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Abstract 
 
 We consider distributed applications that 
continuously stream data across the network, where 
data needs to be aggregated and processed to produce 
a 'useful' stream of updates. Centralized approaches to 
performing data aggregation suffer from high 
communication overheads, lack of scalability, and 
unpredictably high processing workloads at central 
servers. This paper describes a scalable and efficient 
solution to distributed stream management based on 
(1) resource-awareness, which is middleware-level 
knowledge of underlying network and processing 
resources, (2) overlay-based in-network data 
aggregation, and (3) high-level programming 
constructs to describe data-flow graphs for composing 
useful streams. Technical contributions include a novel 
algorithm based on resource-aware network 
partitioning to support dynamic deployment of data-
flow graph components across the network, where 
efficiency of the deployed overlay is maintained by 
making use of partition-level resource-awareness. 
Contributions also include efficient middleware-based 
support for component deployment, utilizing runtime 
code generation rather than interpretation techniques, 
thereby addressing both high performance and 
resource-constrained applications. Finally, simulation 
experiments and benchmarks attained with actual 
operational data corroborate this paper's claims. 
 
 
1.   Introduction 
 
Many emerging distributed applications must cope 
with a critical issue: how to efficiently aggregate, use, 
and make sense of the enormous amounts of data that 
is generated by these applications. Examples include 
sensor systems [1], distributed scientific processes like 
SkyServer [2], operational information systems used 
by large corporations [3], and others. Middleware 
initiatives for such applications include pub/sub 

systems like IBM's Gryphon [4] project or related 
academic endeavors [5], or commercial infrastructures 
based on web services, based on technologies like TPF, 
or using in-house solutions. However, middleware that 
relies on centralized approaches to data aggregation 
suffers from high communication overheads, lack of 
scalability, and unpredictably high processing 
workloads at central servers.  
 Our solution is to use in-network aggregation to 
reduce the load problems encountered in centralized 
approaches. This approach exploits the fact that data in 
these applications is usually routed using overlay 
networks, such that updates from distributed data 
sources arrive at their destination after traversing a 
number of intermediate overlay nodes. Each 
intermediate node can contribute some of its cycles 
towards processing of the updates it is forwarding, the 
resulting advantage being the distribution of processing 
workload and a possible reduction in communication 
overhead involved in transmitting data updates.  
 In this paper, we examine how to construct a 
distributed system for processing and aggregating 
streams of data. However, in order to set up such a 
system with nodes ready to contribute their resources 
for data processing, we must address several 
challenges, including: 
• Ease of Deployment – provide a simple interface for 

composing new streams from existing streaming data 
and also support run-time modifications to stream 
composition conditions. 

• Scalability – there may be hundreds of streaming 
data sources, and the system should be incrementally 
scalable without significant overhead or effort. 

• Heterogeneity – streaming data arrives at the sink 
after traversing a possibly heterogeneous set of 
nodes, which means that the system should support 
in-network processing of the streams at any node 
despite varying capabilities and environments. 

• Dynamism – should automatically reconfigure to 
deal with changes in network conditions, node 
overloads and changes in data stream rates. 



• Performance – since updates arrive at a very high 
rate, the infrastructure should not impose large 
overheads when processing the updates.  

 We are implementing a Distributed Stream 
Management Infrastructure (DSMI) to compose new 
data streams by aggregating and processing existing 
streaming data originating at distributed locations. The 
system supports a SQL-like language to describe the 
data-flow graph for producing the new, transformed 
stream from existing data streams. The language 
allows users to refer to any stream originating in the 
system and supports attribute selection and join 
operations as in traditional databases. A resource-
aware network-partitioning algorithm, described later, 
is used to assign operators from the flow graph to the 
underlying network nodes. The infrastructure relies on 
ECho [5], a pub-sub middleware developed at Georgia 
Tech, to deploy the data-operators for processing and 
forwarding the streaming updates in a heterogeneous 
environment. Automatic reconfiguration of stream 
overlays is achieved by coupling the resource 
information collected from participating hosts with the 
Proactive Directory Service [7] (PDS), a subscription-
based monitoring tool also developed by our group.  
 
1.1. Example: Operational Information System 
 
 An operational information system (OIS) [6] is a 
large-scale, distributed system that provides continuous 
support for a company or organization’s daily 
operations. One example of such a system we have 
been studying is the OIS run by Delta Air Lines, which 
provides the company with up-to-date information 
about all of their flight operations, including crews, 
passengers and baggage. Delta’s OIS combines three 
different sets of functionality: 
• Continuous data capture – for information like crew 

dispositions, passengers, airplanes and their current 
locations determined from FAA radar data. 

