
Resource-Aware Distributed Stream Management
using Dynamic Overlays

Vibhore Kumar, Brian F. Cooper, Zhongtang Cai, Greg Eisenhauer, Karsten Schwan
College of Computing, Georgia Institute of Technology

801 Atlantic Drive, Atlanta, GA 30332-0280
{vibhore, cooperb, ztcai, eisen, schwan}@cc.gatech.edu

Abstract

 We consider distributed applications that
continuously stream data across the network, where
data needs to be aggregated and processed to produce
a 'useful' stream of updates. Centralized approaches to
performing data aggregation suffer from high
communication overheads, lack of scalability, and
unpredictably high processing workloads at central
servers. This paper describes a scalable and efficient
solution to distributed stream management based on
(1) resource-awareness, which is middleware-level
knowledge of underlying network and processing
resources, (2) overlay-based in-network data
aggregation, and (3) high-level programming
constructs to describe data-flow graphs for composing
useful streams. Technical contributions include a novel
algorithm based on resource-aware network
partitioning to support dynamic deployment of data-
flow graph components across the network, where
efficiency of the deployed overlay is maintained by
making use of partition-level resource-awareness.
Contributions also include efficient middleware-based
support for component deployment, utilizing runtime
code generation rather than interpretation techniques,
thereby addressing both high performance and
resource-constrained applications. Finally, simulation
experiments and benchmarks attained with actual
operational data corroborate this paper's claims.

1. Introduction

Many emerging distributed applications must cope
with a critical issue: how to efficiently aggregate, use,
and make sense of the enormous amounts of data that
is generated by these applications. Examples include
sensor systems [1], distributed scientific processes like
SkyServer [2], operational information systems used
by large corporations [3], and others. Middleware
initiatives for such applications include pub/sub

systems like IBM's Gryphon [4] project or related
academic endeavors [5], or commercial infrastructures
based on web services, based on technologies like TPF,
or using in-house solutions. However, middleware that
relies on centralized approaches to data aggregation
suffers from high communication overheads, lack of
scalability, and unpredictably high processing
workloads at central servers.
 Our solution is to use in-network aggregation to
reduce the load problems encountered in centralized
approaches. This approach exploits the fact that data in
these applications is usually routed using overlay
networks, such that updates from distributed data
sources arrive at their destination after traversing a
number of intermediate overlay nodes. Each
intermediate node can contribute some of its cycles
towards processing of the updates it is forwarding, the
resulting advantage being the distribution of processing
workload and a possible reduction in communication
overhead involved in transmitting data updates.
 In this paper, we examine how to construct a
distributed system for processing and aggregating
streams of data. However, in order to set up such a
system with nodes ready to contribute their resources
for data processing, we must address several
challenges, including:
• Ease of Deployment – provide a simple interface for

composing new streams from existing streaming data
and also support run-time modifications to stream
composition conditions.

• Scalability – there may be hundreds of streaming
data sources, and the system should be incrementally
scalable without significant overhead or effort.

• Heterogeneity – streaming data arrives at the sink
after traversing a possibly heterogeneous set of
nodes, which means that the system should support
in-network processing of the streams at any node
despite varying capabilities and environments.

• Dynamism – should automatically reconfigure to
deal with changes in network conditions, node
overloads and changes in data stream rates.

• Performance – since updates arrive at a very high
rate, the infrastructure should not impose large
overheads when processing the updates.

 We are implementing a Distributed Stream
Management Infrastructure (DSMI) to compose new
data streams by aggregating and processing existing
streaming data originating at distributed locations. The
system supports a SQL-like language to describe the
data-flow graph for producing the new, transformed
stream from existing data streams. The language
allows users to refer to any stream originating in the
system and supports attribute selection and join
operations as in traditional databases. A resource-
aware network-partitioning algorithm, described later,
is used to assign operators from the flow graph to the
underlying network nodes. The infrastructure relies on
ECho [5], a pub-sub middleware developed at Georgia
Tech, to deploy the data-operators for processing and
forwarding the streaming updates in a heterogeneous
environment. Automatic reconfiguration of stream
overlays is achieved by coupling the resource
information collected from participating hosts with the
Proactive Directory Service [7] (PDS), a subscription-
based monitoring tool also developed by our group.

1.1. Example: Operational Information System

 An operational information system (OIS) [6] is a
large-scale, distributed system that provides continuous
support for a company or organization’s daily
operations. One example of such a system we have
been studying is the OIS run by Delta Air Lines, which
provides the company with up-to-date information
about all of their flight operations, including crews,
passengers and baggage. Delta’s OIS combines three
different sets of functionality:
• Continuous data capture – for information like crew

dispositions, passengers, airplanes and their current
locations determined from FAA radar data.

