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Abstract

We consider distributed algorithms for solving a range of
problems in a framework for trust in large-scale distributed
systems. The framework is based on the notion of trust
structures; a set of ‘trust-levels’ with two distinct partial
orderings. In the trust model, a global trust-state is defined
as the least fixed-point of a collection of local policies of
nodes in the network.

We show that it is possible to compute the global
trust-state using a simple, robust and totally asynchronous
distributed-algorithm. We also consider a distributed no-
tion of proof-carrying-requests as a means of approximat-
ing the least fixed-point, enabling sound reasoning about
the global trust-state without computing the exact fixed-
point. Our proof-carrying-request model is different than
the notion of proof-of-compliance from traditional trust-
management; in particular, all proofs are efficiently veri-
fiable or easily rejected, but, in the worst case, may require
as much communication as computing the actual trust-state
itself.

1 Introduction

This paper completes a mathematical model for trust
in large-scale distributed systems, recently introduced by
Carbone, Nielsen and Sassone [8].

The need for flexible security mechanisms in emerging
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distributed-systems is evident. However, the diversity and
scale of such systems, combined with the lack of central-
ized authority, means that traditional mechanisms for secu-
rity decision-making, e.g. access-control lists, are often too
restrictive and complex to deploy [2]. The concept of trust
management, introduced by Blaze et al. [4], was presented
as a solution to the problems with authorization in large-
scale distributed systems. Traditional trust-management
systems make security decisions based on policies, dealing
with authorization by deciding the so-called compliance-
checking problem: given a request to perform a certain
action, together with a set of credentials; does the request
comply with the local security policy, given the credentials?

In dynamic trust-management-systems [16, 22, 15],
trust-specifications are often based on the past behaviour
of principals, which gives rise to a different, more flexi-
ble notion of trust than that of traditional trust-management
systems. The traditional systems often take an “all or noth-
ing” approach, in which no or partial credentials necessarily
means no interaction. By broadening the range of speci-
fications of trust-levels, one may encourage interaction in
situations where the traditional approach would be too re-
strictive.

While the traditional notion of trust management is well
understood, e.g. Mitchell et al. [9, 18], and, to a large extent,
captured concisely in a mathematical framework of Weeks
[24]; a lot of the “broader” dynamic systems lack such foun-
dation in formal methods (this point is illustrated by the
wide range of related systems in the survey [13]). This
lack prompted the development of a mathematical frame-
work for trust [8], inspired by that of Weeks, but departing
from Weeks by emphasizing the concept of information in
contrast to authorization. The framework, which was in-
troduced by Carbone et al. [8], discussed also by Nielsen
et al. [19] and Krukow [15], is the focus of this paper. To
understand our motivation and contributions, one must first
understand this trust model, and, consequently, we describe
the model now.



1.1 Towards a Formal Model for Trust

A trust model is a mathematical model which gives pre-
cise meaning to the (otherwise overloaded) concept of trust
within a system or a class of systems. A trust model should
be generic enough to be instantiated to support authoriza-
tion in a variety of distributed computing systems. For ex-
ample, in a P2P file-sharing system, appropriate authoriza-
tions may include using resources ‘download’ and ‘upload’,
while in the PGP system [21], a principal may be authorized
to introduce new signed (key, name) pairs.

The trust-structure framework [8] is a generic model, pa-
rameterized by a set X of possible trust values representing
distinct levels or degrees of trust, relevant for a particular
application. For example, in the P2P file-sharing applica-
tion, one might identify a trust-level with an authorization,
say XP2P = {upload, download, no, both, unknown}.
Here a principal p might assign trust-value ‘upload’ to q,
while, since it doesn’t know r, p assigns value ‘unknown’ to
r; at the same time, c is known never to be trusted and hence
is assigned value ‘no’. In the trust-structure framework,
trust levels are not always identified with authorizations,
e.g., in the P2P scenario one could instead use more “dy-
namic” trust values, related to the past behaviour of princi-
pals; for instance X ′P2P = {(ul, dl) | ul, dl ∈ N}, where
(m,n) ∈ X ′P2P represents the past history of a principal
that has performed m uploads and n downloads.

The trust-structure framework simply assumes that X is
a set for which it makes sense to (partially) order its values
in two ways: with respect to more trust and with respect to
more information. For example, in XP2P the value ‘no’
clearly denotes a lower degree of trust than ‘download’,
which is reflected by the trust ordering ¹, e.g. we have
no ¹ download. The ordering ¹ is partial, meaning that
it may not make sense to relate all pairs of trust values, e.g.
relating download and upload is not meaningful, so neither
download ¹ upload nor upload ¹ download. An impor-
tant characteristic of the trust structure framework is the re-
quirement that not only does it make sense to order values
according to the trust ordering (¹), but values are also par-
tially ordered with respect to information. Since we are al-
lowing various degrees of precision (or information) in the
trust values, it makes sense to compare some values with
respect to their information content, e.g. unknown is clearly
less information than upload or no. In general, the frame-
work assumes that the set X can be partially ordered by v,
called the information ordering. One may think of assertion
x v y as the statement that x can be refined into y, or that x
approximates y, e.g. ‘unknown’ could be refined into ‘no’
if more (trust-wise negative) information was provided.

We provide now the formal definitions of the trust-
structure framework. A complete formal understanding of
the framework requires an understanding of the theory of

partial orders as can be obtained, e.g., in Winskel’s book on
programming language semantics [25]. The casual reader
should be able to understand the model at a more intuitive
level from the following description.

