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ABSTRACT

In this paper, we present an efficient 3D shape rejection algorithm
for unlabeled 3D markers. The problem is important in domains
such as rehabilitation and the performing arts. There are three
key innovations in our approach — (a) a multi-resolution shape
representation using Haar wavelets for unlabeled markers, (b) a
multi-resolution shape metric and (c) a shape rejection algorithm
that is predicated on the simple idea that we do not need to
compute the entire distance to conclude that two shapes are
dissimilar. We tested the approach on a real-world pose
classification problem with excellent results. We achieved a
classification accuracy of 98% with an order of magnitude
improvement in terms of computational complexity over a
baseline shape matching algorithm.

1. INTRODUCTION

In this paper, we present a fast 3D shape rejection algorithm on
unlabeled 3D markers. The problem is important in areas such as
the performing arts [11] (e.g. dance) and rehabilitation [6], where
real-time gesture tracking plays a significant role. 3D shape
matching on unlabeled data is important since markers are often
self-occluded or lost. The problem is made difficult since
unlabeled marker data create a significant computational burden
for real-time systems, due to the marker correspondence problem.

There has been prior work on shape matching algorithm for
unlabeled data. Johnson and Herbert[10] presented a recognition
algorithm based on computing correspondence using spin images
that project 3D points to a 2D histogram. Recently, weighted
graph matching [2,3,4,7] is a standard technique to align a pair of
shapes represented by a set of descriptive local features. In [8], a
fast contour matching using Earth Movers Distance (EMD) is
presented. However, several challenging issues remain — (a) high
computational complexity of extracting local features from 3D
shapes, (b) high computational complexity of searching for the
marker correspondences.

We propose an efficient 3D shape rejection algorithm based on
hierarchical shape representation using global features. We build
upon prior work pattern rejection for images [1]. We first
represent the 3D markers using a Haar wavelet decomposition of
the distance histogram. Then, we reject shapes that are dissimilar
using a shape rejection algorithm. Our algorithm is predicated on
a simple idea — if two shapes are very dissimilar, we need not
compute the exact dissimilarity value to conclude that the shapes
are dissimilar. We can come to this conclusion by only comparing
a few Haar coefficients. This enables us to achieve a significant
computational gain. We tested our algorithm on a real-world
dance dataset with excellent results — we show a 98% accuracy
with an order of magnitude saving over a baseline shape matching
algorithm.

This paper is organized as follows. In section 2, we show how to
represent a shape at multi-resolutions, and in section 3, we detail
how we use the adaptive shape rejection in pose classification and
discuss the computational complexity. In section 4, we show our
experiment results and we present our conclusion in section 5.
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2. MULTI-RESOLUTION SHAPE ANALYSIS

In this section, we discuss the multi-resolution representation of
3D dancer’s shape. Each shape consists of 35 unlabeled 3D
marker coordinates captured from a marker-based motion capture
system. A calibrated 3D capture system (eg. VICON) usually
provides labeled data, specifying the location on the body for each
dancer. We focus on unlabeled data because in multi-dancers
scenario, some markers are lost or incorrectly labeled due to self-
occlusion or inter-occlusion. Figure 1 shows two dancer shape
examples each with 35 unlabeled markers on the dancer’s body.

Figure 1: Two examples of dancer’s pose from dataset
2.1 Feature Extraction

Let us denote the unlabeled 3D marker coordinates of a shape as
X=(x;y,z)", i=1,...N where N is the number of markers. We
create an object centric coordinate system, by moving the origin to
the centroid of N markers. We extract the distance from each
marker to the center denoted as r; (shown in Figure 2 (a)) and
divide r; by a constant R, to normalize them to interval [0,1].
The computational complexity to extract the normalized distance
is 13*N operations. In this paper, we assume that a single real
addition, subtraction or multiplication use equivalent resources.
Our framework can easily handle the case when the complexity is
different for different operations.
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Figure 2: (a) shape in normalized 3D space that is divided into
four distance bins. The shape centroid is the origin, »; and 7; are
normalized distances of i and /" markers. (b) Distance histogram.

2.2 Multi-resolution representation

In this subsection, we discuss multi-resolution shape
representation.  First, we introduce distance histogram
construction. Then, we show how Haar wavelet [12] basis is used
to decompose the distance histogram at multi-resolutions. Finally,
we discuss the computational complexity of 3D shape
representation.



