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Abstract

Large-area terrain visualization is important to 

multimedia and military applications. However, such a huge 

amount of terrain data is not easily able to process on a 

general personal computer. Thus, how to efficiently process 

and display a large-area terrain data is the main challenge. In 

this study, we combine the proposed techniques of 

multiresolution terrain modeling, view-dependent rendering, 

and dynamic loading with the digital terrain models and 

satellite images to dynamically browse the large terrain 

models and scene environment on a general personal 

computer. 
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1. Introduction 

Terrain models were commonly used in many 

applications, including flight simulation, geographical 

analysis, and computer games [1, 2, 12, 13]. In these 

applications, an efficient representation and browsing for the 

terrain models is necessary. Terrain models are generally 

represented by triangle meshes. A terrain model is usually a 

complicated geometric object; to browse such a model is not 

realized in real-time without reducing the number of 

triangles even if a high-performance graphics accelerator is 

used. Multiresolution modeling is one way to achieve the 

real-time visualization for complicated models. The idea of 

using multiresolution modeling is to show a coarser 

(lower-resolution) model while the viewpoint is far away 

from the terrain and show a finer (high-resolution) model 

while the viewpoint is near the terrain; then the rendering 

performance is improved without reducing the visual quality 

[3-7, 10, 15].  

A view-dependent browsing is a level-of-detail (LOD)

control framework to selectively refine or coarsen the mesh 

according to the view parameters. This framework 

efficiently determines the coarsest model to satisfy quality 

requirements to further improve the rendering performance 

[9, 11, 14]. 

It is impractical to load the entire terrain model into 

memory if only a small portion of the terrain is visible; thus 

a large terrain model is partitioned into blocks and then the 

necessary terrain blocks are dynamically loaded into the 

memory for rendering as viewpoint changing. Dynamic 

loading does not only increase rendering speed, but also 

reduce the memory requirement. 

In this study, the techniques of multiresolution modeling, 

view-dependent visualization, and dynamic loading are 

combined for large terrain visualization to improve the 

visualization performance without reducing the visual 

quality; moreover, (i) cracks between two adjacent blocks 

with different resolutions are eliminated by the proposed 

re-triangulated boundary method; (ii) the active block 

number is automatically adapted according to the height of 

the viewpoint; (iii) the flight path is predicted to pre-load the 

necessary blocks in advance to reduce the suspending 

phenomenon during loading necessary terrain blocks in a 

one-processor computer; (iv) a runtime geomorph method is 

used to smoothly swap different-resolution terrain blocks. 

The proposed visualization system is briefly described 

as follows. (i) A large terrain model is partitioned into 

blocks. (ii) All blocks are constructed as view-dependent 

multiresolution structures. (iii) Based on the current view 

parameters, the necessary terrain blocks are dynamically 

loaded. (iv) According to the defined screen-space error, a 

refining/simplifying procedure is applied on all active 

blocks. (v) The cracks are eliminated by the proposed 

re-triangulation boundary method. (vi) Based on the last 

flying directions, the terrain blocks on the predicted path are 

pre-loaded. (vii) The runtime geomorph method is used to 

smoothly swap different-resolution terrain blocks.   

2. Multiresolution Modeling 

The progressive mesh (PM) proposed by Hoppe [8] is 

utilized to generate the multiresolution terrain models. A 

PM representation for an arbitrary triangle mesh M̂

consists of a coarse base mesh 0M  and a sequence of n

refinement transformations called vertex split as shown in 

Fig. 1. A PM representation for M̂  is obtained by carefully 

simplifying it using n successive edge collapse
transformations as shown in Fig.1. In the process of an edge 

collapse, two vertices on the ends of an edge are merged and 

the two triangles that share the edge are vanished. A vertex 

split is the inverse transformation of an edge collapse; which 
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replaces a vertex with two new vertices and two new 

triangles are generated.  
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Fig. 1. An example of vertex split and edge collapse 

transformations. 