• Continuous status updates – for low-end devices like
airport flight displays, for the PCs used by gate
agents, and even for large databases in which
operational state changes are recorded for logging.

• Responses to client requests – an OIS not only
captures data and updates/distributes operational
state, but it must also respond to explicit client
requests such as pulling up information regarding
bookings of a particular passenger. Certain clients
may also generate additional state updates, such as
changes in flights, crews or passengers.

The key problems addressed by this paper are to reduce
communication overheads, by selectively streaming the
events; distributing the processing workload by using
the computing resources spread across the
organization; and implementing easy to use high-level
language constructs for specifying new flow graphs.

1.2. Related Work

 The stream management infrastructure we have
implemented is very closely associated with topics of
interest to the middleware community, and to those
interested in large-scale distributed data management.

Stream Processing & Distributed Databases
 Data-stream processing has recently been an area of
tremendous activity for database researchers; several
groups such as STREAM [10] at Stanford, Aurora [11]
at Brown and MIT, and Infopipes [12] at Georgia Tech
have been working to formalize and implement the
concepts for data-stream processing. Most of these
efforts have commonly assumed an on-line
warehousing model where all source streams are routed
to a central site where they are processed. There have
also been some preliminary proposals that extend the
single-site model to multi-site, distributed models and
environments [13, 14]. Our work is also a step in this
general direction. Of particular mention is the work by
Madden et al. [15] that demonstrates the advantage of
in-network data-aggregation in a wireless multi-hop
sensor network.
 Distributed query optimization deals with site
selection for the various operators and has been
explored in great detail in the context of distributed and
federated databases [16, 17]. However, these systems
do not deal with streaming queries over streaming data,
which present new challenges, especially in dealing
with resource limitations.

Pub-Sub Middleware
 Pub-sub middleware like IBM's Gryphon [4], ECho
[5], ARMADA [18] and more recently Hermes [19]
have well established themselves as messaging
middleware. Such systems address issues like
determining who needs what data, building scalable
messaging systems and simplifying the development of
messaging applications. We believe that our work is
the necessary next step that utilizes the middleware to
provide high-level programming constructs to describe
resource-aware and 'useful' data-flows.

Network Partitioning & Overlay Networks
 Distribution and allocation of tasks has been a long
studied topic in distributed environments. Architectural
initiatives tailored for large-scale applications include
SkyServer [2], enterprise management solutions [3]
and grid computing efforts [29]. These applications
perform task allocation to servers much in the same
way as we recursively map operators to nodes.
However, a high-level construct for describing the
data-flow and run-time re-assignment of operators
based on an application-based utility distinguishes our
infrastructure.

 Overlay networks [20, 21] focus on addressing
scalability and fault tolerance issues that arise in large-
scale content dissemination. The intermediate routers
in overlay network perform certain operations that can
be viewed as in-network data-aggregation but are
severely restricted in their functionality. The
advantages of using our infrastructure are two-fold;
first its ability to deploy operators at any node in the
network, and second is the ease with which these
operators can be expressed. There has also been some
work on resource-aware overlays [27], which is similar
to resource-aware reconfiguration of the stream
overlay in our infrastructure. In our case
reconfiguration is very closely associated with the
application level data requirements.

1.3. Roadmap

 The remainder of this paper is organized as follows.
In Section 2, we discuss the design of the basic
components of the infrastructure, explaining its layered
architecture and a brief description of the layers’
functionality. Section 3 describes the data-flow graph
deployment problem in detail, followed by a brief
description of the network hierarchy and its use in
deployment and maintenance of the stream overlay.
Implementation issues for the infrastructure are
discussed in Section 4. Section 5 presents an
experimental evaluation of the proposed deployment
algorithm, including results that were obtained using
real enterprise data. Finally we conclude in Section 6
with a discussion of possible future directions.

2. Software Architecture

Our distributed stream management infrastructure
(DSMI) is broadly composed of three layers as shown
in Figure 1: (1) the Application Layer is responsible for
accepting and parsing the data composition requests
and constructing the data-flow graph, (2) the
Middleware Layer consists of the ECho middleware
and the PDS resource-monitoring infrastructure for
deployment and maintenance of the stream overlay,
and (3) the Underlay Layer organizes the nodes into
hierarchical partitions that are used by the deployment
infrastructure. The following subsections briefly
describe these three layers.

