
SCALABILITY OF MULTIMEDIA APPLICATIONS
ON NEXT-GENERATION PROCESSORS

Guy Amit1, Yaron Caspi1,2, Ran Vitale1 and Adi T. Pinhas1

1Corporate Technology Group, Intel Corp, Israel 2Weizmann Institute of Science, Israel
{guy.amit, adi.pinhas}@intel.com

ABSTRACT

In the near future, the majority of personal computers are
expected to have several processing units. This is referred to
as Core Multiprocessing (CMP). Furthermore, each of the
computation units will be capable of running multiple
hardware threads. To benefit from the additional processing
power, application developers should multithread their
software. This paper studies the scalability (expected
speedup factor) of multimedia applications and provides
guidelines for proper utilization of these new multi-core
platforms. In particular, we discuss the decomposition
method, load balancing, synchronization primitives,
interaction with the operating system and hardware issues
such as cache hierarchy and memory bandwidth. Our results
are based on analysis of several state-of-the-art applications,
including H.264 video encoding, panoramic image stitching
and dense optical-flow estimation. We demonstrate how to
multithread them properly, and report scalability results on
several next-generation multi-core platforms.

1. INTRODUCTION

Over the past several years, a major factor in improving
processor performance has been micro-architecture
mechanisms that exploit different levels of parallelism in the
program. One approach, named Instruction-Level
Parallelism (ILP), is to execute multiple instructions
concurrently on several execution units. Another approach
,termed Data-Level Parallelism (DLP), is to execute a
specific operation on multiple data elements within a single
instruction (e.g. MMX). Recent processors support Thread
Level Parallelism (TLP). These processors are able to run
two or more threads simultaneously. Future processors are
expected to have a larger number of cores on die.
This paper studies the expected speedup that these
architectures can provide for high-performance applications.
Multimedia workloads typically have independent kernels
and steady computation patterns that enable functional
decomposition. Therefore, these workloads are the ideal
beneficiary of multiple core processors. However, to fully
exploit the speedup potential, algorithms should be carefully
decomposed, reducing dependencies between kernels and
data elements. In addition, shared hardware resources, such
as memory and buses should be efficiently utilized and

software overheads originating from thread scheduling and
synchronization should be minimized.
In this paper we analyze the scalability of multithreaded
multimedia workloads on state-of-art multiprocessors. We
identify major scalability-limiting factors and illustrate how
to address them. For our experiments, we carefully selected
several representative multimedia applications, including
video encoding/decoding, stitching of panoramic images and
dense optical flow.

Figure 1: Block diagrams of different processors: (a) single-
thread (ST) (b) simultaneous multithreading (SMT)
(c) symmetric multiprocessing (SMP) (d) chip-level
multiprocessing (CMP).

1.1. Background and hardware terminology

This section reviews the basic multi-core architectures,
illustrated in Fig. 1. In Simultaneous Multithreading (SMT)
a single physical core is partitioned into two or more logical
cores. SMT allows multiple threads to execute instructions
in the same clock cycle, thus enabling better utilization of
the execution unit. Symmetric Multiprocessing (SMP) is a
multiprocessor architecture in which identical processors are
connected to a single shared off-die memory. As the shared
memory is significantly slower than the processors, inter-
thread communication through memory decreases the
scalability. The shared memory bottleneck is reduced in
Chip-Level Multiprocessing (CMP), namely multiple cores
on a single die. Multiple on-die cores share a common
cache, which typically has 10-times lower latency than an
external memory.
Previous studies discussed the tradeoffs in implementing
multithreaded software on actual processors. The
performance of multithreaded scientific applications using
SMT was described in [1]. Performance differences between
SMP and SMT systems, and between SMT and CMP
systems were reported in [2] and [3], respectively.

171­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

2. SCALABLITY OF MULTIMEDIA APPLICATIONS

In this study we focused on three representative applications
that are likely to prosper in the coming years:
(1) H.264 video encoder that includes quantization, motion

compensation, integer transform and entropy coding [4].
(2) Panoramic image generator that includes SIFT feature

extraction, approximated nearest neighbor search and
multiresolution image blending [5].

(3) Optical flow that consists of solving a set of linear
equations using Successive Over-Relaxation (SOR) [6].