2.2.1 Distance Histogram

The distance values r; of the 3D markers form an unordered set.
This is because the markers do not have any labels associated with
them. Hence, it is difficult to find the corresponding markers
between two shapes although they may be attached to the same
body location. As the first step towards 3D shape representation,
we transform the distance values with a distance histogram. At
resolution J, we uniformly divide the normalized distance space
[0,1] into K=2’ bins. Thus, the histogram with J resolutions —
h (k) is represented as:

k-1 k _ .
hy (k) =1 5] € [ )i =L N <1>

where N is the number of markers and || is cardinality (set size)
operator. Figure 2 (a) shows the case where the normalized 3D
space is divided into 4 distance bins and Figure 2 (b) shows the
distance histogram based on this division where J=2, h,(1), hy(2),
h5(3) and h5(4) are the number of markers in the four bins.

2.2.2 Haar Wavelet Decomposition

Wavelet decompositions allow for very good image
approximation with just a few coefficients [12] and work very
effectively in multi-resolution image queries [9]. A Haar wavelet
decomposition of the distance histogram would provide a good
foundation on which to build a shape metric. Haar wavelets are
also fast to compute and simple to implement. With Haar basis,
the histogram with J resolutions can be represented as a linear
combination of the Haar basis functions:

J-1 21
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where ¢,” and ¢, are the scaling coefficient and scaling function
respectively, d/ and y/ are the wavelet coefficient and wavelet
function of i Haar basis at the resolution level j. The wavelet
coefficient d/ can be obtained by:

d/ = <hJ |l//,j> > <3>

Where < | > is the inner product operator. Figure 3 shows the
scaling function and Haar wavelets functions at resolution 1, 2.
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Figure 3: Haar wavelets. (a) Scaling function ¢,’, (b) wavelet at

resolution J=1, (c-d) wavelet functions at resolution J=2.

Since each shape consists of the same number of markers N,
different shapes will share the same COOZN/ZJ . Hence, we only use
wavelet coefficients d/ to represent the shape histogram. The Haar
wavelet coefficient vector f; with resolution J is defined as:

[y =ldg dy,dy,ndi ™ dynL T <4>
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The size of the coefficient vector at resolution J is 2’-1. Note that
first 27/~ entries correspond to f.;, the wavelet decomposition at
resolution J-/. The last 2/ coefficients represent the detail at
resolution J.

2.2.3 3D Shape Representation Complexity

The 3D shape is represented using the 1D Haar wavelet
decomposition of the distance histogram. The computational
complexity of the representation is then due to two parts - (a)
computing 1D histogram (eq.<1>), and (b) complexity of Haar
wavelet decomposition (eq.<3>). The complexity of computing
histogram is J*N+2’-1 operations, and the complexity of Haar
wavelet decomposition is 2%@2’-1) operations at resolution J.
Therefore, the overall complexity is represented as:

Ch o =J N+3-(27=1) <5>

We can see that the computational complexity of computing
histogram increases linearly in number of markers — N, and the
computation complexity of Haar wavelet coefficients increase
exponentially with J.

3. SHAPE REJECTION

In this section, we use the shape representation discussed in
section 2 for pose classification using the nearest neighbor
technique (1-NN) [5]. Here, the input shape will be classified as
one of the M poses or will be rejected. The computation of shape
distance between the input and each class is very expensive. Here
we present an adaptive framework for classification using shape
rejection. We can quickly reject most of classes that are dissimilar
with input shape and find the class which is closest to the input.

3.1 Training

In the training phrase, we first compute the mean Haar wavelet
coefficient vector at resolution J=4 for each class:

K
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where f;/ is the mean Haar wavelet coefficient vector of the i
class at resolution J, f;; is the Haar wavelet coefficient vector of
the j training sample in the /" class at resolution J and K; is the
number of training samples in the i” class. Then a set of
thresholds {a/*} are obtained by:

ot =max|f,,,(6) - £,(8)] <7>
J

where a/ is the threshold corresponding to the K" entry of
coefficient vector of the i” class which represents the maximum
distance between the k" Haar wavelet coefficient of training
samples - f7, (k) and the K" mean Haar wavelet coefficient f;/(k)
of the i class.

