
Distributed Blinding for
Distributed ElGamal Re-encryption

Lidong Zhou
Microsoft Research Silicon Valley

Mountain View, CA
lidongz@microsoft.com

Michael A. Marsh
Institute for Advanced Computer Studies

University of Maryland
mmarsh@umiacs.umd.edu

Fred B. Schneider
Department of Computer Science

Cornell University
fbs@cs.cornell.edu

Anna Redz
Department of Numerical Analysis

and Computer Science
Royal Institute of Technology, Sweden

anna@nada.kth.se

Abstract

A protocol is given to take an ElGamal ciphertext en-
crypted under the key of one distributed service and pro-
duce the corresponding ciphertext encrypted under the key
of another distributed service, but without the plaintext ever
becoming available. Each distributed service comprises a
set of servers and employs threshold cryptography to main-
tain its service private key. Unlike prior work, the proto-
col requires no assumptions about execution speeds or mes-
sage delivery delays. The protocol also imposes fewer con-
straints on where and when various steps are performed,
which can bring improvements in end-to-end performance
for some applications (e.g., a trusted publish/subscribe in-
frastructure.) Two new building blocks employed—a dis-
tributed blinding protocol and verifiable dual encryption
proofs—could have uses beyond re-encryption protocols.

1 Introduction

Cryptographic protocols intended for distributed systems
are usually evaluated in terms of quantitative measures, like
number of messages exchanged or total computing time.
Virtually no attention has been paid to supporting flexi-
bility in when and where the protocol steps are executed.
Yet there are applications where such step flexibility is use-
ful, as we recently discovered in designing a trusted pub-
lish/subscribe application.

This application required an infrastructure for transfer-
ring secrets from publishers to subscribers through a collec-
tion of interacting distributed services. A distributed service

comprises a set of servers that together implement some de-
sired semantics provided not too many of the servers are
compromised. Secret sharing [34, 2] is typically employed
to split the service private key among the set of servers, and
threshold cryptography [4, 13] is used for cryptographic op-
erations involving that private key. Instances of this archi-
tecture are found in COCA [37], e-vault [21], ITTC [35],
Omega [32], SINTRA [7], and CODEX [27].

We decided to employ a re-encryption protocol [23] so
that one distributed service could propagate a secret (en-
crypted under its service public key) to another distributed
service; re-encryption—a form of proxy cryptography [3]—
produces a ciphertext encrypted under one key from a ci-
phertext encrypted under another but without plaintext be-
coming available during intermediate steps.1 And a re-
encryption protocol that admits step flexibility allows cer-
tain optimizations:

• Computation that does not depend on the secret being
transferred can be performed beforehand and, there-
fore, moved out of the critical path so that it does not
contribute to end-to-end latency.

• For a secret being sent from a single service to mul-
tiple recipients, computation that does not rely on the
sender’s private key can be relocated from the sender
to the receivers, thereby alleviating a potential bottle-
neck at the sender.

1The requirement that the plaintext not be disclosed during re-
encryption is crucial for distributed services, because individual servers
storing the plaintext might become compromised. Notice that decrypting
the ciphertext with the first private key and then encrypting it using the
second public key is now precluded, though.
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Extant re-encryption protocols (e.g., [23]) did not admit
step flexibility, so we developed a new one that does; it is
the subject of this paper.

Blinding [9] is the core for our new re-encryption pro-
tocol. An ElGamal encrypted [16] secret at service A is
blinded by a random blinding factor, then decrypted using
A’s private key, and finally both encrypted using B’s public
key and un-blinded using the original random blinding fac-
tor. A new distributed blinding protocol allows distributed
services to perform the blinding and un-blinding. Use of the
distributed blinding protocol supports flexible allocation of
computation, because the distributed blinding protocol re-
quires no knowledge of the original ciphertext or of A’s
private key. Consequently, the distributed blinding proto-
col can be executed before the original ciphertext is gen-
erated (thereby enabling pre-computation) and on servers
other than A (thereby enabling offloading).

Our distributed blinding protocol employs a new crypto-
graphic building block called verifiable dual encryption to
create proofs that, without disclosing the plaintext, certify
two ciphertexts created under different public keys are (with
high probability) for the same plaintext. We conjecture that
both the distributed blinding protocol and the verifiable dual
encryption protocol have uses outside of re-encryption pro-
tocols.

