
Dynamic View-dependent Multiresolution Terrain Visualization

Din-Chang Tseng * and Chung-Chieh Huang

Institute of Computer Science and Information Engineering

National Central University, Chung-li, Taiwan

* Email: tsengdc@ip.csie.ncu.edu.tw

Abstract

Large-area terrain visualization is important to

multimedia and military applications. However, such a huge

amount of terrain data is not easily able to process on a

general personal computer. Thus, how to efficiently process

and display a large-area terrain data is the main challenge. In

this study, we combine the proposed techniques of

multiresolution terrain modeling, view-dependent rendering,

and dynamic loading with the digital terrain models and

satellite images to dynamically browse the large terrain

models and scene environment on a general personal

computer.

Keywords: multiresolution terrain modeling,

view-dependent browsing, dynamic loading,

scene visualization, flight simulation

1. Introduction

Terrain models were commonly used in many

applications, including flight simulation, geographical

analysis, and computer games [1, 2, 12, 13]. In these

applications, an efficient representation and browsing for the

terrain models is necessary. Terrain models are generally

represented by triangle meshes. A terrain model is usually a

complicated geometric object; to browse such a model is not

realized in real-time without reducing the number of

triangles even if a high-performance graphics accelerator is

used. Multiresolution modeling is one way to achieve the

real-time visualization for complicated models. The idea of

using multiresolution modeling is to show a coarser

(lower-resolution) model while the viewpoint is far away

from the terrain and show a finer (high-resolution) model

while the viewpoint is near the terrain; then the rendering

performance is improved without reducing the visual quality

[3-7, 10, 15].

A view-dependent browsing is a level-of-detail (LOD)

control framework to selectively refine or coarsen the mesh

according to the view parameters. This framework

efficiently determines the coarsest model to satisfy quality

requirements to further improve the rendering performance

[9, 11, 14].

It is impractical to load the entire terrain model into

memory if only a small portion of the terrain is visible; thus

a large terrain model is partitioned into blocks and then the

necessary terrain blocks are dynamically loaded into the

memory for rendering as viewpoint changing. Dynamic

loading does not only increase rendering speed, but also

reduce the memory requirement.

In this study, the techniques of multiresolution modeling,

view-dependent visualization, and dynamic loading are

combined for large terrain visualization to improve the

visualization performance without reducing the visual

quality; moreover, (i) cracks between two adjacent blocks

with different resolutions are eliminated by the proposed

re-triangulated boundary method; (ii) the active block

number is automatically adapted according to the height of

the viewpoint; (iii) the flight path is predicted to pre-load the

necessary blocks in advance to reduce the suspending

phenomenon during loading necessary terrain blocks in a

one-processor computer; (iv) a runtime geomorph method is

used to smoothly swap different-resolution terrain blocks.

The proposed visualization system is briefly described

as follows. (i) A large terrain model is partitioned into

blocks. (ii) All blocks are constructed as view-dependent

multiresolution structures. (iii) Based on the current view

parameters, the necessary terrain blocks are dynamically

loaded. (iv) According to the defined screen-space error, a

refining/simplifying procedure is applied on all active

blocks. (v) The cracks are eliminated by the proposed

re-triangulation boundary method. (vi) Based on the last

flying directions, the terrain blocks on the predicted path are

pre-loaded. (vii) The runtime geomorph method is used to

smoothly swap different-resolution terrain blocks.

2. Multiresolution Modeling

The progressive mesh (PM) proposed by Hoppe [8] is

utilized to generate the multiresolution terrain models. A

PM representation for an arbitrary triangle mesh M̂

consists of a coarse base mesh 0M and a sequence of n

refinement transformations called vertex split as shown in

Fig. 1. A PM representation for M̂ is obtained by carefully

simplifying it using n successive edge collapse
transformations as shown in Fig.1. In the process of an edge

collapse, two vertices on the ends of an edge are merged and

the two triangles that share the edge are vanished. A vertex

split is the inverse transformation of an edge collapse; which

1931­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

replaces a vertex with two new vertices and two new

triangles are generated.

vertex split

edge collapse

sv

uv

tv

lf rf
0nf

1nf

2nf

3nf

0nf

1nf

2nf

3nf

Fig. 1. An example of vertex split and edge collapse

transformations.

