, the events during which data should be requested from
other cameras, the data to be transferred between the cam-
eras, and the points during execution at which these transfers
should be made. In the following, we refer to camera Ci and
Cj for a requesting and replying camera node, respectively.
The block diagram in Fig. 3 illustrates the concepts discussed
in this section. Note that at some point during execution each
camera node can act as the requesting or replying node.

3.1. The Communication Protocol

Our protocol is designed to be efficient both by reducing the
number of times a message must be sent as well as the mes-
sage size. Furthermore, we utilize a non-blocking method of

278



Find Label of
Closest Tracker

of Input Label
Find Coordinates

Camera C j

Library

Update

lst_label_req

new_label_req

Tracker Container

Check New

Check Lost

new_label_req

Blobs

FG

lst_label_rep

new_label_rep
Receive New

Tracker Container

Receive Lost

synch_frame

MPI

Camera C i

lst_label_req

synch_frame

lst_label_rep

new_label_rep

Fig. 3. Communication between two cameras.

communication. This effectively allows for a camera node
to make its requests, noting the requests it made, and then
continuing its processing, with the expectation that the re-
questee will issue a reply message at some point later in ex-
ecution. Messages transferred contain tags specifying their
type of command, with either req or rep appended, for re-
questing data or replying to a request, respectively. This is in
contrast to blocking communication which suffers from two
main drawbacks: first, the potential for parallel processing is
reduced, as a camera node will be stuck waiting for its reply,
while the processing program will likely require stochastic
checks for messages. In the non-blocking case, checks for
messages can take place in a deterministic fashion. Another
drawback of the blocking communication is the increased po-
tential for deadlocks and process starvation. This can be seen
by considering the situation where both cameras are making
requests at or near simultaneous instances, as neither can pro-
cess the other node’s request while each waits for a reply.

In addition, our protocol utilizes point-to-point communi-
cation, as opposed to some previous approaches that require
a central message processing server. Our approach offers a
latency advantage, as one less stopping point for a given mes-
sage is necessary. Also, there is a scalability advantage, since
for a central server implementation, the server quickly be-
comes overloaded with the aggregate sum of requests from
an increased number of nodes.

Finally, our protocol sends minimal amounts of data. Mes-
sages consist of 256 byte packets, with character command
tags, integers and floats for track labels and coordinates, re-
spectively, and integers for the requesting camera id. Clearly,
this is significantly less than the amount of data inherent in
transferring streams of video or even image data and features.
The protocol provides further efficiency by the nodes deter-
mining if a request should be made based upon relative field
of view (FOV) line information discussed in Section 3.3.

3.2. Synchronization

To the best of our knowledge, existing systems do not discuss
how to allow for communication and processing delays. Even

if the cameras are synchronized or time stamp information is
available, communication and processing delays pose a seri-
ous problem for distributed camera systems. For example, if
camera Ci sends a message to camera Cj asking for infor-
mation, it incurs a communication delay. When camera Cj

receives this message, it could be on a frame behind camera
Ci depending on the amount of processing its processor has
to do, or it can be ahead of Ci due to the communication de-
lay. As a result, the data received may not correspond to data
appropriate to the requesting camera’s time frame. To allevi-
ate this, our protocol provides synchronization points, where
all nodes are required to wait until each node has reached the
same point. During this time, message requests and replies
are issued as needed, and reply data is used to update existing
trackers. These points are determined based on a synchro-
nization rate, synch rate, where the camera nodes are syn-
chronized once every synch rate frames.

3.3. Request Events
A camera requests information from the other cameras when:
a) a new object appears in its FOV, or b) a tracked object
is lost. Our protocol refers to these events as new label and
lost label, respectively.

In the new label case, when a new object enters the FOV
of a camera, it is possible that this object was already being
tracked by other cameras. If this is the case, the camera will
request the label of this object from those cameras, thus main-
taining consistent labeling. If a FG object viewed by camera
Ci cannot be matched to any existing tracker, a new tracker
is created for it, and the visibility of this object by other cam-
eras is checked using the FOV lines. The projections of the
3D FOV lines of camera Cj onto the image plane of camera
Ci will result in 2D lines denoted by L

j,s
i , and called FOV

lines, where s ∈ {r, l, t, b} corresponds to one of the sides of
the image plane. The FOV lines are recovered as described
in our previous work [6]. The midpoint of the bottom line
of the bounding box of the object is used as its location. If
this point lies on the visible side of all L

j,s
i , it is deduced that

it is visible by Cj . All the cameras that can see this object
are found in the same way, and a list of cameras to communi-
cate is formed. After ensuring Cj can see the object, the CPU
processing Ci, sends a message to the one processing Cj .