Finally, since assumptions invariably translate into vul-
nerabilities (and opportunities for attackers), we eschewed
assumptions about execution speed and message delivery
delays in designing our protocols for the publish/subscribe
application. So, unlike prior work in re-encryption, we
adopted the asynchronous model of computation, which has
no assumptions about timings. But deterministic solutions
to the consensus problem cannot exist in such settings [18],
and that creates challenges for the protocol designer who
nonetheless must implement any required server coordina-
tion. In the protocols contained herein, selection and agree-
ment on a blinding factor is avoided by instead computing
multiple equivalent candidates along with a unique label for
each; the labels allow a server to choose one of the blinding
factors and have any subsequent computations by its peers
be consistent with this choice.

The rest of the paper is organized as follows. Section 2
describes the system model. In Section 3, ElGamal encryp-
tion is reviewed and re-encryption by blinding is explained.
Our distributed blinding protocol is the subject of Section 4.
Section 5 discusses alternative re-encryption schemes and
other related work, followed by concluding remarks in Sec-
tion 6.

2 System Model and Problem Definition

Each distributed service S comprises n servers along
with a widely known service public key KS and a service

private key kS that is distributed among the servers accord-
ing to an (n, f) threshold cryptography scheme. Further-
more, each server is assumed to have a unique public/private
key pair, with the public key known to the other servers.2

Servers thus can communicate with each other securely and
the service can, using threshold cryptography, perform de-
cryption and generate digital signatures provided at least
f + 1 servers cooperate.

We assume:

Compromised Servers: Servers are either correct
or compromised. A compromised server might stop,
deviate arbitrarily from its specified protocols (i.e.,
Byzantine failure), and/or disclose information stored
locally. At most f of the n servers are compromised,
where 3f + 1 = n holds.3

Asynchronous System Model: There is no bound on
message delivery delay or server execution speed.

So an adversary can control the behavior of and obtain
all information available to as many as b(n− 1)/3c servers.
Also, an adversary could conduct denial-of-service attacks
that delay messages or slow down servers by arbitrary finite
amounts. As is customary, the capability of the adversary
is limited to that of a probabilistic polynomial-time Turing
machine.

A re-encryption protocol for conveying a secret m from
one distributed service A to another distributed service B
must ensure that neither confidentiality nor integrity of m
is compromised. In particular, given a ciphertext for m en-
crypted under KA, a re-encryption protocol must produce
an output subject to the following criteria (which are for-
malized in [36]):

Progress: The protocol must terminate with correct
servers in B having received the output.

Integrity: The output produced by the re-encryption
protocol is a ciphertext of m encrypted under KB .

Confidentiality: The protocol discloses no informa-
tion about the plaintext m.

3 ElGamal Re-encryption Using Blinding

ElGamal public key encryption is based on large prime
numbers p and q such that p = 2q + 1. Let Gp be a cyclic
subgroup (of order q) of Z

∗

p = {i | 1 ≤ i ≤ p − 1}, and let

2By limiting the visibility of server public keys to only servers com-
prising the service, clients and other services are shielded from changes to
these keys (including proactive refresh of private key shares) and shielded
from changes to the composition of the service itself.

3The protocols are easily extended to cases where 3f + 1 < n holds.
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g be some generator of Gp. We assume that all ElGamal
keys share the same parameters p, q, g, and Gp.

Any k ∈ Z
∗

q can be an ElGamal private key, and then
K = (p, q, g, y) with y = gk mod p is the correspond-
ing public key. To simplify notation, modular calculations
will henceforth be left implicit. Thus, “mod p” is omitted
when computing exponentiations and discrete logarithms,
and “mod q” is omitted when performing computation on
exponents.

An ElGamal ciphertext E(m) for plaintext m ∈ Gp is a
pair (gr, myr) with r uniformly and randomly chosen from
Z
∗

q . Ciphertext E(m) = (a, b) is decrypted by computing
b/ak, since (for some r)

b/ak = myr/(gr)k = m(gk)r/(gr)k = m.

Where needed, we write E(m, r) to indicate the value of r
used in computing E(m) and we write E(m) to denote the
set {E(m, r) | r ∈ Z

∗

q} of all possible ciphertexts for m.
For E(m1) = (a1, b1), E(m2) = (a2, b2), and E(m) =

(a, b), define the following operations:

E(m)−1 ≡ (a−1, b−1)

m′ · E(m) ≡ (a, m′b)

E(m1) × E(m2) ≡ (a1a2, b1b2)

The following properties then hold:

ElGamal Inverse: E(m)−1 ∈ E(m−1).