• Continuous status updates – for low-end devices like 
airport flight displays, for the PCs used by gate 
agents, and even for large databases in which 
operational state changes are recorded for logging. 

• Responses to client requests – an OIS not only 
captures data and updates/distributes operational 
state, but it must also respond to explicit client 
requests such as pulling up information regarding 
bookings of a particular passenger. Certain clients 
may also generate additional state updates, such as 
changes in flights, crews or passengers. 

The key problems addressed by this paper are to reduce 
communication overheads, by selectively streaming the 
events; distributing the processing workload by using 
the computing resources spread across the 
organization; and implementing easy to use high-level 
language constructs for specifying new flow graphs. 

1.2.   Related Work 
 
 The stream management infrastructure we have 
implemented is very closely associated with topics of 
interest to the middleware community, and to those 
interested in large-scale distributed data management.  
 
Stream Processing & Distributed Databases 
 Data-stream processing has recently been an area of 
tremendous activity for database researchers; several 
groups such as STREAM [10] at Stanford, Aurora [11] 
at Brown and MIT, and Infopipes [12] at Georgia Tech 
have been working to formalize and implement the 
concepts for data-stream processing. Most of these 
efforts have commonly assumed an on-line 
warehousing model where all source streams are routed 
to a central site where they are processed. There have 
also been some preliminary proposals that extend the 
single-site model to multi-site, distributed models and 
environments [13, 14]. Our work is also a step in this 
general direction. Of particular mention is the work by 
Madden et al. [15] that demonstrates the advantage of 
in-network data-aggregation in a wireless multi-hop 
sensor network. 
 Distributed query optimization deals with site 
selection for the various operators and has been 
explored in great detail in the context of distributed and 
federated databases [16, 17]. However, these systems 
do not deal with streaming queries over streaming data, 
which present new challenges, especially in dealing 
with resource limitations. 
 
Pub-Sub Middleware 
 Pub-sub middleware like IBM's Gryphon [4], ECho 
[5], ARMADA [18] and more recently Hermes [19] 
have well established themselves as messaging 
middleware. Such systems address issues like 
determining who needs what data, building scalable 
messaging systems and simplifying the development of 
messaging applications. We believe that our work is 
the necessary next step that utilizes the middleware to 
provide high-level programming constructs to describe 
resource-aware and 'useful' data-flows. 
 
Network Partitioning & Overlay Networks 
 Distribution and allocation of tasks has been a long 
studied topic in distributed environments. Architectural 
initiatives tailored for large-scale applications include 
SkyServer [2], enterprise management solutions [3] 
and grid computing efforts [29]. These applications 
perform task allocation to servers much in the same 
way as we recursively map operators to nodes. 
However, a high-level construct for describing the 
data-flow and run-time re-assignment of operators 
based on an application-based utility distinguishes our 
infrastructure. 



 Overlay networks [20, 21] focus on addressing 
scalability and fault tolerance issues that arise in large-
scale content dissemination. The intermediate routers 
in overlay network perform certain operations that can 
be viewed as in-network data-aggregation but are 
severely restricted in their functionality. The 
advantages of using our infrastructure are two-fold; 
first its ability to deploy operators at any node in the 
network, and second is the ease with which these 
operators can be expressed. There has also been some 
work on resource-aware overlays [27], which is similar 
to resource-aware reconfiguration of the stream 
overlay in our infrastructure. In our case 
reconfiguration is very closely associated with the 
application level data requirements. 
 
1.3.   Roadmap 
 
 The remainder of this paper is organized as follows. 
In Section 2, we discuss the design of the basic 
components of the infrastructure, explaining its layered 
architecture and a brief description of the layers’ 
functionality. Section 3 describes the data-flow graph 
deployment problem in detail, followed by a brief 
description of the network hierarchy and its use in 
deployment and maintenance of the stream overlay. 
Implementation issues for the infrastructure are 
discussed in Section 4. Section 5 presents an 
experimental evaluation of the proposed deployment 
algorithm, including results that were obtained using 
real enterprise data. Finally we conclude in Section 6 
with a discussion of possible future directions. 

