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ABSTRACT  

In the near future, the majority of personal computers are 
expected to have several processing units. This is referred to 
as Core Multiprocessing (CMP). Furthermore, each of the 
computation units will be capable of running multiple 
hardware threads. To benefit from the additional processing 
power, application developers should multithread their 
software. This paper studies the scalability (expected 
speedup factor) of multimedia applications and provides 
guidelines for proper utilization of these new multi-core 
platforms. In particular, we discuss the decomposition 
method, load balancing, synchronization primitives, 
interaction with the operating system and hardware issues 
such as cache hierarchy and memory bandwidth. Our results 
are based on analysis of several state-of-the-art applications, 
including H.264 video encoding, panoramic image stitching 
and dense optical-flow estimation. We demonstrate how to 
multithread them properly, and report scalability results on 
several next-generation multi-core platforms. 

1. INTRODUCTION  

Over the past several years, a major factor in improving 
processor performance has been micro-architecture 
mechanisms that exploit different levels of parallelism in the 
program. One approach, named Instruction-Level 
Parallelism (ILP), is to execute multiple instructions 
concurrently on several execution units. Another approach 
,termed Data-Level Parallelism (DLP), is to execute a 
specific operation on multiple data elements within a single 
instruction (e.g. MMX). Recent processors support Thread 
Level Parallelism (TLP). These processors are able to run 
two or more threads simultaneously. Future processors are 
expected to have a larger number of cores on die.  
This paper studies the expected speedup that these 
architectures can provide for high-performance applications. 
Multimedia workloads typically have independent kernels 
and steady computation patterns that enable functional 
decomposition. Therefore, these workloads are the ideal 
beneficiary of multiple core processors. However, to fully 
exploit the speedup potential, algorithms should be carefully 
decomposed, reducing dependencies between kernels and 
data elements. In addition, shared hardware resources, such 
as memory and buses should be efficiently utilized and 

software overheads originating from thread scheduling and 
synchronization should be minimized. 
In this paper we analyze the scalability of multithreaded 
multimedia workloads on state-of-art multiprocessors. We 
identify major scalability-limiting factors and illustrate how 
to address them. For our experiments, we carefully selected 
several representative multimedia applications, including 
video encoding/decoding, stitching of panoramic images and 
dense optical flow. 

Figure 1: Block diagrams of different processors: (a) single-
thread (ST) (b) simultaneous multithreading (SMT)  
(c) symmetric multiprocessing (SMP) (d) chip-level 
multiprocessing (CMP).

1.1. Background and hardware terminology 

This section reviews the basic multi-core architectures, 
illustrated in Fig. 1. In Simultaneous Multithreading (SMT) 
a single physical core is partitioned into two or more logical 
cores. SMT allows multiple threads to execute instructions 
in the same clock cycle, thus enabling better utilization of 
the execution unit. Symmetric Multiprocessing (SMP) is a 
multiprocessor architecture in which identical processors are 
connected to a single shared off-die memory. As the shared 
memory is significantly slower than the processors, inter-
thread communication through memory decreases the 
scalability. The shared memory bottleneck is reduced in 
Chip-Level Multiprocessing (CMP), namely multiple cores 
on a single die. Multiple on-die cores share a common 
cache, which typically has 10-times lower latency than an 
external memory.  
Previous studies discussed the tradeoffs in implementing 
multithreaded software on actual processors. The 
performance of multithreaded scientific applications using 
SMT was described in [1]. Performance differences between 
SMP and SMT systems, and between SMT and CMP 
systems were reported in [2] and [3], respectively.
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2. SCALABLITY OF MULTIMEDIA APPLICATIONS 

In this study we focused on three representative applications 
that are likely to prosper in the coming years: 
(1) H.264 video encoder that includes quantization, motion 

compensation, integer transform and entropy coding [4]. 
(2) Panoramic image generator that includes SIFT feature 

extraction, approximated nearest neighbor search and 
multiresolution image blending [5].  

(3) Optical flow that consists of solving a set of linear 
equations using Successive Over-Relaxation (SOR) [6].  

