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ABSTRACT 
In this paper, we present an efficient 3D shape rejection algorithm 
for unlabeled 3D markers. The problem is important in domains 
such as rehabilitation and the performing arts. There are three 
key innovations in our approach – (a) a multi-resolution shape 
representation using Haar wavelets for unlabeled markers, (b) a 
multi-resolution shape metric and (c) a shape rejection algorithm 
that is predicated on the simple idea that we do not need to 
compute the entire distance to conclude that two shapes are 
dissimilar. We tested the approach on a real-world pose 
classification problem with excellent results. We achieved a 
classification accuracy of 98% with an order of magnitude 
improvement in terms of computational complexity over a 
baseline shape matching algorithm. 

1. INTRODUCTION  
In this paper, we present a fast 3D shape rejection algorithm on 
unlabeled 3D markers. The problem is important in areas such as 
the performing arts [11] (e.g. dance) and rehabilitation [6], where 
real-time gesture tracking plays a significant role. 3D shape 
matching on unlabeled data is important since markers are often 
self-occluded or lost. The problem is made difficult since 
unlabeled marker data create a significant computational burden 
for real-time systems, due to the marker correspondence problem. 
There has been prior work on shape matching algorithm for 
unlabeled data. Johnson and Herbert[10] presented a recognition 
algorithm based on computing correspondence using spin images 
that project 3D points to a 2D histogram. Recently, weighted 
graph matching [2,3,4,7] is a standard technique to align a pair of 
shapes represented by a set of descriptive local features. In [8], a 
fast contour matching using Earth Movers Distance (EMD) is 
presented. However, several challenging issues remain – (a) high 
computational complexity of extracting local features from 3D 
shapes, (b) high computational complexity of searching for the 
marker correspondences.  
We propose an efficient 3D shape rejection algorithm based on 
hierarchical shape representation using global features. We build 
upon prior work pattern rejection for images [1]. We first 
represent the 3D markers using a Haar wavelet decomposition of 
the distance histogram. Then, we reject shapes that are dissimilar 
using a shape rejection algorithm. Our algorithm is predicated on 
a simple idea – if two shapes are very dissimilar, we need not 
compute the exact dissimilarity value to conclude that the shapes 
are dissimilar. We can come to this conclusion by only comparing 
a few Haar coefficients. This enables us to achieve a significant 
computational gain. We tested our algorithm on a real-world 
dance dataset with excellent results – we show a 98% accuracy 
with an order of magnitude saving over a baseline shape matching 
algorithm.  
This paper is organized as follows. In section 2, we show how to 
represent a shape at multi-resolutions, and in section 3, we detail 
how we use the adaptive shape rejection in pose classification and 
discuss the computational complexity. In section 4, we show our 
experiment results and we present our conclusion in section 5. 

2. MULTI-RESOLUTION SHAPE ANALYSIS 
In this section, we discuss the multi-resolution representation of 
3D dancer’s shape. Each shape consists of 35 unlabeled 3D 
marker coordinates captured from a marker-based motion capture 
system. A calibrated 3D capture system (eg. VICON) usually 
provides labeled data, specifying the location on the body for each 
dancer. We focus on unlabeled data because in multi-dancers 
scenario, some markers are lost or incorrectly labeled due to self-
occlusion or inter-occlusion. Figure 1 shows two dancer shape 
examples each with 35 unlabeled markers on the dancer’s body. 

 
Figure 1: Two examples of dancer’s pose from dataset 

2.1 Feature Extraction 
Let us denote the unlabeled 3D marker coordinates of a shape as 
Xi=(xi,yi,zi)T, i=1,…,N where N is the number of markers. We 
create an object centric coordinate system, by moving the origin to 
the centroid of N markers. We extract the distance from each 
marker to the center denoted as ri (shown in Figure 2 (a)) and 
divide ri by a constant Rmax to normalize them to interval [0,1]. 
The computational complexity to extract the normalized distance 
is 13*N operations. In this paper, we assume that a single real 
addition, subtraction or multiplication use equivalent resources. 
Our framework can easily handle the case when the complexity is 
different for different operations. 
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Figure 2: (a) shape in normalized 3D space that is divided into 
four distance bins. The shape centroid is the origin, ri and rj are 
normalized distances of ith and jth markers. (b) Distance histogram. 
2.2 Multi-resolution representation 
In this subsection, we discuss multi-resolution shape 
representation. First, we introduce distance histogram 
construction. Then, we show how Haar wavelet [12] basis is used 
to decompose the distance histogram at multi-resolutions. Finally, 
we discuss the computational complexity of 3D shape 
representation. 
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2.2.1 Distance Histogram 
The distance values ri of the 3D markers form an unordered set. 
This is because the markers do not have any labels associated with 
them. Hence, it is difficult to find the corresponding markers 
between two shapes although they may be attached to the same 
body location. As the first step towards 3D shape representation, 
we transform the distance values with a distance histogram. At 
resolution J, we uniformly divide the normalized distance space 
[0,1] into K=2J bins. Thus, the histogram with J resolutions – 
hJ(k) is represented as: 