Trust structures. Formally, trust is something which ex-
ists between pairs of principals; it is quantified and asym-
metric in that we care of “how much” or “to what de-
gree” principal p trusts principal q (which may not be to
the same degree that q trusts p). Each application in-
stance of the framework defines a so-called trust structure,
T = (X,¹,v), which consists of a set X of trust values,
together with two partial orderings of X , the trust order-
ing (¹) and the information ordering (v). The elements
s, t ∈ X express the levels of trust that are relevant for the
particular instance, and s ¹ t means that t denotes at least
as high a trust-level as s. As we have seen, in contrast,
the information ordering introduces a notion of precision or
refinement. As a simple example of a trust structure, con-
sider the so-called “MN” trust-structure TMN [15]. In this
structure, trust values are pairs (m,n) of natural numbers
(as in the set X ′P2P ), representing m + n interactions with
a principal; each interaction classified as either “good” or
“bad”. In a trust value (m,n), the first component, m, de-
notes the number of “good” interactions, and the second, the
number of “bad” ones. The information-ordering is given
by: (m,n) v (m′, n′) only if one can refine (m,n) into
(m′, n′) by adding zero or more good interactions, and, zero
or more bad interactions, i.e., iff m ≤ m′ and n ≤ n′. In
contrast, the trust ordering is given by: (m,n) ¹ (m′, n′)
only if m ≤ m′ and n ≥ n′. Nielsen et al. [15, 20, 8], have
considered several additional examples of trust structures.

Global trust-states. Given a fixed trust structure T =
(X,¹,v), and a set P of principal identities; a global trust-
state of the system is a function gts : P → P → X .
The interpretation is that gts represents the trust state where
p’s trust in q (formalized as an element of X) is given by
gts(p)(q). A good way of thinking about gts is to consider
it a large matrix, indexed by pairs of principal identities, in
which the row indexed by principal p (denoted gts(p)) con-
tains principal p’s trust in any other principal. For example,
in the row gts(p), column q represents p’s trust in q, given
as an element in the set X; this entry is denoted gts(p)(q)
(“row vectors” like gts(p) are also called local trust-states).
Thus, the matrix gts gives a complete (system global) de-
scription of how everyone trusts everyone else. We shall
write GTS for the set of global trust-states P → P → X .
Similarly we write LTS for the set P → X of local trust-
states (corresponding to rows of gts matrices).

Trust policies. The goal of the trust-structure framework
is to define, at any time, a global trust state gts, thus



giving a precise meaning to “p’s trust in q” at all times
(i.e., as value gts(p)(q)). In order to uniquely define
the global trust state gts, an approach similar to that of
Weeks [24] is adopted. Each principal p ∈ P defines a
trust policy which is a function πp of type GTS → LTS,
i.e. taking a global matrix as input, and providing a local
row-vector as output. This function then determines
p’s trust-row within the unique global trust-matrix, i.e.
determines row gts(p), as follows. In the simplest case,
πp could be a constant function, ignoring its first argument
gts : P → P → X . As an example, πp(gts) = λq.t0
(for some t0 ∈ X) defines p’s trust in any q ∈ P as the
constant t0. In general we allow a form of delegation called
policy reference: policy πp may refer to other policies
(πz , z ∈ P), e.g., p might trust q to download if A or B
trusts q to download. The general interpretation of πp is
the following. Given that all principals assign trust-values
as specified in the global trust-state gts, then p assigns
trust values as specified in vector πp(gts) : P → X .
For example, in the XP2P trust structure, function
πp(gts) = λq ∈ P.(gts(A)(q) ∨¹ gts(B)(q)) ∧¹ download,
represents a policy saying “for any q ∈ P , the trust in q is
the least upper-bound in (XP2P ,¹) of what A and B say,
but no more than the constant download ∈ XP2P .”1

Unique trust-state. The collection of all trust policies,
Π = (πp|p ∈ P), thus “spins a global web-of-trust” in
which the trust policies mutually refer to each other. Since
trust policies Π may give rise to cyclic policy-references, it
is not a priori clear how to define the unique global trust-
state gts for a given collection of trust policies Π. One may
consider the unique function Πλ = 〈πp|p ∈ P〉, of type
GTS→ GTS with the property that Projp ◦ Πλ = πp for all
p ∈ P , where Projp is the p’th projection.2 Intuitively, the
function Πλ is easy to understand: each πp maps a matrix
gts ∈ GTS to a “row-vector” πp(gts) in LTS; on input gts,
function Πλ builds the output matrix from all these rows by
taking the p’th row of the output matrix to be πp(gts). We
can now state a minimal requirement that the unique trust
state, gts, should satisfy: gts should be consistent with all
policies πp. This amounts to requiring that it should satisfy
the following fixed-point equation: gts(p) = πp(gts) for all
p ∈ P; or equivalently:

Πλ(gts) = gts

Any matrix gts : GTS satisfying this equation is consistent
with the policies (πp|p ∈ P), i.e. row p of gts is consistent
with πp in that, if all principals trust as specified in gts, then

1Assuming that (X,¹) is a lattice. We always denote information
(v) least-upper-bounds by “square” symbols t, and trust (¹) least-upper-
bounds/greatest-lower-bounds by ∨/∧.

2Proj
p

is given by: for all gts : P → P → X . Proj
p
(gts) =

gts(p).

p trusts as specified in πp(gts) which (by the fixed-point
equation) can be read-off as the pth row of gts.

This means that any fixed point of Πλ is consistent with
all policies πp. But arbitrary functions Πλ, may have mul-
tiple or even no fixed points.