2.   Software Architecture 
 
Our distributed stream management infrastructure 
(DSMI) is broadly composed of three layers as shown 
in Figure 1: (1) the Application Layer is responsible for 
accepting and parsing the data composition requests 
and constructing the data-flow graph, (2) the 
Middleware Layer consists of the ECho middleware 
and the PDS resource-monitoring infrastructure for 
deployment and maintenance of the stream overlay, 
and (3) the Underlay Layer organizes the nodes into 
hierarchical partitions that are used by the deployment 
infrastructure. The following subsections briefly 
describe these three layers.  

2.1.   Application Layer: Data-Flow Graph 
 
 Data flows are specified with our data-flow 
specification language. It closely follows the semantics 
and syntax of the SQL database language. The general 
syntax of our language is specified as follows –  
 
STREAM <attribute1> [<,attribute2> [<,attribute3> 
…]] 
FROM <stream1> [<,stream2> [<,stream3> …]] 
[WHEN <condition1> [<conjuction> <condition2>[…]]]; 
 
 In the data-flow specification language, the attribute 
list mentioned after the STREAM clause describes 
which components of each update are to be selected, 
the stream list following the FROM clause identifies 
the data stream sources, and finally, predicates are 
specified using the WHEN clause. Each stream in the 
infrastructure is addressable using the syntax 
source_name.stream_name. Likewise, an attribute in 
the stream is addressable using 
source_name.stream_name.attribute. Our language 
supports in-line operations on the attributes that are 
specified as operator(attribute_list 

[,parameter_list]), where examples of such 
operations include SUM, MAX, MIN, AVG, PRECISION, 
etc. The system also provides the facility to extend this 
feature by adding user-defined operators. An example 
data-flow description is shown in Figure 3.  
 The data-flow description is compiled to produce a 
data-flow graph. This graph consists of a set of 
operators to perform data transformations, as well as 
edges representing data streaming between operators. 
This graph is deployed in the network by assigning 
operators to network nodes. 

2.2.   Middleware Layer: ECho and PDS 
 
 The Middleware Layer supports the deployment and 
reconfiguration of the data-flow overlay. This support 
is provided by two components: ECho and PDS. 
 The ECho framework is a publish/subscribe 
middleware system that uses channel-based 
subscription (similar to CORBA). ECho streams data 
over stream channels, which implement the edges 

 
 
 
 
 
 
 
 
 

Figure 1. Three layered architecture of the DSMI 
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between operators in the data-flow graph. The stream 
channels in our framework are not centralized; instead, 
they are lightweight distributed virtual entities 
managing data transmitted by middleware components 
at stream sources and sinks. An example system is 
shown in Figure 2. The traffic for individual channels 
is multiplexed over shared communication links by 
aggregating the traffic of multiple streams into a single 
stream linking the two communicating addresses.   
 We follow the semantics of a publish-subscribe 
system in order to ensure that multiple sinks can 
subscribe/unsubscribe to a stream channel depending 
on their requirements, and that the channels survive 
even when there are no subscribers (although in that 
case no actual data is streamed). The publish-subscribe 
system also proves useful when many sinks have 
similar data filtering needs; in such a scenario, a single 
channel derived using a data transformation operator 
can fill the needs of all the sinks.  
 The data-operator in our infrastructure is typically a 
snippet of code written in a portable subset of C called 
“E-Code”. This snippet is transported as a string to the 
node where it has to be deployed. At the target-node, 
the code snippet is parsed, and native code is 
generated. The implicit context in which the code is 
executed is a function declaration of the form: 
int operator( <input type> in, <output type> out) 

A return value of 1 causes the update to be submitted, 
while a return value of 0 causes the update to be 
discarded. The function body may also modify the 
input before copying it to the output. New flow-graphs 
may use the streams from existing operators, or may 

cause operators to be created or updated to stream 
additional relevant data if necessary. 
 Network-wide resource availability information is 
managed by the Proactive Directory Service (PDS). 
This information allows us to dynamically reconfigure 
the data-flow deployment in response to changing 
resource conditions. PDS is an efficient and scalable 
information repository with an interface that includes a 
proactive, push-based access mode. Through this 
interface, PDS clients can learn about objects (or types 
of objects) inserted in/removed from their environment 
and about changes to pre-existing objects. The 
infrastructure uses PDS objects to receive resource 
updates from the system when operating conditions 
change. 
 