3.2 Shape rejection and distance metric

Shape rejection is based on the idea that if two shapes are very
dissimilar, we need not compute the exact dissimilarity value to
conclude that the shapes are dissimilar. This is achieved by only
comparing a few coefficients. We adopt a supervised approach for
shape rejection using Haar wavelet coefficients.

In the comparison between the input shape and the shape of the i
class at resolution J, we first compare the Haar wavelet coefficient
vector of input shape denoted as fj;,,, with the mean Haar
wavelet coefficient vector of the i class - f71. If there exists & (1
<k <2’-1) such that:

/:l,rnput (k) - fjlji (k)| > lzlk s <8>



the " class will be rejected as dissimilar with the input.
Otherwise, we compute the L; distance of their Haar wavelet

coefficient vectors as distance between the input and the i class:

2/-1
4 5= D | raa 0= 1155 <9>
k=1
where s,,,, is the input, s; is the shape of the i class, d HSinpunSi) 18
the shape distance between s,,,, and s; at resolution J.

Since the Haar wavelet coefficient is hierarchically ordered in the
coefficient vector, the shape rejection starts with the most
important coefficient to the most detailed coefficient. Hence, we
conjecture that the shape rejection is processed in the most
efficient way. This is validated in the experiments section.

In eq.<9>, we can see that computational complexity of the full
shape distance at resolution J is 2’*/-3 operations. We define it as
the static computational complexity C;;*:

cj =2""-3. <10>

Let us define the index of end Haar wavelet coefficient for the
rejection stage of i class — k,.q(i). If the i class is rejected, we
only need k,,,(i) subtractions and k,,4(7) comparisons (see eq.<8>)
without computing the shape distance. Thus the computational
gain is Cj;-2%k,,4(i) operations. However, if there is no rejection
we waste 2°-] comparisons for rejection verification before
computing the shape distance at resolution J. Combining these
two cases, the computational gain due to shape rejection is:

Cj g =2k, (0) if rejected

<11>
-2’ -1

otherwise

AJ,d(i) = {

where Aj;,(i) is defined as the computational gain of shape
distance between the input and the i class at resolution J. We can
see the computational gain is positive in rejection case except
kend(z)=2]-1 and negative in non-rejection case or ke,,d(i)=2/-] .
Combining eq.<10> and eq.<11>, we obtain the adaptive
computational complexity of shape distance C,,* between the
input and the i class at resolution J:

C;,a ()= Cj,d *Am (@) <12>

3.3 Framework for Pose Classification

We now discuss the pose classification framework (ref. Figure 4).
First we compute the Haar wavelet coefficient vector of the input,
and then compare it with the mean Haar wavelet coefficient vector
of each class and reject classes that are dissimilar with the input. If
all classes are rejected, we will reject the input shape for
classification. Otherwise, we compute the shape distances
between the input shape and poses of classes left after rejection
using <9> and using 1-NN method to classify the input into the
class with minimum shape distance.
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Figure 4: Framework of pose classification

3.4 Computational Complexity

We now discuss the static computational complexity of pose
classification using 1-NN algorithm based on shape distance
eq.<9>, without shape rejection. The static computational
complexity includes feature extraction (/3*N operations), Haar
wavelet decomposition (eq.<5>), shape distances between the
input and M pose classes (eq.<10>), and searching for minimum
distance (M-I operations). Hence the static computational
complexity at resolution J is:

CS‘

J Clasificaiton

=13N+C) y + M -C5 4 +(M ~1) <13>

Using our adaptive framework with shape rejection, the
computational complexity is decreased because most of classes
are rejected. Let us assume that L classes remain, the overall
computational gain is:

M
A Classificarion = ZAM H+M-L) <14>
p=

Where A, (i) is the computational gain of shape distance (eq.<11>
) between the input and the i class. Therefore, combining
(eq.<13>) and (eq.<14>), we obtain the overall adaptive
computation complexity of pose classification at resolution J is:

C4 ctusieaton = C-clasieation = Ay cassica <15>

As we discussed in section 3.2, A, (i) is positive in rejection case
and negative in non-rejection case. However, for each input shape,
the number of classes rejected is much larger than the remaining
classes after rejection verification.