1( ) |{ [ , ), 1,.., } |
2 2J i i J J

k kh k r r i N−= ∈ = ,  <1> 

where N is the number of markers and |·| is cardinality (set size) 
operator. Figure 2 (a) shows the case where the normalized 3D 
space is divided into 4 distance bins and Figure 2 (b) shows the 
distance histogram based on this division where J=2, h2(1), h2(2), 
h2(3) and h2(4) are the number of markers in the four bins. 

2.2.2 Haar Wavelet Decomposition 
Wavelet decompositions allow for very good image 
approximation with just a few coefficients [12] and work very 
effectively in multi-resolution image queries [9]. A Haar wavelet 
decomposition of the distance histogram would provide a good 
foundation on which to build a shape metric. Haar wavelets are 
also fast to compute and simple to implement. With Haar basis, 
the histogram with J resolutions can be represented as a linear 
combination of the Haar basis functions: 
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where c0
0 and φ0

0are the scaling coefficient and scaling function 
respectively, di

j and ψi
j are the wavelet coefficient and wavelet 

function of ith Haar basis at the resolution level j. The wavelet 
coefficient di

j can be obtained by: 

 j j
i J id h ψ= , <3> 

Where < | > is the inner product operator. Figure 3 shows the 
scaling function and Haar wavelets functions at resolution 1, 2. 

1

1

1

1

1

-1

0

1

-1

0

2

0 0

2−

2

2−

1
2

1
2

0
0φ 0

0ψ 1
0ψ 1

1ψ
(a) (b) (c) (d)  

Figure 3: Haar wavelets. (a) Scaling function φ0
0, (b) wavelet at 

resolution J=1, (c-d) wavelet functions at resolution J=2.  
Since each shape consists of the same number of markers N, 
different shapes will share the same c0

0=N/2J. Hence, we only use 
wavelet coefficients di

j to represent the shape histogram. The Haar 
wavelet coefficient vector fJ with resolution J is defined as:  

 1
0 1 1 1 1
0 0 1 0 2 1[ , , ,..., ,..., ]J

J J T
Jf d d d d d −

− −
−=  <4> 

The size of the coefficient vector at resolution J is 2J-1. Note that 
first 2J-1-1 entries correspond to fJ-1, the wavelet decomposition at 
resolution J-1. The last 2J-1

 coefficients represent the detail at 
resolution J.  

2.2.3 3D Shape Representation Complexity  
The 3D shape is represented using the 1D Haar wavelet 
decomposition of the distance histogram. The computational 
complexity of the representation is then due to two parts - (a) 
computing 1D histogram (eq.<1>), and (b) complexity of Haar 
wavelet decomposition (eq.<3>). The complexity of computing 
histogram is J*N+2J-1 operations, and the complexity of Haar 
wavelet decomposition is 2*(2J-1) operations at resolution J. 
Therefore, the overall complexity is represented as: 

 , 3 (2 1)J
J HaarC J N= ⋅ + ⋅ −  <5> 

We can see that the computational complexity of computing 
histogram increases linearly in number of markers – N, and the 
computation complexity of Haar wavelet coefficients increase 
exponentially with J. 

3. SHAPE REJECTION 
In this section, we use the shape representation discussed in 
section 2 for pose classification using the nearest neighbor 
technique (1-NN) [5]. Here, the input shape will be classified as 
one of the M poses or will be rejected. The computation of shape 
distance between the input and each class is very expensive. Here 
we present an adaptive framework for classification using shape 
rejection. We can quickly reject most of classes that are dissimilar 
with input shape and find the class which is closest to the input.  
3.1 Training 
In the training phrase, we first compute the mean Haar wavelet 
coefficient vector at resolution J=4 for each class: 
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where fJ,i
µ is the mean Haar wavelet coefficient vector of the ith 

class at resolution J, fJ,i,j is the Haar wavelet coefficient vector of 
the jth training sample in the ith class at resolution J and Ki is the 
number of training samples in the ith class. Then a set of 
thresholds {αi

k} are obtained by: 