Ci could also need information from another node when
a tracker in Ci loses its target object, and this is called the
lost label case. A tracker can lose its object due to errors in
BGS or if its object is occluded. For every tracker that cannot
find its match in the current frame, it is first checked if the
object of that tracker has left the FOV of the camera. This
is done by checking the direction, duration and the distance
of the tracker to image boundaries. If the target object is not
out of the view, the cameras which can see the most recent
location of the tracker are found as in the new label commu-
nication scenario. If it is deduced that the object is visible by
Cj , a message, containing the label of the lost object, is sent
to the CPU processing Cj . The most recent location of this

279



label, in the coordinate system of Cj is received as the reply.
Then, the corresponding point on the view of Ci is calculated
as described in [6], and the location of the tracker is updated.
As seen in Fig. 4, a car begins to go behind a tree in frame
372, and as a result will not be seen by the current camera. In
frame 386, the car’s location can still be updated, thanks to re-
ceiving its coordinates from the other camera. At frame 388,
the car is seen again, and its tracker catches up to its object.

(a) Frame 372 (b) Frame 386 (c) Frame 388
Fig. 4. Example of successfully recovering occluded object.

4. EXPERIMENTAL RESULTS

The proposed approach was implemented using a computing
cluster containing uniprocessor compute nodes. Our sam-
ple input consisted of video sequences from the PETS2001
database. A C/C++ implementation was developed, using
LAM/MPI [8] for communication. The rate of synchroniza-
tion was varied, with assessments of vision performance ac-
quired relative to the performance of the single processor case.
The accuracy percentage with respect to vision performance
was determined by the following formula:

accuracy =
#correct updates

total requests
∗ 100 (3)

where #correct updates represents the number of times a new
or lost label request is correctly fulfilled. The determined ac-
curacy values are shown in Fig. 5a. As can be seen in the
figure, the system achieves 95% accuracy in the single frame
synchronization case, with levels monotonically decreasing
with increasing synchronization rate. Further, even with al-
lowing the processors to operate up to 2 seconds without com-
munication, a level of 55% accuracy is still attained.

In addition to accuracy, the recovery time for unfulfilled
new and lost label requests was determined. This represents
the number of frames a node must wait before acquiring the
requested information from the other node. Consider the case
of a new label req by camera Ci to camera Cj . For synch rate
S, in the worst-case, S frames of recovery time would be nec-
essary prior to Ci receiving its desired new label rep from Cj .
Average values for this recovery time are shown in Fig. 5b.
As can be seen in the figure and as expected, recovery time
increases with increasing synchronization rate. It should be
noted that even when allowing for up to 2 seconds of recov-
ery time, the average wait is one-fourth of this.

Regarding speed, our parallel implementation allowed for
a system that can handle more than two video sources, while
providing a speedup of 3.05 times relative to an initial imple-
mentation running on a single uniprocessor node. Clearly, this
is more ideal. Furthermore, the presented protocol is scalable,
and thus ameliorates the speed limitations imposed by single
processor implementations.

(a) Accuracy (b) Recovery Time

Fig. 5. Performance Results.

5. CONCLUSIONS

As the previous section indicates, our approach to multiple-
camera tracking shows promise. It is our belief that by com-
bining effective algorithms, robust communication protocol
based on proven infrastructure (MPI), and provision of syn-
chronization, our system obviates previous multi-camera sys-
tem design issues. Further, our experiments provide analysis
of synchronization frequency and communication issues. The
addition of distinct processors for video sources, with the abil-
ity of both individual tracking as well as tracking with assis-
tance from other cameras, provides a robust and fault-tolerant
system. The newly designed protocol allows for non-blocking
communication, such that processors are not required to wait
for replies to requests. This is accomplished without deteri-
oration of vision algorithm performance. Furthermore, our
approach and system allow for greater security by reducing
the amount of transmitted data, which in turn requires less
energy for communication.

6. REFERENCES

[1] T. -H. Chang, and S. Gong, “Tracking Multiple People with
a Multi-camera System ,” Proc. of IEEE Workshop on Multi-
Object Tracking, pp. 19-26, 2001.

[2] N. Atsushi, K. Hirokazu, H. Shinsaku, and I. Seiji, “Tracking
Multiple People using Distributed Vision Systems” Proc. IEEE
Int’l Conf. on Robotics and Automation, pp. 2974-2981, 2002.

[3] T. Ellis,“Multi-camera Video Surveillance,”Proc. of Int’l Car-
nahan Conf. on Security Technology, pp. 228-233, 2002.

[4] K. Nguyen, G. Yeung, S. Ghiasi, and M. Sarrafzadeh, “A Gen-
eral Framework for Tracking Objects in a Multi-Camera Envi-
ronment,”Proc. of Int’l Workshop on Digital and Computational
Video, pp.200-204, 2002.

[5] C. Stauffer and W. E. L. Grimson, “Adaptive background mix-
ture models for real-time tracking, ”IEEE Int’l Conf. on CVPR,
vol. 2, June 1999.

[6] S. Velipasalar and W. Wolf, “Multiple Object Tracking and Oc-
clusion Handling by Information Exchange between Uncali-
brated Cameras”, Proc. of IEEE ICIP, pp. 418-421, Sept. 2005.

[7] The MPI Standard, http://www-unix.mcs.anl.gov/mpi/.

[8] LAM/MPI Parallel Computing, http://www.lam-mpi.org/.

280