All applications were multithreaded using data
decomposition, namely, partitioning of the data among
threads, where each thread performs the same computation
on different data, and synchronizes with the other threads if
needed. We executed each application on 1-4 physical
processors. Using accurate hardware timers, we measured
the overall execution time, the sequential code time and the
synchronization code time. Using VTune® performance
analyzer, we measured the cache miss rates and the external
bus utilization. The results are reported with respect to the
execution time of a single thread on a single processor.

1.84

2.59

3.32

1.75

2.38

3.11

1.72

2.49

3.01

1.00

1.50

2.00

2.50

3.00

3.50

2P 3P 4P

Processors

S
p

ee
d

u
p

H264 Panorama Optical Flow

Figure 2: Speedups obtained on two (2P), three (3P) and four
(4P) processors relative to the reference single processor code.

Fig. 2 shows the mean speedup values achieved on a
multiprocessor Xeon® system with two, three and four
physical processors, using diverse input data and operation
parameters. Speedup values on two processors ranged from
1.6x to 1.9x, and on four processors from 2.7x to 3.4x.
The applications were tested on two multi-core systems: The
first was an SMP system with four Intel 2.7GHz Xeon®
processors, each having three levels of cache on-chip
(L1–8KB, L2–512KB, L3-2MB), connected through a
400MHz front-side bus and running Windows® Server 2003
operating system. The second system was a CMP with an
Intel 2.5GHz Core Duo® processor. Each core had a 32KB
first-level cache, and both cores shared a 2MB second-level
cache, and a 667MHz external memory bus. This system
was running Windows® XP operating system.

3. SCALABILITY-LIMITING FACTORS

This section describes the dominant factors affecting the
scalability results reported in the previous section. These
include data access patterns, thread synchronization,
operating system (OS) effects and algorithm design
considerations.

3.1. Data access pattern

Sequential access to two-dimensional data is a common task
in image processing algorithms. We have chosen to analyze
a 2D Gaussian convolution, which consumes about 50% of
the total execution time of the feature extraction module in
our panoramic image construction application. However, the
results apply also to other image manipulations, such as edge
detection or noise filtering. Since low pass filtering is
separable, it was implemented as two 1D phases: first, a
horizontal 1x9 filter is moved across the rows, and then a
vertical 9x1 filter is moved across the columns. Although
this implementation closely follows the algorithm design, it
does not take into account the actual representation of data
in the memory system. Since the memory is one-
dimensional, the horizontal filter achieves a good data
locality when accessing data by the order of the rows, since
most of the data is obtained from the fast cache (L1/L2).
However, in the vertical convolution filter, accessing data by
the order of the columns, the number of accesses to the slow
external memory was about 30 times higher compared to the
horizontal filter. As a direct consequence, the vertical filter
executed 2.5 times slower than the horizontal filter.
Furthermore, the inefficient data access had a negative effect
on the scalability of the multithreaded implementation. The
frequent attempts to access the shared memory increased the
bus latency and reduced the scalability. As a result, while the
horizontal filter showed a perfect speedup of 4x, the vertical
filter executed only 2.4x faster on four processors, having 2-
times higher average bus latency. A minor code
optimization, scanning the vertical filter in row order,
increased the scalability of the vertical filter from 2.4x to
3.9x, and the speedup of the entire module improved from
2.9x to 3.3x (Fig. 3).

0

2

4

6

8

10

12

14

16

18

20

ST MT ST MT

E
xe

cu
ti

on
 t

im
e

(s
ec

)

Horizintal filter
Verical filter
Entire module

optimized
code
speedups
4x, 3.9x, 3.3x

baseline
code
speedups
4x, 2.4x, 2.9x

Figure 3: Execution time and speedups of single-thread (ST)
and multithread (MT) versions of Gaussian convolution. Note
that speedup factors improve for the optimized code.

3.2. Thread synchronization

Thread synchronization is a major source of overhead in
multithreaded applications. In a previous work [4], we
showed that synchronization by simultaneous access of four
threads to lock-protected shared data structures can consume
up to 35% of the total frame compression time in an H.264
video encoder. To reduce this overhead, we have designed
and implemented a lock-free mechanism that manages the
list of macroblocks available for processing. The mechanism

18

is based on atomic compare & swap (CAS) operations: Each
thread reads a shared 64-bit data word, updates it and
commits it through a CAS operation, retrying if the compare
operation failed. This lock-free synchronization is general
enough to handle shared task queues of other multithreaded
algorithms as well. In the case of H.264 encoder, this
mechanism significantly reduced the synchronization
overhead and improved the application's scalability on four
processors from 2.6x to 3.3x, as shown in Fig. 4. Similar
improvement was achieved by a partial-lock policy [4] that
allowed each thread to allocate some of its tasks locally,
reducing the number of accesses to the lock-based shared
data by factor 40.