In the construction of a PM, the sequence of the edge

collapse transformations must be chosen carefully since it

determines the qualities of the intermediate meshes. We

construct a PM structure for a terrain mesh M̂ by

iteratively simplifying the mesh using edge collapse (ecol).

In each iteration, the algorithm performs the ecol with the

minimal approximation error. This procedure continues until

the mesh can’t be simplified further:

01 011 MMMM
ecolecolecoln n)ˆ(.

Then the simplest mesh together with the vsplits obtained by

reversing the ecol sequence form a PM structure:

)ˆ(MMMM nvsplitvsplitvsplit n 110 10 .

We use L norm to estimate the approximation error E

introduced by an ecol. That is, for an ecol transformation

that unifies two vertices to generate a new vertex v, we

calculate the maximum elevation difference between the

simplified area in the transformed mesh and the original,

fully detailed mesh M̂ , as follows. Formally, the error is

calculated by the formula

)()(max)(ˆ pp
p

MN
D

N

v
v

vE , (1)

where RR
2:H is the scalar field of height field H;

vN is the height field formed by the union of triangles

incident to v in the transformed mesh; vD is the domain of

vN .

3. View-dependent Visualization

A vertex hierarchy for a PM is constructed for

managing data structure and achieving view-dependent

browsing. At first, the vertices of the base mesh are inserted

into the hierarchy as roots. Then for each vsplit(vt, vu, vs),

vertices vt and vu are inserted as the children of vs. The

parent-child relation on the vertices establishes a vertex

hierarchy as shown in Fig. 2. A selectively refined mesh

corresponds to a “vertex front” through this hierarchy, such

as M
o
 and M in Fig. 2. At runtime, selective refinement

based on the view frustum and screen-space error is

achieved by moving a vertex front up and down through the

hierarchy. This operation corresponds to a sequence of edge

collapse or vertex split transformations.

v8

vt vu

v7v5 vs

v1 v2 v3 v4
0M

M

Fig. 2. A vertex hierarchy.

As shown in Fig. 3, if the projected length of distance

between the approximated mesh M
A

and the original M̂ is

greater than the pre-defined threshold , then vertex vs will

be split into vt and vu. In this study, the screen-space error is

defined as the ratio of screen-projected deviation of the

distance between the approximated mesh M
A
 and the

original M̂ to the height of the screen. We compute the

screen-space error for each active vertex v.

As shown in Fig. 4, for each vertex v in the hierarchy,

we compute the radius rv of a bounding sphere Sv that is

centered at v and bounds all its descendants. In particular, if

v is a leaf, Sv is the smallest sphere that is centered at v and

bounds Nv. For each vertex v at leaf, we compute rv as the

radius of the smallest sphere that is centered at v and bounds

all its adjacent vertices in M̂ . Then make a postorder

traversal of the hierarchy to assign each parent vertex vs the

radius of the smallest sphere
svS centered at vs that bounds

the spheres
uvS and

tvS as one example shown in Fig. 4.

screenviewpoint

viewing direction

original mesh M̂

approximating mesh M
A

sv

'

Fig. 3. Screen space error.

ecol

sv

uv

tv

uvS

tvS

svS

Fig. 4. Computation of bounding spheres.

194

A geomorph [9] consisting of meshes built by a

sequence of smooth changes of vertices is used to reduce the

popping effects during mesh transformations. For any two

selectively refined meshes M
A
 and M

B
, we construct a mesh

MG() whose vertices vary as a function of a parameter

10 , such that MG(0) looks identical to AM and MG(1)

looks identical to M
B
.