In the construction of a PM, the sequence of the edge 

collapse transformations must be chosen carefully since it 

determines the qualities of the intermediate meshes. We 

construct a PM structure for a terrain mesh M̂  by 

iteratively simplifying the mesh using edge collapse (ecol). 

In each iteration, the algorithm performs the ecol with the 

minimal approximation error. This procedure continues until 

the mesh can’t be simplified further: 

01 011 MMMM
ecolecolecoln n)ˆ( .

Then the simplest mesh together with the vsplits obtained by 

reversing the ecol sequence form a PM structure: 

)ˆ( MMMM nvsplitvsplitvsplit n 110 10 .

We use L  norm to estimate the approximation error E

introduced by an ecol. That is, for an ecol transformation 

that unifies two vertices to generate a new vertex v, we 

calculate the maximum elevation difference between the 

simplified area in the transformed mesh and the original, 

fully detailed mesh M̂ , as follows. Formally, the error is 

calculated by the formula 
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where RR
2:H  is the scalar field of height field H;

vN  is the height field formed by the union of triangles 

incident to v in the transformed mesh; vD  is the domain of 

vN .

3. View-dependent Visualization 

A vertex hierarchy for a PM is constructed for 

managing data structure and achieving view-dependent 

browsing. At first, the vertices of the base mesh are inserted 

into the hierarchy as roots. Then for each vsplit(vt, vu, vs),

vertices vt and vu are inserted as the children of vs. The 

parent-child relation on the vertices establishes a vertex 

hierarchy as shown in Fig. 2. A selectively refined mesh 

corresponds to a “vertex front” through this hierarchy, such 

as M
o
 and M in Fig. 2. At runtime, selective refinement 

based on the view frustum and screen-space error is 

achieved by moving a vertex front up and down through the 

hierarchy. This operation corresponds to a sequence of edge 

collapse or vertex split transformations. 
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Fig. 2. A vertex hierarchy. 

As shown in Fig. 3, if the projected length of distance 

between the approximated mesh M
A

and the original M̂  is 

greater than the pre-defined threshold , then vertex vs will 

be split into vt and vu. In this study, the screen-space error is 

defined as the ratio of screen-projected deviation of the 

distance between the approximated mesh M
A
 and the 

original M̂  to the height of the screen. We compute the 

screen-space error for each active vertex v.

As shown in Fig. 4, for each vertex v in the hierarchy, 

we compute the radius rv of a bounding sphere Sv that is 

centered at v and bounds all its descendants. In particular, if 

v is a leaf, Sv is the smallest sphere that is centered at v and 

bounds Nv. For each vertex v at leaf, we compute rv as the 

radius of the smallest sphere that is centered at v and bounds 

all its adjacent vertices in M̂ . Then make a postorder 

traversal of the hierarchy to assign each parent vertex vs the 

radius of the smallest sphere 
svS centered at vs that bounds 

the spheres 
uvS and

tvS  as one example shown in Fig. 4.  
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Fig. 3. Screen space error. 
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Fig. 4. Computation of bounding spheres. 
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A geomorph [9] consisting of meshes built by a 

sequence of smooth changes of vertices is used to reduce the 

popping effects during mesh transformations. For any two 

selectively refined meshes M
A
 and M

B
, we construct a mesh 

MG( ) whose vertices vary as a function of a parameter 

10 , such that MG(0) looks identical to AM  and MG(1) 

looks identical to M
B
.

4. Dynamic Loading 

The dynamic loading module is an on-line manager for 

terrain blocks. It decides (i) which terrain blocks should be 

loaded into memory while the viewpoint is changed and (ii)
to eliminate cracks between two blocks with different 

boundary structures.  

4.1 Dynamic loading management

We partition a large terrain model into several blocks, 

and then simplify all blocks with four corners fixed to 

product a multiresolution terrain model with view- 

dependent PM structure. These blocks will be saved as a 

terrain database with a 2D index, and queried by dynamic 

loading management. 