All applications were multithreaded using data 
decomposition, namely, partitioning of the data among 
threads, where each thread performs the same computation 
on different data, and synchronizes with the other threads if 
needed. We executed each application on 1-4 physical 
processors. Using accurate hardware timers, we measured 
the overall execution time, the sequential code time and the 
synchronization code time. Using VTune® performance 
analyzer, we measured the cache miss rates and the external 
bus utilization. The results are reported with respect to the 
execution time of a single thread on a single processor. 
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Figure 2: Speedups obtained on two (2P), three (3P) and four 
(4P) processors relative to the reference single processor code. 

Fig. 2 shows the mean speedup values achieved on a 
multiprocessor Xeon® system with two, three and four 
physical processors, using diverse input data and operation 
parameters. Speedup values on two processors ranged from 
1.6x to 1.9x, and on four processors from 2.7x to 3.4x. 
The applications were tested on two multi-core systems: The 
first was an SMP system with four Intel 2.7GHz Xeon® 
processors, each having three levels of cache on-chip  
(L1–8KB, L2–512KB, L3-2MB), connected through a 
400MHz front-side bus and running Windows® Server 2003 
operating system. The second system was a CMP with an 
Intel 2.5GHz Core Duo® processor. Each core had a 32KB 
first-level cache, and both cores shared a 2MB second-level 
cache, and a 667MHz external memory bus. This system 
was running Windows® XP operating system. 

3. SCALABILITY-LIMITING FACTORS 

This section describes the dominant factors affecting the 
scalability results reported in the previous section. These 
include data access patterns, thread synchronization, 
operating system (OS) effects and algorithm design 
considerations. 

3.1. Data access pattern 

Sequential access to two-dimensional data is a common task 
in image processing algorithms. We have chosen to analyze 
a 2D Gaussian convolution, which consumes about 50% of 
the total execution time of the feature extraction module in 
our panoramic image construction application. However, the 
results apply also to other image manipulations, such as edge 
detection or noise filtering. Since low pass filtering is 
separable, it was implemented as two 1D phases: first, a 
horizontal 1x9 filter is moved across the rows, and then a 
vertical 9x1 filter is moved across the columns. Although 
this implementation closely follows the algorithm design, it 
does not take into account the actual representation of data 
in the memory system. Since the memory is one-
dimensional, the horizontal filter achieves a good data 
locality when accessing data by the order of the rows, since 
most of the data is obtained from the fast cache (L1/L2). 
However, in the vertical convolution filter, accessing data by 
the order of the columns, the number of accesses to the slow 
external memory was about 30 times higher compared to the 
horizontal filter. As a direct consequence, the vertical filter 
executed 2.5 times slower than the horizontal filter. 
Furthermore, the inefficient data access had a negative effect 
on the scalability of the multithreaded implementation. The 
frequent attempts to access the shared memory increased the 
bus latency and reduced the scalability. As a result, while the 
horizontal filter showed a perfect speedup of 4x, the vertical 
filter executed only 2.4x faster on four processors, having 2-
times higher average bus latency. A minor code 
optimization, scanning the vertical filter in row order, 
increased the scalability of the vertical filter from 2.4x to 
3.9x, and the speedup of the entire module improved from 
2.9x to 3.3x (Fig. 3). 
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Figure 3: Execution time and speedups of single-thread (ST) 
and multithread (MT) versions of Gaussian convolution. Note 
that speedup factors improve for the optimized code. 

3.2. Thread synchronization 

Thread synchronization is a major source of overhead in 
multithreaded applications. In a previous work [4], we 
showed that synchronization by simultaneous access of four 
threads to lock-protected shared data structures can consume 
up to 35% of the total frame compression time in an H.264 
video encoder. To reduce this overhead, we have designed 
and implemented a lock-free mechanism that manages the 
list of macroblocks available for processing. The mechanism 

18



is based on atomic compare & swap (CAS) operations: Each 
thread reads a shared 64-bit data word, updates it and 
commits it through a CAS operation, retrying if the compare 
operation failed. This lock-free synchronization is general 
enough to handle shared task queues of other multithreaded 
algorithms as well. In the case of H.264 encoder, this 
mechanism significantly reduced the synchronization 
overhead and improved the application's scalability on four 
processors from 2.6x  to 3.3x, as shown in Fig. 4. Similar 
improvement was achieved by a partial-lock policy [4] that 
allowed each thread to allocate some of its tasks locally, 
reducing the number of accesses to the lock-based shared 
data by factor 40. 
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Figure 4: Speedup of an H.264 encoder on four processors, 
with full lock-based synchronization, compared to partial lock-
based synchronization and lock-free synchronization