ElGamal Juxtaposition: m′ ·E(m, r) = E(m′m, r).

ElGamal Multiplication:4 If r1 + r2 ∈ Z
∗

q then
E(m1, r1) × E(m2, r2) ∈ E(m1m2).

Note that side condition r1 + r2 ∈ Z
∗

q in ElGamal Mul-
tiplication is easily checked without knowledge of r1 or r2.
This is because

(a, b) = E(m1, r1) × E(m2, r2)

= (gr1+r2 , m1m2y
r1+r2),

so by checking that a 6= 1 holds, we conclude r1 + r2 6= 0
which, by closure of group Z

∗

q , implies that r1 + r2 ∈ Z
∗

q

holds as well.
In those rare instances where r1+r2 = 0 holds, plaintext

m1m2 is disclosed. This is not a concern for our protocols,
because ElGamal Multiplication is used only in connection
with random factors that are being multiplied to obtain a
(random) encrypted blinding factor; new values can thus be
requested whenever r1 + r2 = 0 is found to hold.5 Our

4This property is often referred to as the homomorphic property of a
public key cryptosystem.

5The obvious denial-of-service attack of repeatedly requesting new
values is prevented by accompanying such a request with evidence
E(m1, r1) and E(m2, r2).

EA(m) -

Blinding

EA(ρ)
EA(mρ)

?

Decryption kA

mρ�
Un-blinding

EB(ρ)
EB(m)

Figure 1: Re-encryption using blinding.

protocols omit such details, leaving implicit the checking
of this side condition and any additional communications
required to fetch suitable ElGamal encrypted values.

Blinding and Un-blinding with ElGamal

Let ES(m) denote plaintext m encrypted according to
the public key KS of a service S and let DS(c) denote
ciphertext c decrypted with the corresponding private key.
Figure 1 summarizes how to perform re-encryption using
blinding and un-blinding. Each arrow is labeled by an op-
eration and its parameters. So we see that EA(m) is first
blinded using EA(ρ), where ρ is a random blinding factor;
that result is decrypted to obtain mρ; and finally mρ is un-
blinded using EB(ρ).

Figure 2 gives the actual protocol for re-encryption using
blinding. Step 4 works because, letting EB(ρ) be EB(ρ, r),
we have:

(mρ) · (EB(ρ, r))−1

= (ElGamal Inverse)
(mρ) · EB(ρ−1,−r)

= (ElGamal Juxtaposition)
EB(mρρ−1,−r)

= (Cancellation)
EB(m,−r)

∈ (definition of EB(m))
EB(m)

Note that step 1 can be performed by service B instead
of service A and can be done before EA(m) is known. All
other steps must be carried out after EA(m) is available.
Step 3 must be executed on A because it requires knowledge
of A’s private key for threshold decryption. In the rest of the
paper, we assume that step 1 is done by service B, although
it could be easily done by A.

The possibility of compromised servers makes choosing
ρ and computing EA(ρ) and EB(ρ) in step 1 tricky to im-
plement. Our distributed blinding protocol to accomplish
this task is the subject of the next section.
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1. Pick a random blinding factor ρ ∈ Gp; compute EA(ρ) and
EB(ρ).

2. Compute blinded ciphertext EA(mρ) := EA(m) × EA(ρ).

3. Employ threshold decryption to obtain blinded plaintext mρ

from blinded ciphertext EA(mρ) computed in step 2.

4. Compute EB(m) := (mρ) · EB(ρ)−1.

Figure 2: Re-encryption protocol.

4 Distributed Blinding Protocol

We start by giving a protocol for a relatively benign envi-
ronment; modifications for tolerating malicious attacks are
then incorporated. This form of exposition, though perhaps
a bit longer, elucidates the role played by each element of
the protocol.

Given two related ElGamal public keys KA =
(p, q, g, yA) and KB = (p, q, g, yB), the distributed blind-
ing protocol must satisfy the following correctness require-
ments.

Randomness-Confidentiality: Blinding factor ρ ∈
Gp is chosen randomly and kept confidential from the
adversary.

Consistency: The protocol outputs a pair of cipher-
texts EA(ρ) and EB(ρ) for blinding factor ρ.

4.1 Defending Against Failstop Adversaries

Replace Compromised Servers assumption by:

Failstop Adversaries: Compromised servers are lim-
ited to disclosing locally stored information or halting
prematurely.6 Assume at most f out of n servers are
compromised, where 3f + 1 = n holds.