2.3.   Underlay Layer: Network Partitioning 
 
 This layer is responsible for maintaining a hierarchy 
of physical nodes in order to cluster nodes that are 
“close” in the network sense, based on measures like 
end-to-end delay, bandwidth or inter-node traversal 
cost (a combination of bandwidth and delay). The 
hierarchy is used for network-aware deployment of the 
data-flow graph. Each node in a cluster knows about 
the costs of paths between each pair of nodes in the 
cluster. A node is chosen from each cluster to act as the 
coordinator for this cluster in the next level of the 
hierarchy. Like the physical nodes in the first level of 
hierarchy, the coordinator nodes can also be clustered 
to add another level in the hierarchy; similar to the 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.  Steps involved in deploying the stream overlay 
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initial level all the coordinators at a particular level 
know about average min cost path to the other 
coordinator nodes that fall in the same partition at that 
level. An example is shown in Figure 4. 
 The advantage of organizing nodes in a hierarchy is 
that it simplifies maintenance of the clustering 
structure, and provides a simplified abstraction of the 
underlying network to the upper layers. Then, we can 
subdivide the data-flow graph to the individual clusters 
for further deployment. In order to scalably cluster 
nodes, we bound the amount of non-local information 
maintained by nodes by limiting the number of nodes 
that are allowed per cluster.  

3.   Deployment & Reconfiguration 
  
This section formally describes the data-flow graph 
deployment problem and then presents a highly 
scalable distributed algorithm that can be used to 
obtain an efficient solution to this problem. Then, we 
extend the deployment algorithm by incorporating 
resource-awareness. 
 
3.1.   Problem Statement 
 
 We consider the underlying network as a graph N(Vn, 
En), where vertices Vn represent the actual physical 
nodes and the network  connections between the nodes 
are represented by the edges En. We further associate 
each edge eni with a cost ci that represents the 
application-oriented cost of traversing the 
corresponding network link. The data-flow graph 
derived from the SQL-like description is similarly 
represented as a graph G(Vg, Eg) with each vertex in Vg 
representing a source-node, a sink-node or an operator 
i.e.  

Vg = Vg-sources ∪  Vg-sink ∪  Vg-operators 
Vg-sources is the set of stream sources for a particular 
data-flow graph and each source has a static 
association with a vertex in graph N. Source vertices 
have an associated update-rate. Vg-sink is the sink for the 
resulting stream of updates and it also has a static 

association with a vertex in graph N. Vg-operators is the 
set of operators that can be dynamically associated 
with any vertex in graph N. Each operator vertex is 
characterized by a resolution factor, which represents 
the increase or decrease in the data flow caused by the 
operator. In general, join operators, which combine 
multiple streams, increase the amount of data-flow; 
while select operations, which filter data from a 
stream, result in a corresponding decrease. The edges 
in the data-flow graph may span multiple intermediate 
edges and nodes in the underlying network graph. 
 We want to produce a mapping M, which assigns 
each vgj ∈Vg-operators to a vni ∈  Vn. Thus, M implies a 
corresponding mapping of edges in G to edges in N, 
such that each edge egj-k between operators vgj and vgk is 
mapped to the network edges along the lowest cost 
path between the network nodes that vgj and vgk are 
assigned to. We define cost(M)  as the sum of the costs 
of the network edges mapped to the edges in the data 
flow graph: 

( ) ( )
ni

ni
e M

cost M cost e
∈

= ∑  

For example, consider a cost function that measures the 
end-to-end delay. If egk is determined by vertices vgi 
and vgj, which in turn are assigned to vertices vni and vnj 
of the network graph N, then the cost corresponding to 
edge eg is the delay along the shortest path between the 
vertices vni and vnj.  
 The problem is to construct the lowest cost mapping 
M between the edges Eg in G to edges En in N. 
 
3.2.   Distributed Deployment Algorithm 
 
 Now, we present a distributed algorithm for 
deploying the dataflow graph in the network. In a 
trivial scenario we could have a central planner assign 
operators to network nodes, but this approach will 
obviously not scale for very large networks, and the 
planner can become a central point of failure. Our 
partitioning-based approach deploys the data-flow 
graph in a more decentralized way. In particular, nodes 
in the network self-organize into a network-aware set 
of clusters, such that nodes in the same cluster have 
low latency. Then, we can use this partitioned structure 
to deploy the data-flow graph in a network-aware way, 
without having full knowledge of the delay between all 
pairs of network nodes.  
 The result is that an efficient mapping M is 
constructed recursively, using the hierarchical structure 
of the underlay-layer. This mapping may not be 
optimal, since our approach trades guaranteed 
optimality for scalable deployment. However, since the 
deployment is network-aware, the mapping should 
have low cost. Experiments presented in Section 5 
demonstrate that our algorithm produces efficient 
deployments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Hierarchical Network Partitioning  
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 We now formalize the partitioning scheme described 
in Section 2.3. Let 

i
totaln   = total nodes at level i of the hierarchy 

criticaln  = maximum number of nodes per partition 
i
njv  = coordinator node for node njv at level i 