2.60

3.323.32

1.00

1.50

2.00

2.50

3.00

3.50

full-lock partial-lock lock-free

Synchronization Policy

S
p

ee
d

u
p

Figure 4: Speedup of an H.264 encoder on four processors,
with full lock-based synchronization, compared to partial lock-
based synchronization and lock-free synchronization

A second common type of thread synchronization is explicit
event signaling, which is typically implemented by calling
OS services. We measured the overhead of OS-based
signaling in the multithreaded optical-flow application.
Analysis of the scalability results showed that the speedup
was limited by two factors: OS thread synchronization and
thread imbalance. To improve the speedup, the OS
synchronization was replaced by an efficient, assembly
coded, synchronization function. Furthermore, as more
threads were used and the workload was broken into smaller
computational pieces, the load balancing improved as well,
reducing the overhead of waiting for the last thread. These
optimizations increased the speed up from 1.7x to 1.85x on
two processors.

3.3. Memory management

Memory management is another basic service provided by
the OS. This section emphasizes the importance of using
thread-safe and scalable memory management libraries. In
the following example, the multithreaded stitching module
of the panorama application showed a very poor scalability
of 1.4x on four processors (Fig. 5). Code analysis pointed
out a single function, constituting about 25% of the entire
execution time, which scaled down as the number of
processors increased. This function utilized a linked list,
implemented with standard template library (STL). The
abstract list operations used frequent allocation and release
of heap memory, which accessed the heap shared by all
threads. The default heap library, provided by Windows OS,
uses a lock-based mechanism to ensure thread safety: When

a thread is accessing the heap, it first acquires a lock. If the
lock is not available, the thread is suspended, waiting for the
lock to be released. This mechanism enforces large
overheads as the number of threads is increased, as it
conceals a large number of implicit synchronization points.
Using a lock-free heap library (LeapHeap, Necklace Ltd.)
the problematic function became scalable, and the speedup
of the stitching module on four processors was improved
from 1.4x to 2.7x, as shown in Fig. 5.

1.40
1.48 1.42

1.73

2.26

2.71

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

2P 3P 4P

Processors

S
p

ee
d

u
p

Default heap Lock-free heap

Figure 5: Speedups of the panorama stitching module obtained
using the default heap and a lock-free heap.

3.4. Algorithm design

As described in previous sections, the developer of scalable
multithreaded applications must consider factors related to
the hardware architecture and the software infrastructure.
However, the main challenge of achieving performance
boost through thread-level parallelism remains in the domain
of application design. The choice of a decomposition
method suitable for the specific algorithm has an impact on
the achieved scalability. The intuitive approach of
partitioning the data symmetrically between threads might be
sub-optimal due to algorithmic dependencies between data
elements. These dependencies force the threads to use a
synchronization mechanism, which has an additional run-
time overhead. In addition, as the processing time of each
data element is usually not constant, load balancing becomes
an important consideration for achieving maximal system
utilization. Multimedia applications commonly consist of
computational kernels, wrapped with I/O and data pre-
processing or post-processing code. This code is typically
sequential, executed by a single thread. Consequently, the
maximal achievable speedup is bounded, according to the
well-known Amdahl’s Law. Fig. 6 shows the potential
speedup improvement in the H.264 encoder, if we were able
to remove the sequential code and the algorithmic data
dependencies. According to these estimations, a video
encoder, designed with parallel execution in mind, would
obtain an additional speedup improvement of 10%.

4. CHIP-MULTIPROCESSING ARCHITECTURES

This section compares the scalability achieved on CMP and
SMP processor architectures. The speedup factors of all
three applications on a CMP Intel Core Duo® processor,
compared to a dual Xeon® SMP machine are shown in Fig.
7. Interestingly, CMP scalability was 3.5%-7% better than
SMP.

19

3.32
3.57 3.69

1.00

1.50

2.00

2.50

3.00

3.50

4.00

baseline no serial no sync

S
p

ee
d

u
p

Figure 6: The achievable speedups of an H.264 encoder on four
cores in the current design (baseline), when all serial code is
removed (no serial), and when synchronization due to data
dependencies is removed (no sync).