Now to compute a confidential blinding factor ρ, it suf-
fices to calculate

∏
i∈I ρi, where I is a set of at least f + 1

servers and each server i ∈ I generates a random contribu-
tion ρi. Confidentiality of ρ follows because, with at most f
compromised servers, one server in I is not compromised.
This correct server picks a contribution that is random and
unknown to the adversary; and the Failstop Adversaries as-
sumption means all compromised servers necessarily select
contributions that are independent of choices made by the
correct servers.

6Thus, a failstop adversary is equivalent to an honest but curious server
that can halt.

1. Coordinator Cj initiates the protocol by sending to every
server in B an init message.

Cj −→ B : id , init

2. Upon receipt of an init message from Cj , a server i:

(a) Generates an independent random number ρi.

(b) Computes encrypted contribution (EA(ρi), EB(ρi)).

(c) i −→ Cj : id , contribute, i, EA(ρi), EB(ρi)

3. Upon receipt of contribute messages from a set I compris-
ing f + 1 servers in B:

(a) Cj computes: EA(ρ) = ×i∈IEA(ρi) and EB(ρ) =
×i∈IEB(ρi).

(b) Cj −→ A : id , EA(ρ), EB(ρ).

Figure 3: Failstop adversary distributed blinding protocol.

Ciphertext EA(ρ) can thus be obtained by calculat-
ing ×i∈IEA(ρi), due to ElGamal Multiplication.7 Sim-
ilarly, ciphertext EB(ρ) can be obtained by calculating
×i∈IEB(ρi). So a service A can satisfy the confiden-
tiality requirement for blinding factor ρ if each server i
outputs as its encrypted contribution the ciphertext pair
(EA(ρi), EB(ρi)).

To solicit encrypted contributions and then combine
them into EA(ρ) and EB(ρ), we postulate a coordinator
Cj and (unrealistically) assume the server j executing Cj is
never compromised:8

Correct Coordinator: Coordinator Cj is correct.

We then have the distributed blinding protocol in Fig-
ure 3. There, we write i −→ j : m to specify that a message
m is sent by i to j, i −→ B : m to specify that a message
m is sent by i to every server comprising service B, and
id identifies the instance of the protocol execution; id con-
tains, among other things, the identifier for the coordinator.

Coping with Faulty Coordinators

To eliminate the Correct Coordinator assumption, the proto-
col must tolerate coordinator disclosure of locally stored in-
formation or premature halting. Disclosure causes no harm,
because the only locally stored information is the encrypted
contributions from servers; to compute the blinding factor
from these encrypted contributions, the adversary would
have to know the private key of service A or service B. A

7Use of ElGamal Multiplication to conclude EA(ρ) = EA(ρ1, r1) ×
EA(ρ2, r2) × · · · × EA(ρf+1, rf+1) requires that r1 + r2 + · · · +
rf+1 ∈ Z

∗
q hold. As before, this can be checked by seeing whether the

first component of EA(ρ) equals 1 and soliciting new contributions if it
does.

8This assumption is relaxed later in this section.
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coordinator halting would prevent protocol termination, but
this is easily tolerated by using f + 1 different coordinators
instead of just one. With f + 1 coordinators, at least one
will be correct and will complete the protocol. And if more
than one coordinator is correct, then multiple blinding fac-
tors will be produced, which causes no difficulty. The same
techniques of using multiple coordinators were used in [37]
and [6].

Employing multiple coordinators does imply a perfor-
mance penalty. In the worst case, run-time costs are inflated
by a factor of f , since as many as f of the coordinators are
superfluous. This cost, however, can be reduced by delay-
ing when f of the coordinators commence execution. Since
our protocol is designed for an asynchronous system, ex-
ecution of coordinators can be delayed without adversely
affecting correctness. So, one server acts as the designated
coordinator and the others become coordinators only if the
designated coordinator fails to complete execution within a
specified period of time.

4.2 Defending Against Malicious Attacks

Relax the Failstop Adversaries assumption, returning to
the original Compromised Servers assumption, and three
noteworthy forms of misbehavior become possible:

• servers choosing contributions that are not indepen-
dent,

• the encrypted contribution from each server i not being
of the form (EA(ρi), EB(ρ′i)) where ρi = ρ′i, and

• servers and coordinators not following the protocol in
other ways.

This section describes corresponding defenses.