4. Dynamic Loading

The dynamic loading module is an on-line manager for

terrain blocks. It decides (i) which terrain blocks should be

loaded into memory while the viewpoint is changed and (ii)
to eliminate cracks between two blocks with different

boundary structures.

4.1 Dynamic loading management

We partition a large terrain model into several blocks,

and then simplify all blocks with four corners fixed to

product a multiresolution terrain model with view-

dependent PM structure. These blocks will be saved as a

terrain database with a 2D index, and queried by dynamic

loading management.

The steps of the dynamic loading management are

described as follows. At first, finding a terrain block called

center block where the viewpoint is located. Then,

according to the height of the viewpoint to load

(2(n+p)+1)×(2(n+p)+1) blocks surrounding the center block

as active blocks. The inner (2n+1)×(2n+1) blocks are

modeled as the view-dependent PM structure; the outer

p-layer blocks are modeled as the two-triangle mesh (TM)

which is the coarsest mesh only composed of two triangles.

4.2 Adaptive terrain blocks

The proposed terrain visualization system can

automatically change the number of active terrain blocks

according to the height of the viewpoint. In general, the less

an included angle between the view direction and the

ground is, the more blur the watched terrain. We assume the

height of the viewpoint is a, the minimum visible angle ,

and the farthest visible location to the location of the

viewpoint on the ground is b as shown in Fig. 5; then

cotab . (2)

The higher the viewpoint is, the farther the visible location

is. The default value of is 20 degrees and can be adjusted

by the user. From Eq.(2), several threshold values for a are

defined for changing the number of active terrain blocks.

Fig. 5. The farthest visible distance is defined based on the

included angle between the view direction and the ground.

4.3 Re-triangulation

Cracks between two adjacent blocks with different

resolutions are always generated. We here solve the

boundary matching problem by directly triangulating

unmatched triangles on the boundary as one example shown

in Fig. 6.

Some sliver (i.e., long and narrow) triangles may appear

if two unmatched vertices in two adjacent terrain blocks are

too close. The solution is that if the distance of two adjacent

mismatched vertices is less than a tolerance , the two

unmatched vertices are reset to their midpoint.

A triangle located at a block corner is generally adjacent

to two or more triangles in two neighboring blocks. The

triangles may need to be split twice and the two splits are

interdependent. We must care the split order; otherwise, the

wrong structure would be generated.

Fig. 6. Triangulation for unmatched triangles.

5. Experiments

We here give experimental results of progressive meshes,

view-dependent multiresolution modeling, and dynamic

loading.

The area shown in Fig. 7(a) is a fully detailed mesh of

129 129 vertices at ground resolution 40m 40m that covers

the bank and the dam body of the Shih-Men dam, Taiwan.

We constructed the PM structure for this area and several

intermediate meshes are shown in Fig. 7.

(a) (b) (c)

 (d) (e) (f)

Fig. 7. Progressive meshes. (a) A fully detailed terrain mesh

with 32768 triangles. (b) 8109 triangles. (c) 1978

triangles. (d) 467 triangles. (e) 109 triangles. (f) 2

triangles.

The ground
b

a

viewpoint

195

We choose a 6.4 km 6.4 km terrain mesh to evaluate the

performance of view-dependent progressive meshes. First

we build a PM structure for the mesh; then we adjust the

screen space error tolerance and perform the selective

refinement according to the view-dependent criteria. Two

examples with different error tolerances are shown in Fig. 8.

Comparing with the view-independent progressive meshes,

we can find that the view-dependent progressive meshes use

fewer triangles while produce better rendering results.

(a) (b)

Fig. 8. View-dependent progressive meshes with (a) = 0.2%

(19717 triangles) and (b) = 0.8 (6791 triangles).