Here we appeal to the power of the mathematical theory
of complete partial orders and continuous functions (do-
main theory), known from formal programming language
semantics [25]. A crucial requirement in the trust-structure
framework is that the information orderingvmakes (X,v)
a complete partial order (cpo) with a least element (this
element is denoted ⊥v, and can be thought of as a value
representing “unknown”). We require also that all policies
πp : GTS → LTS are information continuous, i.e. con-
tinuous with respect to v.3 Since this implies that Πλ is
also information-continuous, and since (GTS,v) is a cpo
with bottom, standard theory [25] tells us that Πλ has a
(unique) least fixed-point which we denote lfpvΠλ (or sim-
ply lfpΠλ):

lfpvΠλ =
⊔

v
{Πi

λ(λp.λq.⊥v) | i ∈ N}

This global trust-state has the property that it is a fixed-
point (i.e., Πλ(lfpvΠλ) = lfpvΠλ) and that is is the
(information-) least among fixed-points (i.e., for any other
fixed point gts, lfpvΠλ v gts). Hence, for any collection Π
of trust policies, we can define the global trust-state induced
by that collection, as gts = lfpΠλ, which is well-defined by
uniqueness.

Consider now two mutually referring functions πp and
πq , given by πp(gts) = Projq(gts), and πq(gts) =
Projp(gts). Intuitively, there is no information present in
these functions; p delegates all trust-questions to q, and
similarly q delegates to p. In this case, we would like the
global trust-state gts induced by the functions to take the
value ⊥v on any entry z ∈ P for both p and q, i.e., for
both x = p and x = q and for all z ∈ P we should have
gts(x)(z) = ⊥v. This is exactly what is obtained by choos-
ing the information-least fixed-point of Πλ.

1.2 Motivation and Technical Contributions

Many interesting systems are instances of the trust-
structure framework [8, 15], but one could argue against
its usefulness as a basis for the actual construction of trust-
management systems. In order to make security decisions,
each principal p will need to reason about its trust in others,
that is, the values of gts(p). While the framework does en-
sure the existence of a unique (theoretically well-founded)

3We overloadv (respectively¹) to denote also the pointwise extension
of v (¹) to the function space LTS = P → X as well as to GTS = P →

P → X . Saying that a policy is information-continuous means that the
function is continuous w.r.t. v.



global trust-state, it is not “operational” in the sense of pro-
viding a way for principals to actually compute the trust val-
ues. Furthermore, as we shall argue in the following, the
standard way of computing least fixed-points is inadequate
in our scenario.

When the cpo (X,v) is of finite height h, the cpo
(P → P → X,v) has height |P|2 · h.4 In this case,
the least fixed-point of Πλ can, in principle, be computed
by finding the first identity in the chain of approximants
(λp.λq.⊥v) v Πλ(λp.λq.⊥v) v Π2

λ(λp.λq.⊥v) v · · · v

Π
|P|2·h
λ (λp.λq.⊥v) [25]. However, in the environment en-

visioned, such a computation is infeasible. The functions
(πp : p ∈ P) defining Πλ are distributed throughout the
network, and, more importantly, even if the height h is fi-
nite, the number of principals |P|, though finite, will be
very large. Furthermore, even if resources were available
to make this computation, we can not assume that any cen-
tral authority is present to perform it. Finally, since each
principal p defines its trust policy πp autonomously, an in-
herent problem with trying to compute the fixed point is
the fact that p might decide to change its policy πp to π′p
at any time. Such a policy update would be likely to in-
validate data obtained from a fixed-point computation done
with global function Πλ, i.e., one might not have time to
compute lfpΠλ before the policies have changed to Π′.

The above discussion indicates that exact computation
of the fixed point is infeasible, and hence that the frame-
work is not suitable as an operational model. Our motiva-
tion is to counter this by showing that the situation is not
as hopeless as suggested. The rest of the paper presents
a collection of techniques for approximating the idealized
fixed-point lfpΠλ. Our work essentially deals with the op-
erational problems left as “future work” by Carbone et al.
[8]. More specifically, this consists of three operational is-
sues.

Firstly, techniques for actual distributed computation of
approximations to the idealized trust-values, over a global,
highly dynamic, decentralized network. We start by show-
ing that although it may be infeasible to compute the global
trust-state, gts : P → P → X , one can instead try to com-
pute so-called local fixed-point values. We take the practi-
cal point-of-view of a specific principal R, wanting to rea-
son about its trust value for a fixed principal q. The basic
idea is that instead of computing the entire state gts, and
then “looking up” value gts(R)(q) to learn R’s trust in q,
one may instead compute this value directly. We prove a
convergence result that enables us to apply a robust totally-
asynchronous distributed algorithm of Bertsekas [1] for lo-
cal fixed-point computation. This is developed in Section
2.

Secondly, often it is infeasible and even unnecessary to

4The height of a cpo is the size of its longest chain.

compute the exact denotation of a set of policies. In many
cases it is sufficient (in order to make a trust-based decision)
to know that a certain property of this value is satisfied. In
Section 3, we take very mild assumptions on the relation
between the two orderings in trust structures. This enables
us to prove the soundness of two efficient protocols for safe
approximation of the least fixed-point. Often this allows
principals to take security-decisions without having to com-
pute the exact fixed-point. For example, suppose we know
a function p̄ : P → P → X with the property that p̄ ¹ gts.
In many trust structures it is the case that if p̄ is sufficient to
authorize a given request, so is the actual fixed-point.