2.1. Application Layer: Data-Flow Graph

 Data flows are specified with our data-flow
specification language. It closely follows the semantics
and syntax of the SQL database language. The general
syntax of our language is specified as follows –

STREAM <attribute1> [<,attribute2> [<,attribute3>
…]]
FROM <stream1> [<,stream2> [<,stream3> …]]
[WHEN <condition1> [<conjuction> <condition2>[…]]];

 In the data-flow specification language, the attribute
list mentioned after the STREAM clause describes
which components of each update are to be selected,
the stream list following the FROM clause identifies
the data stream sources, and finally, predicates are
specified using the WHEN clause. Each stream in the
infrastructure is addressable using the syntax
source_name.stream_name. Likewise, an attribute in
the stream is addressable using
source_name.stream_name.attribute. Our language
supports in-line operations on the attributes that are
specified as operator(attribute_list

[,parameter_list]), where examples of such
operations include SUM, MAX, MIN, AVG, PRECISION,
etc. The system also provides the facility to extend this
feature by adding user-defined operators. An example
data-flow description is shown in Figure 3.
 The data-flow description is compiled to produce a
data-flow graph. This graph consists of a set of
operators to perform data transformations, as well as
edges representing data streaming between operators.
This graph is deployed in the network by assigning
operators to network nodes.

2.2. Middleware Layer: ECho and PDS

 The Middleware Layer supports the deployment and
reconfiguration of the data-flow overlay. This support
is provided by two components: ECho and PDS.
 The ECho framework is a publish/subscribe
middleware system that uses channel-based
subscription (similar to CORBA). ECho streams data
over stream channels, which implement the edges

Figure 1. Three layered architecture of the DSMI

Underlay Layer: Network Partitioning

Application Layer: Data-Flow Parser

pub-sub Middleware
ECho

Resource Monitoring
PDS

Stream Source
Stream Sink

Channel
Derived
Channel

System A

Stream Source E-Code Operator

System B

System C

Figure 2. The ECho Framework

between operators in the data-flow graph. The stream
channels in our framework are not centralized; instead,
they are lightweight distributed virtual entities
managing data transmitted by middleware components
at stream sources and sinks. An example system is
shown in Figure 2. The traffic for individual channels
is multiplexed over shared communication links by
aggregating the traffic of multiple streams into a single
stream linking the two communicating addresses.
 We follow the semantics of a publish-subscribe
system in order to ensure that multiple sinks can
subscribe/unsubscribe to a stream channel depending
on their requirements, and that the channels survive
even when there are no subscribers (although in that
case no actual data is streamed). The publish-subscribe
system also proves useful when many sinks have
similar data filtering needs; in such a scenario, a single
channel derived using a data transformation operator
can fill the needs of all the sinks.
 The data-operator in our infrastructure is typically a
snippet of code written in a portable subset of C called
“E-Code”. This snippet is transported as a string to the
node where it has to be deployed. At the target-node,
the code snippet is parsed, and native code is
generated. The implicit context in which the code is
executed is a function declaration of the form:
int operator(<input type> in, <output type> out)

A return value of 1 causes the update to be submitted,
while a return value of 0 causes the update to be
discarded. The function body may also modify the
input before copying it to the output. New flow-graphs
may use the streams from existing operators, or may

cause operators to be created or updated to stream
additional relevant data if necessary.
 Network-wide resource availability information is
managed by the Proactive Directory Service (PDS).
This information allows us to dynamically reconfigure
the data-flow deployment in response to changing
resource conditions. PDS is an efficient and scalable
information repository with an interface that includes a
proactive, push-based access mode. Through this
interface, PDS clients can learn about objects (or types
of objects) inserted in/removed from their environment
and about changes to pre-existing objects. The
infrastructure uses PDS objects to receive resource
updates from the system when operating conditions
change.

2.3. Underlay Layer: Network Partitioning

 This layer is responsible for maintaining a hierarchy
of physical nodes in order to cluster nodes that are
“close” in the network sense, based on measures like
end-to-end delay, bandwidth or inter-node traversal
cost (a combination of bandwidth and delay). The
hierarchy is used for network-aware deployment of the
data-flow graph. Each node in a cluster knows about
the costs of paths between each pair of nodes in the
cluster. A node is chosen from each cluster to act as the
coordinator for this cluster in the next level of the
hierarchy. Like the physical nodes in the first level of
hierarchy, the coordinator nodes can also be clustered
to add another level in the hierarchy; similar to the

Figure 3. Steps involved in deploying the stream overlay

Data Flow Graph

Constructing Network
Overlay

Resource-Aware Deployment

STREAM N2.TEMP.NAME, N2.TEMP.VALUE, N1.PRES.VALUE, N7.WIND.VALUE
FROM N2.TEMP, N1.PRES, N7.WIND
WHEN N2.TEMP.NAME = N1.PRES.NAME AND
 N2.TEMP.NAME = N7.WIND.NAME;

TEMP(NAME, VALUE)

PRES(NAME, VALUE)

TEMP.NAME = PRES.NAME

TEMP.NAME = WIND.NAME

WIND(NAME, VALUE)

Level 1

Partition-1

Partition-2

Partition-3

Partition-4

N1 N2

N3

N4

N5

N6

N7 N8

N9 N10

N11
N12

N13

N14

N15

N16

Resource Aware PDS

N1 N2

N7

N1 N2

N7

initial level all the coordinators at a particular level
know about average min cost path to the other
coordinator nodes that fall in the same partition at that
level. An example is shown in Figure 4.
 The advantage of organizing nodes in a hierarchy is
that it simplifies maintenance of the clustering
structure, and provides a simplified abstraction of the
underlying network to the upper layers. Then, we can
subdivide the data-flow graph to the individual clusters
for further deployment. In order to scalably cluster
nodes, we bound the amount of non-local information
maintained by nodes by limiting the number of nodes
that are allowed per cluster.