4.2.1 Randomness-Confidentiality

Randomness-Confidentiality for the protocol of Figure 3
hinges on the contribution from at least one server being
confidential and independent from contributions of all the
others. It suffices to focus on a single run if, when engaging
with different coordinators, a correct server selects random
contributions that are independent. Unfortunately, even
here a single compromised server can falsify the premise
that its contribution is independent from the contributions
of all other servers. That compromised server simply se-
lects its contribution after seeing encrypted contributions
from all other servers, exploiting the malleability of ElGa-
mal encryption and choosing a contribution that cancels out
the encrypted contributions from the other servers.

Specifically, a compromised server could proceed as fol-
lows to ensure that ρ̂ becomes the blinding factor generated

by the protocol. Suppose

{(EA(ρi), EB(ρi)) | 1 ≤ i ≤ f}

is the set of encrypted contributions received from the f
other servers at the start of step 3 in Figure 3. After receiv-
ing these, the compromised server generates two ciphertexts
EA(ρ̂) and EB(ρ̂) and constructs as its encrypted contribu-
tion:

(EA(ρ̂)×(×f

i=1EA(ρi))
−1,

EB(ρ̂)×(×f

i=1EB(ρi))
−1) (1)

Due to ElGamal Multiplication and ElGamal Inverse, the
second factor in each element of this encrypted contribu-
tion will cancel the encrypted contributions from the other
servers, so the resulting blinding factor is ρ̂.

An obvious defense is to prevent servers that have not
published an encrypted contribution from learning the en-
crypted contributions of others. So we modify the protocol
of Figure 3 accordingly. Instead of sending an encrypted
contribution to the coordinator, each server sends a commit-
ment, which is a cryptographic hash (e.g., SHA1) of that
encrypted contribution. And only after the coordinator has
received 2f +1 commitments does it solicit encrypted con-
tributions from the servers.9 Waiting for 2f + 1 commit-
ments is necessary to ensure the coordinator will ultimately
receive f + 1 encrypted contributions, since as many as f
of the servers sending the 2f + 1 commitments could be
compromised.

4.2.2 Encrypted Contribution Consistency

A compromised server might create an encrypted contribu-
tion that is not of the form (EA(ρi), EB(ρ′i)) where ρi = ρ′i
holds. Such inconsistent encrypted contributions cause the
Consistency requirement for our distributed blinding proto-
col to be violated. Decrypting EA(ρi) and EB(ρ′i) would be
one way to check for inconsistent encrypted contributions,
but having that plaintext would also undermine maintaining
the confidentiality of ρ. So our protocol instead employs
a new cryptographic building block called verifiable dual
encryption that checks whether ρi = ρ′i holds given two
ElGamal ciphertexts EA(ρi) and EB(ρ′i).

Verifiable dual encryption is based on the non-interactive
zero-knowledge proof, which we refer to as DLOG, for the

9Here, we use the random oracle model [1], which has limitations [8].
A non-malleable [15] commit protocol (e.g., [12]) might be the basis for
a scheme that ensures (informally speaking) server contributions are un-
related with respect to any polynomial time relation. However, a non-
malleable commit protocol would not by itself suffice, because this en-
sures the encrypted contributions are unrelated but not that the contribu-
tions themselves are unrelated. A non-malleable proof of plaintext knowl-
edge [24] might be needed.
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equality of two discrete logarithms, as first proposed by
Chaum and Pedersen [10]. Given a, g, X = ga, Y , and
Z = Y a, DLOG(a, g, X, Y, Z) shows that10 a = logg X =
logY Z without disclosing a. (Protocols for DLOG are given
in [36].)

Consider an encrypted contribution (EA(ρi), EB(ρ′i))
where

EA(ρi) = (δ1, γ1) = (gr1 , ρiy
r1

A )
EB(ρ′i) = (δ2, γ2) = (gr2 , ρ′iy

r2

B )

corresponding to encryption using ElGamal public keys
KA = (p, q, g, yA) and KB = (p, q, g, yB). We can show
ρi = ρ′i holds by verifying

γ1/γ2 = gkAr1−kBr2 (2)

because if ρi = ρ′i holds then

γ1/γ2 = (ρiy
r1

A )/(ρ′iy
r2

B )

= (ρi/ρ′i)(g
kAr1/gkBr2)

= gkAr1−kBr2 .