4. EXPERIMENTS

In our experiments, the data is captured by using sixteen-camera
MotionAnalysis system with frame rate of 120Hz. This set of
data, created by a world renowned choreographer Bill T. Jones,
has 22 different gestures, each with specific meaning. The size of
the data set is 24,600 frames. In our experiment, we use 75%
frames of each gesture as the training data, and the remaining 25%
for testing. We used labeled marker data to compute the best case,
baseline result. The baseline results algorithm will have good
accuracy due to label correspondence information.

4.1 Shape matching algorithm for labeled data

We now briefly discuss the baseline algorithm using labeled
markers. Due to the labeled marker data, we now have
correspondence information. The computational complexity of
this algorithm is due three parts — (a) translating each marker to
the object centered coordinate system (b) 2D rotation
correspondence and (c) Euclidean distance computation. Note that
our proposed algorithm is rotation invariant. We observed that in
our dataset, there was very little intra-class shape rotation. With M
classes and N markers per shape, the computational complexity
(excluding rotation) per input is 10NM+6N-1=7909 operations
(M=22, N=35). If rotation is included, then the computational
complexity will increase about 8/og,[(K+1)/2]+1 times, where K
represents the number of discrete intervals for the 2D angles.

4.2 Results

Table 1 shows the classification results using shape rejection
algorithm for unlabeled data and shape matching algorithm for
labeled data. Compared with shape matching algorithm, shape
rejection algorithm at resolution 4 has only tenth of computational
complexity with a little accuracy tradeoff. Note that the baseline
algorithm does not include rotation correspondence.



Table 1: Comparison between shape rejection algorithm
and the baseline shape matching algorithm. The 2™, 3™
columns are average accuracy and operation numbers per
input shape over all classes.

Algorithm Accuracy  Complexity
Shape rejection algorithm (J=4) 98.53% 755
Baseline matching algorithm 98.81% 7909

In Table 2, we observe that our rejection mechanism not only
saves computational complexity, but also improves the
classification accuracy. This is because in the case where the input
has small distance at each coefficient and large overall distance
with its own class while it has large distances at a few coefficients
and small overall distance with another class, it is classified
incorrectly only based on the overall shape distance. However,
with shape rejection, this problem is easily solved by rejecting the
class which has large distance at any coefficient with the input. It
is also observed that the computational gain of adaptive algorithm
is negative at resolution 1. This because that the rejection stage
kena 1s always equal to / at resolution 1 and A, in <11>1is -1.

Table 2: Pose classification results at different
resolutions. The 2™, 3™ columns are the average accuracy
using adaptive shape rejection and 1-NN classification
based on shape distance (eq.<9>) respectively. The 4™
column is the average computational gain using adaptive
shape rejection compared with 1-NN algorithm directly.

. Adaptive Static Computationa
Resolution .
Accuracy Accuracy 1 Gain
1 31.62 % 27.92 % -10
2 81.98 % 70.17 % +43
3 95.98 % 88.24 % +199
4 98.53 % 95.19 % +544

Figure 5 shows the probability distribution over rejection stage at
resolution 4. We can see that for an input shape, about 90%
classes are rejected using less than 7 coefficients and full shape
distance is only used for the classification of left 10% classes.

Probability
o
@

2 4 6 8 10 * 12 14 16
Rejection stage

Figure 5: Pdf of the rejection stage at resolution J=4 over all

classes. Most of the shapes are rejected using a few Haar

coefficients, resulting in a large computational gain.

5. CONCLUSION

In this paper, we have presented a fast 3D shape rejection
algorithm on un-labeled markers. There are two key innovations
(a) a multi-resolution 3D shape representation using the Haar
basis. This representation is rotation invariant. (b) a 1-NN pose
classification algorithm that uses shape rejection framework. This
utilizes the Haar basis coefficient ordering, to achieve speedup.
We evaluated our framework on real-world pose classification
problem. Our experimental results are excellent with 98.5%
percent accuracy and order of magnitude decrease in
computational complexity over the baseline algorithm. In the
future, we are planning to investigate shape rejection algorithms
that incorporate shape complexity. We also are planning to
incorporate high-level syntactical constraints into our approach.
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