3. Deployment & Reconfiguration

This section formally describes the data-flow graph
deployment problem and then presents a highly
scalable distributed algorithm that can be used to
obtain an efficient solution to this problem. Then, we
extend the deployment algorithm by incorporating
resource-awareness.

3.1. Problem Statement

 We consider the underlying network as a graph N(Vn,
En), where vertices Vn represent the actual physical
nodes and the network connections between the nodes
are represented by the edges En. We further associate
each edge eni with a cost ci that represents the
application-oriented cost of traversing the
corresponding network link. The data-flow graph
derived from the SQL-like description is similarly
represented as a graph G(Vg, Eg) with each vertex in Vg
representing a source-node, a sink-node or an operator
i.e.

Vg = Vg-sources ∪ Vg-sink ∪ Vg-operators
Vg-sources is the set of stream sources for a particular
data-flow graph and each source has a static
association with a vertex in graph N. Source vertices
have an associated update-rate. Vg-sink is the sink for the
resulting stream of updates and it also has a static

association with a vertex in graph N. Vg-operators is the
set of operators that can be dynamically associated
with any vertex in graph N. Each operator vertex is
characterized by a resolution factor, which represents
the increase or decrease in the data flow caused by the
operator. In general, join operators, which combine
multiple streams, increase the amount of data-flow;
while select operations, which filter data from a
stream, result in a corresponding decrease. The edges
in the data-flow graph may span multiple intermediate
edges and nodes in the underlying network graph.
 We want to produce a mapping M, which assigns
each vgj ∈Vg-operators to a vni ∈ Vn. Thus, M implies a
corresponding mapping of edges in G to edges in N,
such that each edge egj-k between operators vgj and vgk is
mapped to the network edges along the lowest cost
path between the network nodes that vgj and vgk are
assigned to. We define cost(M) as the sum of the costs
of the network edges mapped to the edges in the data
flow graph:

() ()
ni

ni
e M

cost M cost e
∈

= ∑

For example, consider a cost function that measures the
end-to-end delay. If egk is determined by vertices vgi
and vgj, which in turn are assigned to vertices vni and vnj
of the network graph N, then the cost corresponding to
edge eg is the delay along the shortest path between the
vertices vni and vnj.
 The problem is to construct the lowest cost mapping
M between the edges Eg in G to edges En in N.

3.2. Distributed Deployment Algorithm

 Now, we present a distributed algorithm for
deploying the dataflow graph in the network. In a
trivial scenario we could have a central planner assign
operators to network nodes, but this approach will
obviously not scale for very large networks, and the
planner can become a central point of failure. Our
partitioning-based approach deploys the data-flow
graph in a more decentralized way. In particular, nodes
in the network self-organize into a network-aware set
of clusters, such that nodes in the same cluster have
low latency. Then, we can use this partitioned structure
to deploy the data-flow graph in a network-aware way,
without having full knowledge of the delay between all
pairs of network nodes.
 The result is that an efficient mapping M is
constructed recursively, using the hierarchical structure
of the underlay-layer. This mapping may not be
optimal, since our approach trades guaranteed
optimality for scalable deployment. However, since the
deployment is network-aware, the mapping should
have low cost. Experiments presented in Section 5
demonstrate that our algorithm produces efficient
deployments.

Figure 4. Hierarchical Network Partitioning

Level 1

Level 2

Partition-1
Coordinator

Partition-1

Partition-2

Partition-3

Partition-4

 We now formalize the partitioning scheme described
in Section 2.3. Let

i
totaln = total nodes at level i of the hierarchy

criticaln = maximum number of nodes per partition
i
njv = coordinator node for node njv at level i

 Note that 0
njv = njv and that all the participants of a

partition know about minimum cost path to all other
nodes in the same partition. We bound the amount of
path information that each node has to keep by limiting
the size of the cluster using ncritical. A certain level i in
the hierarchy is partitioned when i

totaln > criticaln . We
consider the physical nodes to be located at level 1 of
the partition hierarchy and actual network values are
used to partition nodes at this level. For any other level
i in the hierarchy the average inter-partition cost (i.e.
end-to-end delay, bandwidth, etc.) from level i-1 are
used for partitioning the coordinator nodes from the
level i-1. The approximate cost between any two
vertices vnj and vnk at any level i in the hierarchy can be
determined using the following equations:

1 1 1 1

1 1

(,)
(,)

0

i i i i
nj nk nj nki

nj nk i i
nj nk

cost v v for v v
cost v v

for v v

− − − −

− −

 ≠ =  =  

and
1 1(,) (,) |l l l l l

nj nk nj nk nj nk nj nkcost v v cost v v v v v v− −= ≠ ∧ =

 In simple words, the cost at level i between any two
vertices vnj and vnk of N is 0 if the vertices have the
same coordinator at level i-1, otherwise it is equal to
the cost at some level l where the vertices have the
same coordinator and do not share the same
coordinator at level l-1.
 The distributed deployment algorithm works as
follows, the given data-flow graph G(Vg, Eg) is
submitted as input to the top-level (say level t)
coordinators. We construct a set of possible node
assignments at level t by exhaustively mapping all the
vertices Vg-operators in Vg to the nodes at this level. The
cost for each assignment is calculated using the
algorithm shown in Figure 5 and the assignment with
lowest cost is chosen. This partitions the graph G into a
number of sub-graphs each allocated to a node at level
t and therefore to a corresponding cluster at level t-1.
The sub-graphs are then again deployed in a similar
manner at level t-1. This process continues till we
reach level 1, which is the level at which all the
physical nodes reside.

3.3. Reconfiguration

 The overlay reconfiguration process takes advantage
of two important features of our infrastructure; (1) that

the nodes reside in clusters and (2) that only intra-
cluster minimum cost analysis is required. These
features allow us to limit the reconfiguration to within
the cluster boundaries, which in turn makes
reconfiguration a low-overhead process. An overlay
can be reconfigured in response to a variety of events,
which are reported to the first-level cluster-
coordinators by the PDS. These events include change
in network delays, change in available bandwidth,
change in data-operator behavior (we call this operator
profiling), available processing capability, etc. Since it
is impractical to respond to all such events reported by
the PDS, we set thresholds that should be reached to
trigger a reconfiguration. For example, a cluster-
coordinator may recalculate the minimum cost paths
and redeploy the assigned sub-graphs when more than
half the links in the cluster have reported change in
end-to-end delay. However, setting such thresholds
depends on the application-level requirement for
resource-awareness. In ongoing work we are
developing a closer integration between the application
level requirements and the reconfiguration framework.
 Note that reconfigurations are not lossless in terms
of updates and some updates and state maybe lost
during the process. This is acceptable for most of the
streaming applications, which are able to tolerate some
level of approximation and loss. However, as part of
the ongoing work we are trying to model
reconfiguration as a database-style transaction in order
to achieve losslessness.

3.4. Advantages of the DSMI Approach

 DSMI is an infrastructure for distributed processing
of data streams. Its main contribution is in composing
and transforming data streams using a data flow graph
that can be defined declaratively and deployed
efficiently. We have already discussed the algorithm
used for resource-aware deployment of the stream
overlay. Following are the advantages of our
architecture for stream management:
• Online Predicate Rewriting – the data-operators

allow the stream sink to fine-tune their behavior by
updating a remotely accessible data-structure

Figure 5. Algorithm for calculating graph cost at a level

graphCost(Node n, Level l){
 if(n->left == null && n->right == null)
 return 0;
 if(n->left != null)
 cl =pathCost(n->node[l], n->left->node[l])
 + graphCost(n->left, l);
 if(n->right != null)
 cr =pathCost(n->node[l], n->right->node[l])
 + graphCost(n->right, l);
 return cl + cr;
}

associated with each operator. This is used to
support dynamic modification of composition
parameters and conditions.

• Resource-Aware Reconfiguration – once deployed, a
stream overlay reacts to changes in operating
environment at two levels: to respond to changes in
local conditions, an intra-partition level
reconfiguration is done, while an inter-partition level
reconfiguration handles substantial changes in
operating conditions.

• Operator Duplication – the system allows for
duplication of a limited type of operators to achieve
parallel processing of some rapid update streams in
resource-constrained environments. This technique
may result in some updates being re-ordered, so it is
only applicable in certain scenarios.

• Operator Migration – the system allows the user to
initiate operator reconfigurations to complement the
automatic resource-aware reconfiguration being
done by the system.

• Embedded Portability - the E-Code Language is a
portable subset of C that includes enough
functionality to implement stream operators. The E-
Code compiler can be extended to include other
language features and can be easily ported to new
platforms. Therefore, the operators are easily
portable to heterogeneous nodes.

• Minimal Impact on Performance - given that the
data-operators are invoked for each update and are
deployed on a remote machine, the performance of
the system depends heavily on these operators.
Dynamic native compilation of the data-operators
reduces the overheads of update processing.