Finally, the inherently dynamic nature of the envisioned
systems requires algorithms that explicitly deal with the dy-
namic updating of trust policies (rather than implicitly deal-
ing with updates by doing a complete re-computation of the
trust-state). In the full paper [17], we address the problem of
dynamic policy-changes. We provide algorithms that reuse
information from “old” computations, when computing the
“new” fixed-point values. For specific (but commonly oc-
curring) types of updates this is very efficient. For fully
general updates we have an algorithm which is better than
the naive algorithm in many cases.

Future and related work is discussed in the concluding
section. The full paper [17] contains proofs of all theorems,
detailed descriptions of the algorithms, and examples illus-
trating the algorithms.

2 Computation of Least Fixed-Points

In this section, we show how to compute the local
fixed-point value gts(R)(q) for two fixed principals R and
q, without computing the complete global trust-state gts.
The reason for computing local values is twofold. First,
we can benefit from distributing the computational- and
storage-burdens, so that instead of centrally computing
the complete state gts, node will R maintain “entry”
gts(R)(q) in the “distributed matrix” gts. Second, al-
though the semantics of trust policies are functions of
type (P → P → X) → P → X which (due to policy
referencing) in general may depend on the trust values of
all principals, we expect that in practice, policies will not
be written in this way. Instead, policies are likely to refer to
a few known (and usually “trusted”) principals. For fixed R
and q, the set of principals that R’s policy actually depends
on in its entry for q, is often a significantly smaller sub-
set of P . For example, our policy from the previous section,
πR(gts) = λq ∈ P.(gts(A)(q) ∨¹ gts(B)(q)) ∧¹ download,
is independent of all entries of gts except for those of prin-
cipals A and B. This means that in order to evaluate πR
with respect to some principal q, R needs only information
from A and B.

We first compute (distributedly) a dependency graph



which contains only the dependencies relevant for the com-
putation of gts(R)(q), thus excluding a (hopefully) large
set of principals that do not need to be involved in com-
putation. We then proceed with computation of gts(R)(q)
by showing that the conditions of a general algorithmic
convergence-theorem of Bertsekas [1] are satisfied, and
hence we can appeal to previous results on the convergence
of a certain totally asynchronous algorithm.

We present our problem in the more abstract setting of
a distributed computation of the least fixed-point of a con-
tinuous endo-function on a cpo. We show that this indeed
models our practical scenario (and of course, many others).

Abstract setting. We are given a cpo (X,v) of finite
height h, and a natural number n ∈ N. Writing [n] for the
set {1, 2, . . . , n}, we have also a collection C = (fi : i ∈
[n]) of n continuous functions, each of type fi : X [n] → X .
These functions induce a unique, continuous, global func-
tion F = 〈fi : i ∈ [n]〉 : X [n] → X [n] which has a unique
least-fixed-point, lfp F ∈ X [n]. Define a dependency graph
G = ([n], E), where [n] is the set of nodes, and the edges,
given as a functionE : [n]→ 2

[n], model (possibly an over-
approximation of) the dependencies of the functions in C,
i.e., have j 6∈ E(i) implies that function fi does not depend
on the value of “variable” j. We consider the nodes [n] as
network nodes that have memory and computational power.
Each node i ∈ [n] is associated with function fi, and we
assume that each node knows all nodes that it depends on,
i.e., node i knows all edges E(i).

Computational problem. Let R ∈ [n] denote a desig-
nated node, called the root. The computational problem is
for the root to compute the local fixed-point value (lfpF )R.

Concrete setting. We translate the trust-structure setting
into our abstract setting by defining function fR as policy
πR’s entry for principal q. One then finds the dependencies
of fR by looking at which other policies this expression de-
pends on. If fR depends on entry w in πz , then z is a node
in the graph, and the function fz is given by πz’s entry for
w, with the dependencies of fz given by the dependencies
in the expression for w in πz , and so on. From now on, we
shall work in the abstract setting as it simplifies notation.

Note, that this translation might lead to a node z appear-
ing several times in the dependency graph, e.g. with en-
tries for principals w and y in πz . We shall think of these
as distinct nodes in the graph, although a concrete imple-
mentation would have node z play the role of two nodes,
zw and zy . Note also, that the (minimal) dependency-
graph is not modeling any network topology. Although
the nodes of the graph represent concrete nodes in a physi-
cal communication-network, its edges do not represent any
communication-links.

Communication model. We use an asynchronous
communication-model, assuming no known bound on
the time it takes for a sent message to arrive. We as-
sume that communication is reliable in the sense that
any message sent eventually arrives, exactly once, un-
changed, to the right node, and that messages arrive in
the order in which they are sent. We assume (in the spirit
of the global-computing vision) an underlying physical
communication-network allowing any node to send mes-
sages to any other node. Furthermore, we assume that
all nodes are willing to participate, and that they do not
fail. The assumptions of non-failure and correct order of
delivery ease the exposition, but the fixed-point algorithm
we apply is highly robust [1].

Our algorithm for fixed-point computation consists of
two stages. In the first stage, the dependency graph G =
([n], E) is distributedly computed so that each node knows
the set of nodes that depend on it for the computation. In the
second stage, this information is used in an asynchronous
algorithm, performing the actual fixed-point computation.

2.1 Computing Trust-Dependencies

Setting up the dependency graph is very simple, and so
we describe it only very briefly (see the full paper [17] for
details). The goal of the dependency computation is for
each node to obtain a list of the nodes that depend on it for
the trust-value computation. For any node i, we denote the
set E(i) by i+, and the set of nodes k for which i ∈ E(k)
(i.e. E−1({i})), by i−. After the dependency computation,
any node i knows i+ and i−. Node i will store i+ and i− in
variables of the same name.