 , , ,max ( ) ( )k
i J i j J ij
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where αi
k is the threshold corresponding to the kth entry of 

coefficient vector of the ith class which represents the maximum 
distance between the kth Haar wavelet coefficient of training 
samples - fJ,i,j(k) and the kth mean Haar wavelet coefficient fJ,i

µ(k) 
of the ith class. 
3.2 Shape rejection and distance metric 
Shape rejection is based on the idea that if two shapes are very 
dissimilar, we need not compute the exact dissimilarity value to 
conclude that the shapes are dissimilar. This is achieved by only 
comparing a few coefficients. We adopt a supervised approach for 
shape rejection using Haar wavelet coefficients.  
In the comparison between the input shape and the shape of the ith 
class at resolution J, we first compare the Haar wavelet coefficient 
vector of input shape denoted as fJ,input with the mean Haar 
wavelet coefficient vector of the ith class - fJ,i

µ. If there exists k (1 
≤ k ≤ 2J-1) such that:  

 , ,( ) ( ) k
J input J i if k f kµ α− > , <8> 



the ith class will be rejected as dissimilar with the input. 
Otherwise, we compute the L1 distance of their Haar wavelet 
coefficient vectors as distance between the input and the ith class: 
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where sinput is the input, si is the shape of the ith class, dJ(sinput,si) is 
the shape distance between sinput and si at resolution J.  
Since the Haar wavelet coefficient is hierarchically ordered in the 
coefficient vector, the shape rejection starts with the most 
important coefficient to the most detailed coefficient. Hence, we 
conjecture that the shape rejection is processed in the most 
efficient way. This is validated in the experiments section. 
In eq.<9>, we can see that computational complexity of the full 
shape distance at resolution J is 2J+1-3 operations. We define it as 
the static computational complexity CJ,d

s: 

 1
, 2 3s J

J dC += − . <10> 

Let us define the index of end Haar wavelet coefficient for the 
rejection stage of ith class – kend(i). If the ith class is rejected, we 
only need kend(i) subtractions and kend(i) comparisons (see eq.<8>) 
without computing the shape distance. Thus the computational 
gain is CJ,d

s-2*kend(i) operations. However, if there is no rejection 
we waste 2J-1 comparisons for rejection verification before 
computing the shape distance at resolution J. Combining these 
two cases, the computational gain due to shape rejection is: 
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,
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J d end
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C k i if rejectedi
otherwise
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where ∆J,d(i) is defined as the computational gain of shape 
distance between the input and the ith class at resolution J. We can 
see the computational gain is positive in rejection case except 
kend(i)=2J-1 and negative in non-rejection case or kend(i)=2J-1. 
Combining eq.<10> and eq.<11>, we obtain the adaptive 
computational complexity of shape distance CJ,d

a between the 
input and the ith class at resolution J: 

 , , ,( ) ( )a s
J d J d J dC i C i= − ∆  <12> 

3.3 Framework for Pose Classification 
We now discuss the pose classification framework (ref. Figure 4). 
First we compute the Haar wavelet coefficient vector of the input, 
and then compare it with the mean Haar wavelet coefficient vector 
of each class and reject classes that are dissimilar with the input. If 
all classes are rejected, we will reject the input shape for 
classification. Otherwise, we compute the shape distances 
between  the input shape and poses of classes left after rejection 
using <9> and using 1-NN method to classify the input into the 
class with minimum shape distance.  

 
Figure 4: Framework of pose classification 

3.4 Computational Complexity 
We now discuss the static computational complexity of pose 
classification using 1-NN algorithm based on shape distance 
eq.<9>, without shape rejection. The static computational 
complexity includes feature extraction (13*N operations), Haar 
wavelet decomposition (eq.<5>), shape distances between the 
input and M pose classes (eq.<10>), and searching for minimum 
distance (M-1 operations). Hence the static computational 
complexity at resolution J is: 

 , , ,13 ( 1)s s
J Clasificaiton J Haar J dC N C M C M= + + ⋅ + −  <13> 

Using our adaptive framework with shape rejection, the 
computational complexity is decreased because most of classes 
are rejected. Let us assume that L classes remain, the overall 
computational gain is: 
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Where ∆J,d(i) is the computational gain of shape distance (eq.<11>
) between the input and the ith class. Therefore, combining 
(eq.<13>) and (eq.<14>), we obtain the overall adaptive 
computation complexity of pose classification at resolution J is: 

 , , ,
a s
J Classification J Classification J ClassificationC C= − ∆  <15> 

As we discussed in section 3.2, ∆J,d(i) is positive in rejection case 
and negative in non-rejection case. However, for each input shape, 
the number of classes rejected is much larger than the remaining 
classes after rejection verification.  