4. Implementation

DSMI has been implemented using C++ and is closely
integrated with the ECho and the PDS modules
developed by our group. The system is brought-up by
specifying a set of initial nodes, and an instance of
DSMI is started at a well-known port on each such
node. A node can join or leave the infrastructure at a
later point of time. The system maintains a distributed
hash table to map the user specified unique node names
to the IP-address for each node. We utilize user-
specified names to facilitate the task of graph
composition by users. The hierarchical node-
partitioning module runs an iterative variant of the
well-known k-means [28] clustering algorithm to
partition nodes based on end-to-end delay values.
 A user can create a stream schema at any node by
using the CREATE STREAM command at the
infrastructure prompt. Registering a schema causes an
ECho typed-channel to be created that has the
capability to carry any update, which conforms to the

specified schema. The node can then start streaming
data on this channel and other node can refer to this
stream as node_name.stream_name.
 When a stream composition request is submitted at
any node in the infrastructure, it is parsed to create a
data-flow graph. Each edge in the graph is mapped to
an ECho channel, which is instantiated with
appropriate data carrying capability. Each operator in
the flow graph is either a pre-compiled routine
(operators which are hard to express as E-Code) or an
appropriate E-Code snippet. The flow-graph operator
consists of one or two incoming channels, an outgoing
channel and an operator routine. Operator information
is specified in XML and sent to the node where the
operator has to be instantiated. Since we are using a
pub-sub middleware, instantiating an operator consists
of becoming a subscriber to appropriate incoming
channel(s), a publisher to the outgoing channel and
starting the associated operator routine. The ease of
operator deployment helps us to reduce the overhead
during reconfigurations as no new channels are
created; only the channel publisher and the subscriber
change to reconfigure the overlay.

5. Experiments

We ran a set of experiments to evaluate the
performance of our architecture. First, we ran
microbenchmarks to examine specific features of our
system. Then, we created an end-to-end setup for an
application case study using real data from Delta
Airlines’ OIS. Our results show that our system is
effective at deploying and reconfiguring data-flow
graphs for distributed processing of streaming data.

5.1. Experimental setup

 The GT-ITM internetwork topology generator [8]
was used to generate a sample Internet topology for
evaluating our deployment algorithm. This topology
represents a distributed OIS scattered across several
locations. Specifically, we use the transit-stub topology
for the ns-2 simulation by including one transit domain
that resembles the backbone Internet and four stub
domains that connect to transit nodes via gateway
nodes in the sub domains. Each stub domain has 32
nodes and the number of total transit nodes is 128.
Links inside a stub domain are 100Mbps. Links
connecting stub and transit domains, and links inside a
transit domain are 622Mbps, resembling OC-12 lines.
The traffic inside the topology was composed of 900
CBR connections between sub domain nodes generated
by cmu-scen-gen [9]. The simulation was carried out
for 1800 seconds and snapshots capturing end-to-end
delay between directly connected nodes were taken

every 5 seconds. These are then used as inputs for our
distributed deployment algorithm.

5.2. Microbenchmarks

 The first experiment focused on comparing the cost
of a deployed data-flow graph using the centralized
model as opposed to the partitioning based approach
used in our infrastructure. Since in centralized
approach we assume that a single node knows about
minimum cost paths to all other nodes, the centralized
approach gives the optimal deployment solution.
However, the deployment time taken by centralized
approach increases exponentially with the number of
nodes in the network. Figure 6 shows that although the
partitioned-based approach is not optimal, the cost of
the deployed flow graph is not much worse than the
deployment in the centralized approach, and is thus
suitable for most scenarios.
 The next experiment was conducted to examine the
effectiveness of dynamic reconfiguration in providing
an efficient deployment. Figure 7 shows the variation
of end-to-end delay for a 10-node data-flow graph with
changing network conditions, as simulated by
introducing cross-traffic. The performance with
dynamic reconfiguration is clearly better than with
static deployment. It may be noted that at some points,
cost of the dynamically reconfigured flow-graph
becomes more than that of the static deployment. This
happens because the cost calculation algorithm used in
our approach calculates the graph cost that is an
approximation of the actual deployment cost. In some
cases the approximation is inaccurate, causing the
reconfiguration to make a poor choice. However, these
instances are rare, and when they do occur, the cost of
the dynamic deployment is not much worse than the
static deployment. Moreover, for most of the time
dynamic reconfiguration produces a lower cost
deployment.