Computing the dependency graph reduces to a dis-
tributed reachability problem. Intuitively, one starts at the
root, which sends a mark message to each of R+, and, in
turn, each node i ∈ R+ reachable in one “step” from the
root, will notify the nodes i+ of this dependency, and so
on (taking appropriate action when cycles are discovered).
This can be implemented with high parallelism, and with
the total number of messages sent O(|E|), each message
of bit length O(1). Note, that we only “mark” the nodes
that are reachable from R, which amounts to excluding any
node that R does not depend on (directly or by transitivity)
for computing its trust value for q ∈ P .

2.2 An Asynchronous Algorithm

In this section, we assume that the dependency graph
has already been computed. We show that we a now
in a situation in which we can apply existing work of
Bertsekas for computation of the least fixed-point. Bert-
sekas has a class of algorithms, called totally asyn-
chronous (TA) distributed iterative fixed-point algorithms,



and a general theorem which gives conditions ensuring
that a specific TA algorithm will converge to the de-
sired result. In our case, “converge to” means that
each principal i ∈ P will compute a sequence of val-
ues ⊥v = i.t0 v i.t1 v · · · v i.tk = (lfp F )i. The general
theorem is called the “Asynchronous Convergence Theo-
rem” (ACT), and we use this name to refer to Proposi-
tion 6.2.1 of Bertsekas’ book [1]. The ACT applies in any
scenario in which the so-called “Synchronous Convergence
Condition” and the “Box Condition” are satisfied. Intu-
itively, the synchronous convergence condition states that if
the algorithm is executed synchronously, then one obtains
the desired result. In our case, this amounts to requiring
that the “synchronous” sequence⊥v v F (⊥v) v · · · con-
verges to the least fixed-point, which is true. Intuitively, the
box condition requires that one can split the set of possi-
ble values appearing during synchronous computation into
a product (“box”) of sets of values that appear locally at
each node in the asynchronous computation. As a conse-
quence of v-monotonicity of the policies, the conditions of
the Asynchronous Convergence Theorem are satisfied (the
following Proposition 2.1), and so, we can deploy a TA dis-
tributed algorithm.

We now describe the algorithm and argue for its correct-
ness. We will assume that each node i allocates variables
i.tcur and i.told of type X , which will later record the “cur-
rent” value and the last computed value in X . Each node
i has also an array, denoted by i.m. The array i.m is of
type X array, and will be indexed by the set i+. Initially,
i.tcur = i.told = ⊥v, and the array is also initialized with
⊥v. For any nodes i and j ∈ i+, when i receives a mes-
sage from j (which is always a value t ∈ X), it stores this
message in i.m[j].

Asynchronous algorithm. Any node is always in one of
two states: sleep or wake. All nodes start in the wake state,
and if a node is in the sleep state, the reception of a message
triggers a transition to the wake state. In the wake state any
node i repeats the following: it starts by assigning to vari-
able i.tcur the result of applying its function fi to the values
in i.m, i.e., node i executes assignment i.tcur ← fi(i.m). If
there is no change in the resulting value of fi(i.m) (com-
pared to the last value computed, which is stored in i.told),
it will go to the sleep state unless a message was received
since fi(i.m) was computed. Otherwise, if a new value re-
sulted from the computation (i.e., if told 6= fi(i.m)), this
value is sent to all nodes in i−. Concurrently with this we
can run a termination detection algorithm, which will de-
tect when all nodes are in the sleep-state and no messages
are in transit. Bertsekas has already addressed this problem
with his termination-detection algorithm [1], which directly
applies, yielding only a constant overhead in the message
complexity.

To prove correctness of the asynchronous algorithm, we
need only prove that the ACT is satisfied when all nodes
initialize their trust-values (i.m and i.told) to⊥v. However,
we instead prove a slightly more general convergence-result
which is useful when considering the interplay between the
asynchronous-algorithm and policy-updates. The following
concept of an information approximation is central.

Definition 2.1 (Information Approximation). Let F :
X [n] → X [n] be continuous. Say that a value t̄ ∈ X [n],
is an information approximation for F if t̄ v lfpF and
t̄ v F (t̄).

The following Proposition 2.1 shows that we can indeed
appeal to the ACT.

Proposition 2.1 (Convergence Theorem). Let t̄ be any in-
formation approximation for F . Assume that after running
the dependency-graph algorithm, the arrays of the nodes
are initialized with t̄. That is, for all nodes i ∈ [n], and all
j ∈ i+ assume that i.m[j] = t̄j and that i.told = t̄i. Then
the synchronous convergence condition and the box condi-
tion of the asynchronous convergence theorem are both sat-
isfied.

To prove convergence of our algorithm, we simply in-
voke Proposition 2.1 in the case of the trivial information-
approximation t̄ = ⊥nv. The asynchronous convergence
theorem ensures that the asynchronous algorithm converges
towards the right values at all nodes, and, because of our
assumption of finite height cpos, the distributed system will
eventually reach a state which is stable. In this state, each
node i will have computed (lfpF )i.

Remarks. Since any node sends values only when a
change occurs, by monotonicity of fi, node i will send at
most h · |i−| messages, each of size O(log |X|) bits.5 Node
iwill receive at most h·|i+|messages, each message (possi-
bly) triggering a computation of fi. Globally, the number of
messages is O(h · |E|) each of bit size O(log |X|). Hence,
the communication complexity of our algorithm is linear in
the height of the lattice used by the policies. An important
global invariant in this algorithm is that any value computed
locally at a node (by the assignment i.tcur ← fi(i.m)) is a
component in an information approximation for F . That is,
it holds everywhere, at any time, that (1) i.tcur v (lfpF )i
and (2) i.tcur v fi(i.m). To see this, note that (1, 2) hold
initially, and that both properties are preserved by the up-
date i.tcur ← fi(i.m) whenever i.m[y] v (lfpF )y for all
y ∈ i+ (which is always true). We state this fact as a lemma,
as it becomes very useful in the next section where we con-
sider fixed-point approximation-algorithms.