The steps of the dynamic loading management are 

described as follows. At first, finding a terrain block called 

center block where the viewpoint is located. Then, 

according to the height of the viewpoint to load 

(2(n+p)+1)×(2(n+p)+1) blocks surrounding the center block 

as active blocks. The inner (2n+1)×(2n+1) blocks are 

modeled as the view-dependent PM structure; the outer 

p-layer blocks are modeled as the two-triangle mesh (TM)

which is the coarsest mesh only composed of two triangles. 

4.2 Adaptive terrain blocks 

The proposed terrain visualization system can 

automatically change the number of active terrain blocks 

according to the height of the viewpoint. In general, the less 

an included angle  between the view direction and the 

ground is, the more blur the watched terrain. We assume the 

height of the viewpoint is a, the minimum visible angle ,

and the farthest visible location to the location of the 

viewpoint on the ground is b as shown in Fig. 5; then 

cotab .                            (2) 

The higher the viewpoint is, the farther the visible location 

is. The default value of  is 20 degrees and can be adjusted 

by the user. From Eq.(2), several threshold values for a are 

defined for changing the number of active terrain blocks.  

Fig. 5. The farthest visible distance is defined based on the 

included angle between the view direction and the ground.

4.3 Re-triangulation

Cracks between two adjacent blocks with different 

resolutions are always generated. We here solve the 

boundary matching problem by directly triangulating 

unmatched triangles on the boundary as one example shown 

in Fig. 6. 

Some sliver (i.e., long and narrow) triangles may appear 

if two unmatched vertices in two adjacent terrain blocks are 

too close. The solution is that if the distance of two adjacent 

mismatched vertices is less than a tolerance , the two 

unmatched vertices are reset to their midpoint. 

A triangle located at a block corner is generally adjacent 

to two or more triangles in two neighboring blocks. The 

triangles may need to be split twice and the two splits are 

interdependent. We must care the split order; otherwise, the 

wrong structure would be generated. 

Fig. 6. Triangulation for unmatched triangles. 

5. Experiments 

We here give experimental results of progressive meshes, 

view-dependent multiresolution modeling, and dynamic 

loading. 

The area shown in Fig. 7(a) is a fully detailed mesh of 

129 129 vertices at ground resolution 40m 40m that covers 

the bank and the dam body of the Shih-Men dam, Taiwan. 

We constructed the PM structure for this area and several 

intermediate meshes are shown in Fig. 7.  

(a)             (b) (c) 

 (d) (e)   (f) 

Fig. 7. Progressive meshes. (a) A fully detailed terrain mesh 

with 32768 triangles. (b) 8109 triangles. (c) 1978 

triangles. (d) 467 triangles. (e) 109 triangles. (f) 2 

triangles. 

The ground 
b

a
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We choose a 6.4 km 6.4 km terrain mesh to evaluate the 

performance of view-dependent progressive meshes. First 

we build a PM structure for the mesh; then we adjust the 

screen space error tolerance  and perform the selective 

refinement according to the view-dependent criteria. Two 

examples with different error tolerances are shown in Fig. 8. 

Comparing with the view-independent progressive meshes, 

we can find that the view-dependent progressive meshes use 

fewer triangles while produce better rendering results. 

(a)                   (b) 

Fig. 8. View-dependent progressive meshes with (a) = 0.2% 

(19717 triangles) and (b) = 0.8 (6791 triangles). 

We used a 64 km 64 km terrain located in northern 

Taiwan for experiments of dynamic loading. The fully 

detailed terrain mesh consists of 5120000 triangles. We first 

partition the mesh into 10 10 blocks and build a PM
structure for each block independently. Note that there is a 

40m gap between two adjacent blocks. The generated PM
structure is about 2.7M bytes for each block. The images for 

texture mapping are also partitioned into tiles. A 1024 1024 

24-bit bitmap tile is associated with a block. In the PM
construction, the four corner vertices of a block are kept 

immovable. During terrain browsing, we always maintain a 

3 3 array of loaded blocks in main memory. An example of 

textured mapped block array is shown in Fig. 9. 
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