We used a 64 km 64 km terrain located in northern

Taiwan for experiments of dynamic loading. The fully

detailed terrain mesh consists of 5120000 triangles. We first

partition the mesh into 10 10 blocks and build a PM
structure for each block independently. Note that there is a

40m gap between two adjacent blocks. The generated PM
structure is about 2.7M bytes for each block. The images for

texture mapping are also partitioned into tiles. A 1024 1024

24-bit bitmap tile is associated with a block. In the PM
construction, the four corner vertices of a block are kept

immovable. During terrain browsing, we always maintain a

3 3 array of loaded blocks in main memory. An example of

textured mapped block array is shown in Fig. 9.

References

[1] Cignoni, P., E. Puppo, and R. Scopigno, “Representation and

visualization of terrain surfaces at variable resolution,” The

Visual Computer, Vol.13, No.5, pp.199-217, 1997.

[2] Cohen-Or, D. and Y. Levanoni, “Temporal continuity of

levels of detail in Delaunay triangulated terrain,” in Proc.

Visualization'96, San Francisco, California, Oct.27–Nov.1,

1996, pp.37-42.

[3] Cohen, J., A.Varshney, D.Manocha, G. Turk, H. Weber, P.

Agarwal, F. Brooks, and W. Wright, “Simplification

envelopes,” in Proc. SIGGRAPH’96, New Orleans, LA,

Aug.4-9, 1996, pp.119-128.

Fig. 9. An example of combining techniques of multiresolution

modeling, view-dependent visualization, and dynamic

loading, where a texture mapped 3 3 terrain block array

with 453152 triangles.

[4] De Floriani, L., P. Marzano, and E. Puppo, “Multiresolution

models for topographic surface description,” The Visual

Computer, Vol.12, pp.317-345, 1996.

[5] Erikson, C., Polygonal Simplification: An Overview, Tech.

Report of Dept. Com. Sci., Univ. North Carolina at Chapel

Hill, TR96-016, 1996.

[6] Garland, M. and P. S. Heckbert, “Surface simplification using

quadric error metrics”, in Proc SIGGRAPH’97, Los Angeles,

CA, Aug.3-8, 1997, pp.209-216.

[7] Heckbert, P. S. and M. Garland, “Multiresolution modeling for

fast rendering,” in Proc. Graphics Interface’94, Banff, Alberta,

Canada, May 1994, pp.43-50.

[8] Hoppe, H., “Progressive meshes,” in Proc. SIGGRAPH’96,

New Orleans, LA, Aug.4-9, 1996, pp.99-108.

[9] Hoppe, H., “View-dependent refinement of progressive

meshes,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8,

1997, pp.189-198.

[10] Hoppe, H., Efficient Implementation of Progressive Meshes,

Tech. Report of Microsoft Research, Microsoft Corporation,

MSR-TR-98-02, Jan. 1998.

[11] Hoppe, H., “Smooth view-dependent level-of-detail control

and its application to terrain rendering,” in IEEE

Visualization’98, Research Triangle Park, NC, Oct.18-23,

1998, pp.35-42.

[12] Leclerc, Y. G. and S. Q. Lau Jr., Terra Vision: A Terrain

Visualization System, Tech. Report No.540, SRI International,

California, 1994.

[13] Li, P. P., W. H. Duquette, and D. W. Curkendall, “RIVA: A

versatile parallel rendering system for interactive scientific

visualization,” IEEE Trans. on Visualization and Computer

Graphics, Vol.2, No.3, pp.186-201, 1996.

[14] Luebke, D. and C. Erikson, “View-dependent simplification of

arbitrary polygonal environments,” in Proc. SIGGRAPH’97,

Los Angeles, Aug.3-8, 1997, pp.199-208.

[15] Xia, J. C., J. EI-Sana, and A. Varshney, “Adaptive real-time

level-of-detail-based rendering for polygonal models,” IEEE

Trans. on Visualization and Computer Graphics, Vol. 3, No.2,

pp.171-183, 1997.

196