4. EXPERIMENTS 
In our experiments, the data is captured by using sixteen-camera 
MotionAnalysis system with frame rate of 120Hz. This set of 
data, created by a world renowned choreographer Bill T. Jones, 
has 22 different gestures, each with specific meaning. The size of 
the data set is 24,600 frames. In our experiment, we use 75% 
frames of each gesture as the training data, and the remaining 25% 
for testing. We used labeled marker data to compute the best case, 
baseline result. The baseline results algorithm will have good 
accuracy due to label correspondence information. 
4.1 Shape matching algorithm for labeled data 
We now briefly discuss the baseline algorithm using labeled 
markers. Due to the labeled marker data, we now have 
correspondence information. The computational complexity of 
this algorithm is due three parts – (a) translating each marker to 
the object centered coordinate system (b) 2D rotation 
correspondence and (c) Euclidean distance computation. Note that 
our proposed algorithm is rotation invariant. We observed that in 
our dataset, there was very little intra-class shape rotation. With M 
classes and N markers per shape, the computational complexity 
(excluding rotation) per input is 10NM+6N-1=7909 operations 
(M=22, N=35). If rotation is included, then the computational 
complexity will increase about 8log2[(K+1)/2]+1 times, where K 
represents the number of discrete intervals for the 2D angles. 
4.2 Results 
Table 1 shows the classification results using shape rejection 
algorithm for unlabeled data and shape matching algorithm for 
labeled data. Compared with shape matching algorithm, shape 
rejection algorithm at resolution 4 has only tenth of computational 
complexity with a little accuracy tradeoff. Note that the baseline 
algorithm does not include rotation correspondence.  



Table 1: Comparison between shape rejection algorithm 
and the baseline shape matching algorithm. The 2nd, 3rd 
columns are average accuracy and operation numbers per 
input shape over all classes. 

Algorithm Accuracy Complexity 

Shape rejection algorithm (J=4) 98.53% 755 

Baseline matching algorithm 98.81% 7909 

In Table 2, we observe that our rejection mechanism not only 
saves computational complexity, but also improves the 
classification accuracy. This is because in the case where the input 
has small distance at each coefficient and large overall distance 
with its own class while it has large distances at a few coefficients 
and small overall distance with another class, it is classified 
incorrectly only based on the overall shape distance. However, 
with shape rejection, this problem is easily solved by rejecting the 
class which has large distance at any coefficient with the input. It 
is also observed that the computational gain of adaptive algorithm 
is negative at resolution 1. This because that the rejection stage 
kend is always equal to 1 at resolution 1 and ∆J,d in <11> is -1. 

Table 2:  Pose classification results at different 
resolutions. The 2nd, 3rd columns are the average accuracy 
using adaptive shape rejection and 1-NN classification 
based on shape distance (eq.<9>) respectively. The 4th 
column is the average computational gain using adaptive 
shape rejection compared with 1-NN algorithm directly. 

Resolution Adaptive 
Accuracy 

Static 
Accuracy 

Computationa
l Gain 

1 31.62 % 27.92 % -10  

2 81.98 % 70.17 % +43 

3 95.98 % 88.24 % +199 

4 98.53 % 95.19 % +544 

Figure 5 shows the probability distribution over rejection stage at 
resolution 4. We can see that for an input shape, about 90% 
classes are rejected using less than 7 coefficients and full shape 
distance is only used for the classification of left 10% classes. 

Figure 5: Pdf of the rejection stage at resolution J=4 over all 
classes. Most of the shapes are rejected using a few Haar 
coefficients, resulting in a large computational gain. 

5. CONCLUSION 
In this paper, we have presented a fast 3D shape rejection 
algorithm on un-labeled markers. There are two key innovations 
(a) a multi-resolution 3D shape representation using the Haar 
basis. This representation is rotation invariant.  (b) a 1-NN pose 
classification algorithm that uses shape rejection framework. This 
utilizes the Haar basis coefficient ordering, to achieve speedup. 
We evaluated our framework on real-world pose classification 
problem. Our experimental results are excellent with 98.5% 
percent accuracy and order of magnitude decrease in 
computational complexity over the baseline algorithm. In the 
future, we are planning to investigate shape rejection algorithms 
that incorporate shape complexity. We also are planning to 
incorporate high-level syntactical constraints into our approach. 
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