Since gkAr1−kBr2 = g(kA+kB)(r1−r2)gkAr2/gkBr1 holds,
equation (2) is satisfied if the following three conditions
hold:

G12 = gkAr2 (3)
G21 = gkBr1 (4)

γ1/γ2 = g(kA+kB)(r1−r2)G12/G21 (5)

Recall, a server that generates ciphertexts EA(ρi)
and EB(ρ′i) knows both r1 and r2, and thus is able
to generate a verifiable dual encryption proof, denoted
VDE(EA(ρi), EB(ρ′i)), by constructing DLOG proofs for the
conditions defined by equations (3) though (5).

VDE(EA(m), EB(m)) is obtained by showing:

Pr1: DLOG(r2, g, gr2 , yA, G12) proves that G12 =
yr2

A = (gkA)r2 holds. Therefore, condition (3) is satis-
fied.

Pr2: DLOG(r1, g, gr1, yB, G21) proves that G21 =
yr1

B = (gkB )r1 holds. Therefore, condition (4) is satis-
fied.

Pr3: DLOG(r1−r2, g, gr1−r2 , yAyB , (γ1/γ2)(G21/G12))
proves that

(γ1/γ2)(G21/G12) = (yAyB)r1−r2

= (gkA+kB )r1−r2

= g(kA+kB)(r1−r2)

holds and therefore condition (5) is satisfied.
10Note, all operations are in domain Zp.

Thus, it suffices that every server i attach
VDE(EA(ρi), EB(ρi)) when sending encrypted con-
tribution (EA(ρi), EB(ρi)) to the coordinator. The
coordinator, in turn, only uses encrypted contributions that
are accompanied by valid proofs—at least f + 1 will be,
because at least f + 1 servers are correct out of the 2f + 1
from which the coordinator received commitments.

4.2.3 Constraining Malicious Coordinators

It only remains to deal with compromised servers and co-
ordinators that cause disruption by taking overt action. In
a distributed system, such action is limited to sending mes-
sages.

We dealt above with two attacks that servers might
launch through interaction with coordinators: (i) revealing
encrypted contributions prematurely and (ii) sending incon-
sistent encrypted contributions. Compromised coordinators
have corresponding attacks, and a compromised coordina-
tor might:

• cause some servers to reveal encrypted contributions
before other (presumably compromised) servers have
selected theirs or

• fabricate an encrypted value for the blinding factor
rather than computing that value from f +1 encrypted
server contributions.

For these and all attacks that involve sending bogus mes-
sages, we employ a single, general defense: each message
sent is made self-verifying [29, 25] as in COCA [37], so that
a receiver of the message can check whether the message is
valid, based solely on message contents. A valid message
is, by definition, one that is consistent with the sender fol-
lowing the protocol. Thus, if messages that are not valid
are ignored then attacks involving bogus messages become
indistinguishable from lost messages.

A message is made self-verifying by attaching evidence.
In general, it suffices that any message produced by a pro-
tocol step be signed by the sender and include as evi-
dence all messages that served as the inputs to that protocol
step, where these included messages are themselves self-
verifying. For example, returning to the attacks mentioned
above for compromised coordinators, messages might be
made self-verifying as follows.

• The message requesting servers to reveal their en-
crypted contributions would be signed by the coordi-
nator and include signed messages from 2f +1 servers
containing the commitment for that server’s encrypted
contribution.

• The message conveying (EA(ρ), EB(ρ)) would be
signed by the coordinator and also contain

6



– signed messages from 2f + 1 servers containing
the hash of that server’s encrypted contribution,

– signed messages from f + 1 servers containing
their encrypted contributions and corresponding
valid verifiable dual encryption proofs.

4.2.4 Putting it Together

Applying these defenses, we obtain the re-encryption pro-
tocol of Figure 4, where 〈m〉i denotes a message m that is
signed by i, and κ is a cryptographic hash function. Criteria
for validity of self-verifying messages used in the protocol
are given in Figure 5. See [36] for the proof that this proto-
col works correctly in environments satisfying the Compro-
mised Servers and Asynchronous System Model assump-
tions of Section 2.

5 Related Work

Ciphertext Transformation. Re-encryption protocols
transform one ciphertext to another without ever revealing
the plaintext. We are not the first to study the problem.