5In fact, there will be only O(h) different messages, each sent to all of
i−. Consequently, a broadcast mechanism could implement the message
delivery efficiently.



Lemma 2.1. Any value i.tcur ∈ X computed by any node
i ∈ [n], at any time in the algorithm by the statement
i.tcur ← fi(i.m), is a part of an information approximation
for F , in the sense that i.tcur v (lfpF )i and i.told v i.tcur.

3 Approximation techniques

In this section, we present two techniques for safe and
efficient approximation of the fixed-point. Consider a situa-
tion in which a client principal p wants to access a resource
controlled by server v. Assume that the access-control pol-
icy of v is that, to allow access, its trust in p should be trust-
wise above some threshold t0 ∈ X , i.e., the fixed-point
should satisfy t0 ¹ (lfpΠλ)(v)(p). The goal of the ap-
proximation techniques is to allow the server to (soundly)
make its security decision without having to actually com-
pute the exact fixed-point value. Instead, the server is able
to efficiently compute an approximating global trust-state
p̄ : P → P → X which is related to the fixed point in such
a way that the desired property can be asserted.

We need some preliminary terminology. Let
T = (X,¹,v) be a trust structure, i.e. (X,v) is a
cpo with bottom ⊥v and (X,¹) is a partial order (not
necessarily complete). We assume also that (X,¹) has a
least element, denoted ⊥¹. If for any countable v-chain
C = {xi ∈ X | i ∈ N} and any x ∈ X we have (i) x ¹ C

implies x ¹
⊔

C and (ii) C ¹ x implies
⊔

C ¹ x, then ¹
can be said to be v-continuous.

3.1 Bounding “Bad Behaviour”

This first technique lets a client convince a server that its
trust in the client is (trust-wise) above a certain level. The
technique is based on the following proposition.

Proposition 3.1. Let (X,¹,v) be a trust structure in which
¹ is v-continuous. Let p̄ ∈ X [n], and F : X [n] → X [n] be
any function that is v-continuous and ¹-monotonic. If we
have p̄ ¹ (λk ∈ [n].⊥v) and p̄ ¹ F (p̄ ), then p̄ ¹ lfpv F .

Note that the conclusion of the proposition is an asser-
tion that is useful for authorization; if the server knows a
p̄ ∈ X [n] which is sufficient to allow an authorization, and
knows also that p̄ ¹ lfpv F , then since the ideal global
trust-state is trust-wise above p̄, then it is a sound decision to
allow the authorization. This idea is the basis of an efficient
protocol for a kind of “proof-carrying” authorization, sim-
ilar to the traditional notion of proof-of-compliance, used
e.g. in PolicyMaker [5].

Consider for simplicity the “MN” trust-structure TMN

from Section 1, which satisfies the information-continuity
requirement. Recall that, in this structure, trust values are
pairs (m,n) of natural numbers, representing m + n past
interactions; m of which where classified ‘good’, and n,

classified as ‘bad’.6 The orderings are given by (m,n) v
(m′, n′) ⇐⇒ m ≤ m′ and n ≤ n′, and (m,n) ¹
(m′, n′) ⇐⇒ m ≤ m′ and n ≥ n′.

Suppose principal p wants to efficiently convince prin-
cipal v, that v’s trust value for p is a pair (m,n) with the
property that n is less than some fixed bound N ∈ N (i.e.,
giving v an upper bound on the amount of recorded “bad
behaviour” of p). Let us assume that v’s trust policy πv
is monotonic, also with respect to ¹, and that it depends
on a large set S of principals. Assume also that it is suffi-
cient that principals a and b in S have a reasonably “good”
trust-value for p, to ensure that v’s trust-value for p is not
too “bad”. An example policy with this property could be
written in the language of Carbone et al. [8] as

πv ≡ λx : P.(paq(x) ∧ pbq(x)) ∨
∧

s∈S\{a,b}

psq(x)

The construct p·q represents policy reference or delega-
tion, e.g., if a and x are principal identities then expression
paq(x) “evaluates” to the value that a’s trust policy speci-
fies for x. The construct e∨ e′ represents least upper-bound
in the trust-ordering (intuitively, “trust-wise maximum” of
e and e′), and similarly ∧ represents greatest lower-bound
(“trust-wise minimum”).7 Thus, informally, the above pol-
icy says that any principal p should have “high trust” with a
and b, or, with all of s ∈ S \{a, b}, for the v to assign “high
trust” to p. Now, if p knows that it has previously performed
well with a and b, and knows also that v depends on a and
b in this way, it can engage in the following protocol.

Protocol. Principal p sends to v the “trust-state” t =
[(v, p) 7→ (0, N), (a, p) 7→ (0, Na), (b, p) 7→ (0, Nb)]
which can be thought of as a “proof” (analogous to a
‘proof-of-compliance’) or a “claim” made by p, stating that
(0, N) ¹ (lfpΠλ)(v)(p) (and similarly for a and b). Upon
reception, v first extends t to a global trust state, which is
the extension of t to a function p̄ of type P → P → TMN ,
given by

p̄ = λx ∈ Pλy ∈ P.



