This scalability improvement results from the differences
between the cache hierarchies of the two systems. In the
CMP system (Fig. 1), the on-die L2 is shared by both cores.
As a result, when multiple threads are working on adjacent
inputs, good data locality is achieved for memory read
operations. Moreover, shared data structures used for
synchronization resides in L2, and write operations by one
thread does not invalidate the data of the other threads. This
is manifested by equal utilization of the external memory
bus in single-thread and multithread executions. Conversely,
in the SMP system the utilization of the external memory is
higher when there are multiple threads, causing the
scalability to reduce. Our measurements of the last-level
cache misses in the H.264 encoder showed that while there
was no difference between single-thread and multi-thread
executions on the CMP system, on the SMP system the
multithreaded encoder had 20% more cache misses than the
single-thread encoder. The SMP performance remained the
same even when the size of the last-level cache was
increased from 512KB to 2MB, thus supporting our
hypothesis that the improved scalability of the CMP system
is due to the shared cache architecture.

1.84
1.75 1.72

1.92

1.81 1.84

1.00

1.20

1.40

1.60

1.80

2.00

H.264 Panorama Optical Flow

S
p

ee
d

u
p

SMP CMP

Figure 7: Speedups achieved on CMP and SMP systems

5. DISCUSSION AND SUMMARY

Over the past decade, the rapid increase in computation
power of commodity PCs provided an impressive
performance boost to multimedia applications, with
relatively low effort on the part of the application
developers. This is about to change, as multi-core platforms
are expected to dominate PC systems. By using thread-level
parallelism on these platforms, developers of multimedia
applications can gain a significant performance

improvement, far beyond the usual gain of transitioning to a
new processor model. However, full utilization of multi-core
processors requires application developers to be aware of
the hardware architecture, memory organization, and OS
mechanisms. Furthermore, it requires algorithm designers to
remodel their algorithms, having parallel execution in mind.
As demonstrated in Section 3, achieving high speedups by
multithreading existing application code is a challenging
task. Fortunately, once an application is designed for good
scalability, it will profit effortless further improvement as
the number of cores per processor grows.
The following guidelines summarize our findings:
(1) Good utilization of local cache is required to minimize

the accesses to shared memory and reduce bus latencies.
(2) Optimized single-thread performance is beneficial for

improving multithread performance.
(3) The number of synchronization points between threads

should be minimal. Lock-based synchronization should
be avoided as much as possible.

(4) Optimized synchronization primitives should be
preferred over current OS services.

(5) Frequent memory allocation and release should be
avoided unless the shared heaps are lock free.

(6) Application design should minimize the portions of
sequential code and the dependencies between data
elements, allowing straightforward parallelization..

In conclusion, this study observed major scalability
bottlenecks in various multimedia applications. We presume
that these applications provide a figure of merit for the
achievable speedup of other multimedia applications as well.
As the number of cores per processor is expected to
continually grow in the foreseeable future, these scalability
issues are expected to intensify, and further work is required
to consolidate our observations on larger-scale systems.

6. ACKNOWLEDGEMENTS

We would like to convey our gratitude to M. Tsadik, Y.
Kulbak and S. Yefet for their contributions to this research.

7. REFERENCES

[1] R. Grant and A. Afsahi, "Characterization of Multithreaded
Scientific Workloads on Simultaneous Multithreading Intel
Processors," IOSCA 2005, Austin, TX, USA, 2005, pp. 13-19.
[2] Y.K. Chen, R. Lienhart, E. Debes, M. Holliman, M. Yeung.
"The Impact of SMT/SMP Designs on Multimedia Software
Engineering — A Workload Analysis Study," MSE 2002, pp. 336.
[3] C. Liao, Z. Liu, L. Huang, and B. Chapman, “Evaluating
OpenMP on Chip Multithreading Platforms,” University of
Houston, USA, July 2005.
[4] G. Amit and A. Pinhas, “Real-Time H.264 Encoding by
Thread-Level Parallelism: Gains and Pitfalls”, PDCS 2005.
[5] M. Brown and D. G. Lowe. “Recognising Panoramas”,
ICCV2003, pages 1218-1225.
[6] M. Black and P. Anandan, ”A framework for the robust
estimation of optical flow”, ICCV-93, May, 1993, pp. 231-236.

20