A second common type of thread synchronization is explicit 
event signaling, which is typically implemented by calling 
OS services. We measured the overhead of OS-based 
signaling in the multithreaded optical-flow application. 
Analysis of the scalability results showed that the speedup 
was limited by two factors: OS thread synchronization and 
thread imbalance. To improve the speedup, the OS 
synchronization was replaced by an efficient, assembly 
coded, synchronization function. Furthermore, as more 
threads were used and the workload was broken into smaller 
computational pieces, the load balancing improved as well, 
reducing the overhead of waiting for the last thread. These 
optimizations increased the speed up from 1.7x to 1.85x on 
two processors. 

3.3. Memory management 

Memory management is another basic service provided by 
the OS. This section emphasizes the importance of using 
thread-safe and scalable memory management libraries. In 
the following example, the multithreaded stitching module 
of the panorama application showed a very poor scalability 
of 1.4x on four processors (Fig. 5). Code analysis pointed 
out a single function, constituting about 25% of the entire 
execution time, which scaled down as the number of 
processors increased. This function utilized a linked list, 
implemented with standard template library (STL). The 
abstract list operations used frequent allocation and release 
of heap memory, which accessed the heap shared by all 
threads. The default heap library, provided by Windows OS, 
uses a lock-based mechanism to ensure thread safety: When 

a thread is accessing the heap, it first acquires a lock. If the 
lock is not available, the thread is suspended, waiting for the 
lock to be released. This mechanism enforces large 
overheads as the number of threads is increased, as it 
conceals a large number of implicit synchronization points. 
Using a lock-free heap library (LeapHeap, Necklace Ltd.) 
the problematic function became scalable, and the speedup 
of the stitching module on four processors was improved 
from 1.4x to 2.7x, as shown in Fig. 5. 

1.40
1.48 1.42

1.73

2.26

2.71

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

2P 3P 4P

Processors

S
p

ee
d

u
p

Default heap Lock-free heap

Figure 5: Speedups of the panorama stitching module obtained 
using the default heap and a lock-free heap. 

3.4. Algorithm design 

As described in previous sections, the developer of scalable 
multithreaded applications must consider factors related to 
the hardware architecture and the software infrastructure. 
However, the main challenge of achieving performance 
boost through thread-level parallelism remains in the domain 
of application design. The choice of a decomposition 
method suitable for the specific algorithm has an impact on 
the achieved scalability. The intuitive approach of 
partitioning the data symmetrically between threads might be 
sub-optimal due to algorithmic dependencies between data 
elements. These dependencies force the threads to use a 
synchronization mechanism, which has an additional run-
time overhead. In addition, as the processing time of each 
data element is usually not constant, load balancing becomes 
an important consideration for achieving maximal system 
utilization. Multimedia applications commonly consist of 
computational kernels, wrapped with I/O and data pre-
processing or post-processing code. This code is typically 
sequential, executed by a single thread. Consequently, the 
maximal achievable speedup is bounded, according to the 
well-known Amdahl’s Law. Fig. 6 shows the potential 
speedup improvement in the H.264 encoder, if we were able 
to remove the sequential code and the algorithmic data 
dependencies. According to these estimations, a video 
encoder, designed with parallel execution in mind, would 
obtain an additional speedup improvement of 10%.   

4. CHIP-MULTIPROCESSING ARCHITECTURES 

This section compares the scalability achieved on CMP and 
SMP processor architectures. The speedup factors of all 
three applications on a CMP Intel Core Duo® processor, 
compared to a dual Xeon® SMP machine are shown in Fig. 
7. Interestingly, CMP scalability was 3.5%-7% better than 
SMP. 
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Figure 6: The achievable speedups of an H.264 encoder on four 
cores in the current design (baseline), when all serial code is 
removed (no serial), and when synchronization due to data 
dependencies is removed (no sync).