Mambo and Okamoto [26] introduced the notion of
proxy cryptosystems to support delegation of decryption. In
their scheme, A can endow B with the power to decrypt
messages that have been encrypted using public key KA

but without disclosing to B corresponding private key kA.
Delegation is accomplished by A transforming a ciphertext
encrypted under KA into another ciphertext that B can de-
crypt; the transformed ciphertext is decrypted by using a
proxy key that B receives from A when the proxy is ini-
tially set up. This is in contrast to our scheme, where re-
encryption produces ciphertext under B’s public key.

Blaze, Bleumer, and Strauss [3] coined the term atomic
proxy cryptography, which applies not only to encryption
but also to other cryptographic operations (such as identifi-
cation and signature). An atomic proxy encryption scheme
involves an atomic proxy function, which converts cipher-
texts for decryption by a first key into ciphertexts for a sec-
ond key. The atomic proxy function is public, so any en-
tity (even an untrusted one) can perform the transformation,
making an encrypted message available to holders of the
second key. With our re-encryption protocol, a distributed
service A, which knows the first key (private key kA), con-
verts the ciphertext to the second key. And because A is a
distributed service, the individual servers of A are not them-
selves trusted. Thus, a crucial difference between atomic
proxy encryption and our re-encryption protocol concerns
where trust is being placed.

Jakobsson’s Re-Encryption Scheme. Jakobsson’s
quorum-controlled proxy re-encryption scheme [23], like
ours, gives a way for a distributed service A to transform

1. Coordinator Cj initiates protocol instance id with an init

message:
Cj −→ B : 〈id , init〉Cj

2. Upon receipt of a valid init message, a server i:

(a) Generates an independent random value ρi.

(b) Computes encrypted contribution (EA(ρi), EB(ρi))
and corresponding commitment κ(EA(ρi), EB(ρi)).

(c) Replies to Cj :

i −→ Cj : 〈id , commit, i, κ(EA(ρi), EB(ρi))〉i

3. Upon receipt of a set M of valid commit messages from a set
I comprising 2f + 1 servers, Cj requests the corresponding
encrypted contributions.

Cj −→ B : 〈id , reveal, M〉Cj

4. Upon receipt from Cj of a valid reveal message R containing
server i’s commitment, server i responds:

i −→ Cj : 〈id , contribute, i, R, (EA(ρi), EB(ρi)),

VDE(EA(ρi), EB(ρi))〉i

5. Upon receipt of a set M ′ of valid contribute messages from
a set I ′ ⊂ I of f + 1 servers, Cj :

(a) Computes EA(ρ) :=×i∈I′EA(ρi)

(b) Computes EB(ρ) :=×i∈I′EB(ρi)

(c) Invokes at service B threshold signature protocol on
(id , blind, A,EA(ρ), B, EB(ρ)), with M ′ included
as evidence to make the request self-verifying; obtains
〈id , blind, A,EA(ρ), B, EB(ρ)〉B .

(d) Cj −→ A : 〈id , blind, A, EA(ρ), B, EB(ρ)〉B

6. Upon receipt of a valid M ′′ =
〈id , blind, A, EA(ρ), B, EB(ρ)〉B from Cj , server l

in service A:

(a) Computes EA(mρ) := EA(m) × EA(ρ)

(b) Invokes at service A threshold decryption for EA(mρ)
with M ′′ included as evidence to make the decryption
request self-verifying; obtains mρ and evidence V id

mρ

that the decryption result is correct.

(c) Computes EB(m) := (mρ) · (EB(ρ))−1

(d) Invokes at service A threshold signature protocol on
(done, A, EA(m), B, EB(m)), with (mρ,V id

mρ) in-
cluded as evidence to make the request self-verifying;
obtains 〈done, A, EA(m), B, EB(m)〉A.

(e) l −→ B : 〈done, A,EA(m), B, EB(m)〉A

Figure 4: Complete Re-encryption Protocol.
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type check

init The message is correctly signed.

commit The message is correctly signed.

reveal The message (i) is correctly signed and (ii)
contains a set M of 2f + 1 different valid
commit messages with a matching id .

contribute The message is (i) correctly signed, (ii) in-
cludes a valid verifiable dual encryption
proof, and (iii) the encrypted contribution
corresponds to the commitment in the in-
cluded reveal message.

blind The message is correctly signed.

Figure 5: Validity of self-verifying messages.

EA(m) to EB(m) without disclosing m to individual
servers in A.

The scheme leverages the observation that a ciphertext
encrypted using A’s public key can first be encrypted us-
ing B’s public key, after which decryption using A’s private
key yields a ciphertext under B’s public key.11 Because
Jakobsson’s scheme also assumes a distributed service, the
encryption and decryption operations are performed jointly
by servers, with servers carrying out a partial encryption
and a partial decryption (in parallel). This dictates that the
re-encryption must be done entirely by service A.