(0, N) if x = v and y = p

(0, Na) if x = a and y = p

(0, Nb) if x = b and y = p

(0,∞) otherwise

To check the proof, principal v must verify that p̄ satisfies
the conditions of Proposition 3.1. First, v must check that

6To be precise, the set N
2 is completed by allowing also value ∞ as

“m” or “n” or both.
7The example policy assumes that (X,¹) is a lattice, meaning that for

any x, y ∈ X both x∨y and x∧y exist. Furthermore operations ∨ and ∧
must be continuous also with respect to the information ordering. In many
trust-structure this is often the case [8].



p̄(x)(y) ¹ ⊥v = (0, 0) for all x, y. But this holds triv-
ially if y 6= p or x 6= v, a, b because then p̄(x)(y) =
(0,∞) = ⊥¹. For the other few entries it is simply an
order-theoretic comparison p̄(x)(y) ¹ (0, 0). Now v tries
to verify that p̄ ¹ Πλ(p̄ ). To do this, v verifies that
(0, N) ¹ πv(p̄ )(p). If this holds then v sends the value
t to a and b, and ask a and b to perform a similar verifica-
tion (e.g. (0, Na) ¹ πa(p̄ )(p)). Then a and b reply with
‘yes’ if this holds and ‘no’ otherwise. If both a and b reply
‘yes’, then p is sure that p̄ ¹ Π(p̄): by the checks made by
v, a and b, we have that p̄(x)(y) ¹ Πλ(p̄ )(x)(y) holds for
pairs (x, y) = (v, p), (a, p), (b, p), but for all other pairs it
holds trivially since p̄ is the ¹-bottom on these. By Propo-
sition 3.1, we have p̄ ¹ lfp Πλ, and so, v is ensured that its
trust value for p is ¹-greater than (0, N).

We have illustrated the main idea of the protocol by way
of an example, but the general technique for verifying a
proof should be clear. In general, the proof p̄ may include
a larger number of principals, which would then have to be
involved in the verification process.

Remarks. Our approximation protocol has very much the
flavour of a proof-carrying authorization: the requester (or
prover) must provide a proof that its request should be
granted. It is then the job of the service-provider (or ver-
ifier) to check that the proof is correct. The strength of this
protocol lies in replacing an entire fixed-point computation
with a few local checks made by the verifier, together with
a few checks made by a subset of the principals that the
verifier depends on. An interesting property of this pro-
tocol is that part of the information that the prover needs
to supply should already be known to the prover; it should
already know who it has performed well with in the past
(e.g. in our example above, p could know the bounds Na

and Nb because of its previous interaction with a and b).
There are, however, two important restrictions to this ap-
proach. First, as in the example, in order to construct its
proof, the prover needs information about the verifiers trust
policy and of the policies of those whom the verifier de-
pends on. If policies are secret, it is not clear how the ver-
ifier would construct this proof. Second, because of the re-
quirement in Proposition 3.1 that p̄ ¹ ⊥v, the protocol can
usually only be used to prove properties stating “not too
much bad behaviour,” and not properties guaranteeing suf-
ficiently “good” behaviour.

Notice that the protocol for exploiting Proposition 3.1
has a message complexity which is independent of the
height of the cpo; in particular, it works also for infinite
height cpos. In contrast, the algorithm for computing fixed-
points has message complexity O(h · |E|).

We present now another approach which requires more
computation and communication, but does not have the two
mentioned restrictions.

3.2 Exploiting Information Approximations

The approximation technique developed in this section
is different from that of the “proof-carrying” protocol in
the previous section. In this section, we not require the
“prover” (client) to provide any information. Instead, we
derive an approximation from a “snapshot” of the state of
the asynchronous fixed-point algorithm from Section 2.2.
The “verifiers” (servers) are then able make a collection of
local checks on this snapshot, allowing them to infer that
the fixed-point value must be trust-wise above the snapshot-
value. The technique is based on the following proposition.

Proposition 3.2. Let (X,¹,v) be a trust structure in which
¹ is v-continuous. Let t̄ ∈ X [n], and F : X [n] → X [n]

be any function that is v-continuous and ¹-monotonic.
Assume that t̄ is an information approximation for F . If
t̄ ¹ F (t̄ ) then t̄ ¹ lfpF .

This proposition is very useful because, by Lemma 2.1,
a global invariant in the asynchronous fixed-point algorithm
is that all values computed are information approximations
for F . This means that we can combine the algorithm with a
protocol that, intuitively, implements the check for the con-
dition t̄ ¹ F (t̄ ) in the above proposition.

Imagine that during the execution of the asynchronous
algorithm, there is a point in time, in which no messages
are in transit, all nodes i have computed their function fi,
and sent the value fi(i.m) to all that depend on it. Thus we
have a “consistent” state in the sense that for any node x and
any node y ∈ x+ we have x.m[y] = y.tcur. In particular
if x and z both depend on y, then they agree on y’s value:
x.m[y] = y.tcur = z.m[y]. In this ideal state, there is a
consistent vector t̄ which, by Lemma 2.1, is an information
approximation for F , i.e. t̄ contains the values t̄i = i.tcur
for nodes i ∈ [n]. If the state of the distributed system
was frozen at this point, and all nodes x, simultaneously
make the check x.tcur ¹ fx(x.m), then vector t̄ satisfies
t̄ ¹ F (t̄ ). Since t̄ is an information approximation for F,
by Proposition 3.2, the root nodeR knows that t̄R ¹ lfp FR,
which is what we want.