This scalability improvement results from the differences 
between the cache hierarchies of the two systems. In the 
CMP system (Fig. 1), the on-die L2 is shared by both cores. 
As a result, when multiple threads are working on adjacent 
inputs, good data locality is achieved for memory read 
operations. Moreover, shared data structures used for 
synchronization resides in L2, and write operations by one 
thread does not invalidate the data of the other threads. This 
is manifested by equal utilization of the external memory 
bus in single-thread and multithread executions. Conversely, 
in the SMP system the utilization of the external memory is 
higher when there are multiple threads, causing the 
scalability to reduce. Our measurements of the last-level 
cache misses in the H.264 encoder showed that while there 
was no difference between single-thread and multi-thread 
executions on the CMP system, on the SMP system the 
multithreaded encoder had 20% more cache misses than the 
single-thread encoder. The SMP performance remained the 
same even when the size of the last-level cache was 
increased from 512KB to 2MB, thus supporting our 
hypothesis that the improved scalability of the CMP system 
is due to the shared cache architecture. 
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Figure 7: Speedups achieved on CMP and SMP systems

5. DISCUSSION AND SUMMARY 

Over the past decade, the rapid increase in computation 
power of commodity PCs provided an impressive 
performance boost to multimedia applications, with 
relatively low effort on the part of the application 
developers. This is about to change, as multi-core platforms 
are expected to dominate PC systems. By using thread-level 
parallelism on these platforms, developers of multimedia 
applications can gain a significant performance 

improvement, far beyond the usual gain of transitioning to a 
new processor model. However, full utilization of multi-core 
processors requires application developers to be aware of 
the hardware architecture, memory organization, and OS 
mechanisms. Furthermore, it requires algorithm designers to 
remodel their algorithms, having parallel execution in mind. 
As demonstrated in Section 3, achieving high speedups by 
multithreading existing application code is a challenging 
task. Fortunately, once an application is designed for good 
scalability, it will profit effortless further improvement as 
the number of cores per processor grows. 
The following guidelines summarize our findings:  
(1) Good utilization of local cache is required to minimize 

the accesses to shared memory and reduce bus latencies. 
(2) Optimized single-thread performance is beneficial for 

improving multithread performance. 
(3) The number of synchronization points between threads 

should be minimal. Lock-based synchronization should 
be avoided as much as possible. 

(4) Optimized synchronization primitives should be 
preferred over current OS services. 

(5) Frequent memory allocation and release should be 
avoided unless the shared heaps are lock free. 

(6) Application design should minimize the portions of 
sequential code and the dependencies between data 
elements, allowing straightforward parallelization.. 

In conclusion, this study observed major scalability 
bottlenecks in various multimedia applications. We presume 
that these applications provide a figure of merit for the 
achievable speedup of other multimedia applications as well. 
As the number of cores per processor is expected to 
continually grow in the foreseeable future, these scalability 
issues are expected to intensify, and further work is required 
to consolidate our observations on larger-scale systems.   

6. ACKNOWLEDGEMENTS 

We would like to convey our gratitude to M. Tsadik, Y. 
Kulbak and S. Yefet for their contributions to this research. 

7. REFERENCES 

[1] R. Grant and A. Afsahi, "Characterization of Multithreaded 
Scientific Workloads on Simultaneous Multithreading Intel 
Processors," IOSCA 2005, Austin, TX, USA, 2005, pp. 13-19. 
[2] Y.K. Chen, R. Lienhart, E. Debes, M. Holliman, M. Yeung. 
"The Impact of SMT/SMP Designs on Multimedia Software 
Engineering — A Workload Analysis Study," MSE 2002, pp. 336. 
[3] C. Liao, Z. Liu, L. Huang, and B. Chapman, “Evaluating 
OpenMP on Chip Multithreading Platforms,” University of 
Houston, USA, July 2005. 
[4] G. Amit and A. Pinhas, “Real-Time H.264 Encoding by 
Thread-Level Parallelism: Gains and Pitfalls”, PDCS 2005. 
[5] M. Brown and D. G. Lowe. “Recognising Panoramas”, 
ICCV2003, pages 1218-1225. 
[6] M. Black and P. Anandan, ”A framework for the robust 
estimation of optical flow”, ICCV-93, May, 1993, pp. 231-236. 

20