In contrast, by employing the distributed blinding pro-
tocol, our scheme allows a flexible allocation of computa-
tion both over time and in location. Only step 6 in Fig-
ure 4 needs to be performed on service A after EA(m) is
available—this essentially involves only one threshold de-
cryption operation. (The threshold signature operation in
step 6(d) simply makes the result verifiable by servers in
B.) To achieve such flexibility, our scheme has to employ
a new building block for robustness, namely, verifiable dual
encryption, whereas Jakobsson’s scheme employs transla-
tion certificates. A translation certificate is a non-interactive
proof showing that EA(m) and EB(m) are encryptions of
the same plaintext under public keys KA and KB respec-
tively. The two building blocks differ in what private in-
formation is known to a prover and hence require entirely
different constructs: For a translation certificate, the prover
knows A’s private key and the random number used in the
encryption to generate EB(m); for verifiable dual encryp-
tion, the prover does not know A’s private key but does
know both random numbers used in the encryption to gen-

11More precisely, given A’s public key (p, q, g, yA) and B’s public key
(p, q, g, yB), consider a ciphertext EA(m, r) = (gr ,myr

A). Encrypt-
ing myr

A using B’s public key produces (gr′

,myr
Ayr′

B ), and subsequent
decryption using A’s private key yields myr′

B . Note that (gr′

,myr′

B ) =
EB(m, r′) is a ciphertext of m under B’s public key.

erate EA(m) and EB(m).

Proactive Secret-Sharing. A premise of our work is that
encryption is being used to store secret information se-
curely. An alternative is to use secret sharing [2, 34]. Rather
than storing EA(m) on servers comprising A, now shares of
m are distributed among those servers.

• To retrieve secret information stored in this manner,
a client establishes secure links to the servers and re-
trieves enough shares to reconstruct the secret. Verifi-
able secret sharing [11, 17, 30] allows correctness of
the shares to be checked.

• To transmit the secret information from a service A to
a service B, a new, independent sharing of the secret
information is constructed and distributed among the
servers comprising B. Proactive secret sharing (PSS)
protocols [22] are easily adapted to solve this problem,
as shown in [19, 14].

The PSS-based solution does have advantages. Our re-
encryption protocol is restricted to a particular public key
cryptosystem (ElGamal) whereas the PSS-based solution
imposes no such restrictions. Also, the PSS-based solu-
tion does not involve threshold cryptographic operations,
thereby avoiding a complicated and expensive computation
that is required with our re-encryption protocol.

The PSS-based solution, however, requires secure com-
munication links between each server in A and every server
in B, so individual server public keys must be known out-
side of each service. Periodic refresh of server keys now
becomes problematic. Our re-encryption protocol requires
only that service public keys be known and, therefore, re-
fresh is transparent outside the service. (Refreshing the ser-
vice’s private key shares does not change the service public
key.)

Furthermore, in the presence of a mobile adversary [28],
the PSS-based solution would require use of proactive se-
cret sharing, periodically refreshing shares of all secret in-
formation the service stores. A service that stores a lot then
incurs a significant recurring overhead. Our re-encryption
protocol only involves one set of secret shares—the service
private key—and thus the overhead of defending against
mobile adversaries is considerably lower. In fact, it was this
cost, in connection with the design of a publish/subscribe
service, that prompted us to design a re-encryption proto-
col.

6 Concluding Remarks

Distributed services and distributed trust [31, 20, 5,
33] constitute a general architecture for extending state-
machine replication to obtain a system that is not only fault-
tolerant but also resists attacks. With new architectures
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come new needs. The protocols described in this paper—a
re-encryption protocol, a distributed blinding protocol, and
verifiable dual encryption—were developed to satisfy those
needs. But beyond the protocol details, a contribution of
this work is to signal the importance of two non-traditional
requirements for cryptographic protocols:

• Cryptographic protocols should assume the asyn-
chronous (instead of the synchronous) model of com-
putation, since the result will then be an intrinsic de-
fense against denial of service and other forms of tim-
ing attacks.

• Cryptographic protocols should admit what we have
termed step flexibility, since this provides ways to re-
duce overall latency, which can be important.

So in that sense, our new protocols should be seen as but
one piece of a far bigger picture.
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