Of course, the ideal situation described above would
rarely occur in a real execution. The aim of the approxi-
mation technique in this section, is to enforce, during ex-
ecution of the asynchronous algorithm, a consistent view
of such an ideal situation. In so-called snapshot-algorithms
(see Bertsekas [1]), the (local views of the) global state of
the system is recorded during execution of an algorithm.
Our problem is slightly less complicated since we are not
interested in the status of communication links, but slightly
more complicated since each snapshot-value must be prop-
agated to a specific set of nodes. The full paper describes
a snapshot-algorithm implementing the above idea. The al-
gorithm sends a constant number of messages for each edge
in G, hence its message complexity is O(|E|).



Interestingly, it turns out that the two propositions of this
section are actually instances of a more general theorem,
which gives rise to a generalized approximation-protocol,
that can be seen as a combination of the two techniques pre-
sented in this section. Due to space restrictions, we leave
this to the full paper [17].

We note finally that the v-continuity property, required
of ¹ in our propositions, is satisfied for all interesting trust-
structures we are aware of: Theorem 3 of Carbone et al.
[8] implies that the information-continuity condition is sat-
isfied for all interval-constructed structures. Furthermore,
their Theorem 1 ensures that interval-constructed structures
are complete lattices with respect to ¹ (thus ensuring exis-
tence of ⊥¹). Several natural examples of non-interval do-
mains can also be seen to have the required properties [15].
The requirement that all policies πp are monotonic also with
respect to¹ is not unrealistic. Intuitively, it amounts to say-
ing that if everyone raises their trust-levels in everyone, then
policies should not assign lower trust levels to anyone.

4 Conclusion

We have presented distributed algorithmic techniques for
approximation of the least fixed-point of a collection of
continuous functions, focusing particularly on ‘trust struc-
tures’ – sets partially ordered by two relations: the infor-
mation ordering and the trust ordering. When the func-
tions are trust policies that are monotonic with respect to
the trust-ordering, and, if the trust ordering is continuous
with respect to the information ordering, we have illustrated
two protocols allowing principals to soundly reason about
the fixed-point values without having to compute the exact
fixed-point.

Our work is based solely on theoretical analyses, but
these lead to promising conclusions regarding the useful-
ness of the trust-structure framework, justifying further vali-
dation via actual implementation. The trust-structure frame-
work has a concrete instance in the SECURE project [6, 7]
which deploys a specific class of trust structures, using
probabilistic information in its modeling of trust [15, 20].
As part of this project, we are planning on developing pro-
totype implementations of the techniques in this paper.

Apart from the application in implementing trust-
structure-based systems, the technique for fixed-point com-
putation is general enough to be used in any cpo with bot-
tom (or complete lattice). In particular, the techniques could
be the basis of a distributed implementation of a variant of
Weeks’ model of trust-management systems [24], in which
credentials could be stored by the issuing authorities instead
of being presented by clients. This would support revoca-
tion, implemented simply as a trust-policy update at the au-
thority revoking the credential.

Future work. We have considered the dependency graph
induced by a collection of policy functions. Since this
graph is not necessarily equal to the physical communica-
tion graph, the algorithms may have to send messages over
several links in order to represent the sending of a message
over a single edge in the dependency graph. It would be a
relevant and interesting topic to consider to what extent the
quality of the embedding affects the convergence rate of the
fixed-point algorithm.

We have analyzed the worst-case message-complexities
of our algorithms. It could also be interesting to try and ana-
lyze the “amortized” complexity of our algorithms. For ex-
ample, if principal R wants to know its trust in q, it can run
the algorithm presented in this paper to compute or approxi-
mate this value. Now, after some time has passed, principals
might have made additional observations about q. Suppose
that, at some point later, R wants to compute its trust in
q. Since principals reuse the information gained from the
last computation, the second computation would be signifi-
cantly faster.

Related Work. As mentioned previously, Weeks has de-
veloped a mathematical framework [24] suitable for model-
ing many traditional trust-management systems (e.g. [4, 10,
3, 11, 12]). The framework is based on defining a global
trust-state (“authorization map” [24]) by existence of least
fixed-points of monotonic endo-functions on complete lat-
tices. The trust-structure framework [8, 19], introduces a
notion of information into the framework of Weeks. The
primary difference between the two frameworks is that, in
trust structures, least fixed-points are with respect to infor-
mation, whereas in Weeks’ framework they are with respect
to trust (indeed, there is no notion of ‘information order-
ing’, and ‘trust’ is identified with authorization [24]). An-
other important difference is that in Weeks’ framework, the
trust policies (licenses) are carried by clients instead of be-
ing stored at the issuing servers. This means that the op-
erational approach is to let clients present, along with their
request, a set of licenses, which, together, give rise to what
corresponds to function Πλ. It is now the job of the server
to (locally) compute the fixed-point, and decide how to re-
spond. In contrast, in the trust-structure framework, the
trust policies are naturally distributed. Each principal p, au-
tonomously controls and stores its policy, πp. This leads
naturally to a distributed approach to computation of fixed-
points.

The idea of computing local fixed-points has been recog-
nized also by Vergauwen et al. in the non-distributed con-
text of static program-analysis [23]. Dimitri Bertsekas has
developed a substantial body of work on distributed and par-
allel algorithms for fixed points, and this paper applies his
asynchronous convergence theorem [1] to prove correctness
of a distributed fixed-point algorithm. Finally, the Eigen-



Trust system also defines its global trust-state by existence
of unique (non order-theoretic) fixed-points [14], and the
basic EigenTrust algorithm is essentially Bertsekas’ glob-
ally synchronous algorithm.
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