 We also conducted experiments to compare the
bandwidth consumption with and without dynamic
reconfiguration. This is shown in Figure 8, each source
was assumed to have a certain update rate of the form
bytes/sec and each link was associated with a cost
incurred per byte of data transferred using the link.
Thus, at any point of time a deployed data graph has a
cost, which is dependent on the links being used by the
flow. We simulated a change in resolution factor (the
ratio of the amount of data flowing out versus flowing
in) for each operator in the flow graph and measured
the corresponding bandwidth utilization with dynamic
reconfiguration and static deployment. We notice that
although dynamic reconfiguration helps in keeping the
bandwidth consumption low, it does not offer very
substantial gains; this is because when reconfiguration
is driven by operator resolution it offers only a limited
space for re-deployment.

5.3. Application case study

 The next set of experiment was conducted on
Emulab [23] with real data from the Delta OIS
combined with simulated streams for Weather and
News. The experiment was designed to emulate 4

 Figure 6. Comparison of end-to-end delay for Figure 7. Variation of end-to-end delay with
 centralized and partitioning approach and without dynamic reconfiguration

Figure 8. Variation in bandwidth consumption with
dynamic reconfiguration using Operator Profiling

different airport locations. The inter-location delays
were set to ~20ms while delays within an airport
location were set to ~2ms. The emulation was
conducted with 13 nodes (Pentium-III, 850Mhz,
512MB RAM, RedHat Linux 7.1) and each location
had only limited nodes connected to external locations.
The experiment was motivated by the requirement to
feed overhead displays at airports with up-to-date
information. The overhead displays periodically update
the weather and news at ‘destination’ location and
switch over to seating information for the aircraft at
boarding gate. Other information displayed on such
monitors includes names of wait-listed passengers, and
current status of flight, etc. We deployed a flow graph
with two operators, one for combining the weather and
news information at destination and the other for
selecting the appropriate flight data, which originates
from a central location (Delta’s TPF facility in this
case).
 The first experiment conducted on Emulab studied
the behavior of system in case of network perturbation
and then studied its response to processor overload.
Once the data flow graph for providing an overhead
display feed was deployed, we used iperf [24] to
introduce traffic in some of the links used by the flow-
graph. This is represented by the first delay spike in
Figure 9. With dynamic reconfiguration the flow-graph
responds well to the spike in traffic; in contrast, the
statically deployed graph experiences an increased
delay. The next spike is a result of an increased
processing load at both the operator nodes. Again with
dynamic reconfiguration we end with a better delay
than the static deployment. Even with dynamic
reconfiguration the end-to-end delay spikes, but the
time before the deployment adjusts is so short
(milliseconds) that the spike is effectively
unnoticeable.
 The next experiment was conducted to compare the
time for initial deployment and reconfiguration. Figure
10 shows that the times are quite small; only a few

hundred milliseconds in the worst case. The figure
illustrates the advantage of using a pub-sub
middleware for deploying the flow graph. The pub-sub
channels have to be created only at the time of
deployment; reconfiguration just involves a change in
publisher and subscriber to this channel and is
therefore even faster. It may also be noted that once the
channels for the data-flow graph have been created,
deployment is essentially a distributed process, which
starts once the corresponding nodes receive the
operator deployment messages. This makes
deployment time to increase almost linearly with the
number of nodes.

Table 1. Middleware: Send & Receive Costs
Msg Size
(bytes)

Send Cost
(ms)

Receive Cost
(ms)

125 0.084 0.154
1250 0.090 0.194
12500 0.124 0.327

Middleware Microbenchmarks on Emulab
 Table 1 gives a measure of the low send and receive
overheads imposed by the middleware layer at the
intermediate nodes using the above setup. Send-side
cost is the time between a source submitting data for
transmission to the time at which the infrastructure
invokes the underlying network 'send()' operation.
Receive side costs represent the time between the end
of the 'receive()' operation and the point at which the
intermediate operator or the sink receives the data.
Additional performance measurements reported in [5]
compare middleware performance to that of other high
performance communication infrastructures.

6. Conclusions & Future Work

In this paper we presented DSMI, a highly scalable and
resource-aware approach to distributed stream
management. The approach makes use of in-network

 Figure 9. Variation of end-to-end delay for Figure 10. Comparison of deployment and
 network perturbation and processor overload reconfiguration cost on Emulab nodes

data aggregation to distribute the processing and
reduce the communication overhead involved in large-
scale distributed data management. One of the
important features of our infrastructure is its ability to
efficiently and scalably deploy data-flows across the
network. The run-time reconfiguration of the deployed
flow graph in response to change in operating
conditions and support for high-level language
constructs to describe data-flows are other
distinguishing features of the infrastructure. As a part
of ongoing work we are examining how to avoid loss
of updates and state in case of reconfiguration. We are
also examining how to represent reconfiguration as a
database-style transaction, motivated by similar work
done by our group [25]. Another aspect of the
infrastructure that is of particular interest to us is the
closer integration of reconfiguration policy with the
application level requirements. Overall, our
architecture is a flexible, scalable platform for
distributed processing of stream data.

Acknowledgements
The authors would like to thank the Emulab
community for providing the infrastructure to conduct
the experiments reported in this paper. The authors
would also like to thank Delta Technologies [26] for
providing data and a very useful use-case for the
experiments.

References
[1] Samuel R. Madden and Michael J. Franklin. Fjording the
Stream: An Architecture for Queries over Streaming Sensor
Data. ICDE Conference, February, 2002, San Jose.
[2] Alexander S. Szalay and Jim Gray. Virtual Observatory:
The World Wide Telescope (MS-TR-2001-77). General
audience piece for Science Magazine, V.293 pp. 2037-2038.
Sept 2001.
[3] A. Gavrilovska, K. Schwan, and V. Oleson. A Practical
Approach for `Zero' Downtime in an Operational Information
System. International Conference on Distributed Computing
Systems (ICDCS-2002), July 2002, Austria.
[4] http://www.research.ibm.com/gryphon/
[5] G. Eisenhauer, F. Bustamante and K. Schwan. Event
Services for High Performance Computing. Proceedings of
High Performance Distributed Computing (HPDC-2000).
[6] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu and
D. Amin. Operation Information System – An Example from
the Airline Industry. Workshop on Industrial Experiences
with Systems Software WEISS 2000, October, 2000.
[7] F. Bustamante, P. Widener, K. Schwan. Scalable
Directory Services Using Proactivity. Proceedings of
Supercomputing 2002, Baltimore, Maryland.
[8] E. Zegura, K. Calvert and S. Bhattacharjee. How to
Model an Internetwork. Proceedings of IEEE Infocom '96,
San Francisco, CA.
[9] http://www.isi.edu/nsnam/ns/
[10] S Babu, J Widom (2001) Continuous Queries over Data
Streams. SIGMOD Record 30(3):109-120

[11] D Carney, U Cetintemel, M Cherniack, C Convey, S
Lee, G Seidman, M Stonebraker, N Tatbul, S Zdonik.
Monitoring Streams: A new class of data management
applications. In proceesings of the twenty seventh
International Conference on Very Large Databases, Hong
Kong, August 2002.
[12] R. Koster, A. Black, J. Huang, J. Walpole, C. Pu.
Infopipes for composing distributed information flows.
Proceedings of the 2001 International Workshop on
Multimedia Middleware. Ontario, Canada, 2001.
[13] Y. Ahmad, U. Çetintemel: Network-Aware Query
Processing for Distributed Stream-Based Applications.
Proceedings of the Very Large Databases Conference, VLDB
2004, Toronto, Canada.
[14] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning operator for
continuous query systems. Proceedings of the 19th
International Conference on Data Engineering, ICDE 2003,.
[15] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad-hoc sensor networks.
Proceedings of the Symposium on Operating Systems Design
and Implementation (OSDI ’02), Massachusetts, Dec. 2002.
[16] M. J. Franklin, B. T. J´onsson, and D. Kossmann.
Performance tradeoffs for client-server query processing.
SIGMOD Record, 25(2):149–160, June 1996.
[17] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4):422–469, 2000.
[18] T. Abdelzaher, et al. ARMADA Middleware and
Communication Services, Real-Time Systems Journal, vol.
16, pp. 127-53, May 99.
[19] Peter R. Pietzuch and Jean M. Bacon. Hermes: A
Distributed Event-Based Middleware Architecture. In Proc.
of the 1st Int. Workshop on Distributed Event-Based Systems
(DEBS'02), pages 611-618, Vienna, Austria, July 2002.
[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM
SIGCOMM ’01 Conference. ACM Press, 2001.
[21] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A global-scale
overlay for rapid service deployment. IEEE J-SAC, Jan 2004.
[22] Z. Cai, G. Eisenhauer, C. Poellabauer, K. Schwan, M.
Wolf, IQ-Services: Resource-Aware Middleware for
Heterogeneous Applications. 13th Heterogeneous Computing
Workshop (HCW 2004), Santa Fe, NM, April 2004.
[23] http://www.emulab.net/
[24] http://dast.nlanr.net/Projects/Iperf/
[25] C. Isert, K. Schwan. ACDS: Adapting Computational
Data Streams for High Performance. International Parallel
and Distributed Processing Symposium (IPDPS), May 2000.
[26] http://www.deltadt.com/
[27] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph,
Randy H. Katz, John Kubiatowicz. Bayeux: An Architecture
for Scalable and Fault-tolerant Wide-Area Data
Dissemination. Proceedings of ACM NOSSDAV 2001.
[28] R. O. Duda and P. E. Hart. Pattern Classication and
Scene Analysis. John Wiley & Sons, 1973.
[29] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke. Data Management and Transfer in High-
Performance Computational Grid Environments. Parallel
Computing, 28 (5). 749-771. 2002.