 Note that 0
njv  = njv  and that all the participants of a 

partition know about minimum cost path to all other 
nodes in the same partition. We bound the amount of 
path information that each node has to keep by limiting 
the size of the cluster using ncritical. A certain level i in 
the hierarchy is partitioned when i

totaln > criticaln . We 
consider the physical nodes to be located at level 1 of 
the partition hierarchy and actual network values are 
used to partition nodes at this level. For any other level 
i in the hierarchy the average inter-partition cost (i.e. 
end-to-end delay, bandwidth, etc.) from level i-1 are 
used for partitioning the coordinator nodes from the 
level i-1. The approximate cost between any two 
vertices vnj and vnk at any level i in the hierarchy can be 
determined using the following equations:    

1 1 1 1

1 1

( , )
( , )

0

i i i i
nj nk nj nki

nj nk i i
nj nk

cost v v for v v
cost v v

for v v

− − − −

− −

 ≠ =  =  
 

and 
1 1( , ) ( , ) |l l l l l

nj nk nj nk nj nk nj nkcost v v cost v v v v v v− −= ≠ ∧ =  

 
 In simple words, the cost at level i between any two 
vertices vnj and vnk of N is 0 if the vertices have the 
same coordinator at level i-1, otherwise it is equal to 
the cost at some level l where the vertices have the 
same coordinator and do not share the same 
coordinator at level l-1. 
 The distributed deployment algorithm works as 
follows, the given data-flow graph G(Vg, Eg) is 
submitted as input to the top-level (say level t) 
coordinators. We construct a set of possible node 
assignments at level t by exhaustively mapping all the 
vertices Vg-operators in Vg to the nodes at this level. The 
cost for each assignment is calculated using the 
algorithm shown in Figure 5 and the assignment with 
lowest cost is chosen. This partitions the graph G into a 
number of sub-graphs each allocated to a node at level 
t and therefore to a corresponding cluster at level t-1. 
The sub-graphs are then again deployed in a similar 
manner at level t-1. This process continues till we 
reach level 1, which is the level at which all the 
physical nodes reside. 
 
3.3.   Reconfiguration 
 
 The overlay reconfiguration process takes advantage 
of two important features of our infrastructure; (1) that 

the nodes reside in clusters and (2) that only intra-
cluster minimum cost analysis is required. These 
features allow us to limit the reconfiguration to within 
the cluster boundaries, which in turn makes 
reconfiguration a low-overhead process. An overlay 
can be reconfigured in response to a variety of events, 
which are reported to the first-level cluster-
coordinators by the PDS. These events include change 
in network delays, change in available bandwidth, 
change in data-operator behavior (we call this operator 
profiling), available processing capability, etc. Since it 
is impractical to respond to all such events reported by 
the PDS, we set thresholds that should be reached to 
trigger a reconfiguration. For example, a cluster-
coordinator may recalculate the minimum cost paths 
and redeploy the assigned sub-graphs when more than 
half the links in the cluster have reported change in 
end-to-end delay. However, setting such thresholds 
depends on the application-level requirement for 
resource-awareness. In ongoing work we are 
developing a closer integration between the application 
level requirements and the reconfiguration framework. 
 Note that reconfigurations are not lossless in terms 
of updates and some updates and state maybe lost 
during the process. This is acceptable for most of the 
streaming applications, which are able to tolerate some 
level of approximation and loss. However, as part of 
the ongoing work we are trying to model 
reconfiguration as a database-style transaction in order 
to achieve losslessness. 

3.4.   Advantages of the DSMI Approach 
 
 DSMI is an infrastructure for distributed processing 
of data streams. Its main contribution is in composing 
and transforming data streams using a data flow graph 
that can be defined declaratively and deployed 
efficiently. We have already discussed the algorithm 
used for resource-aware deployment of the stream 
overlay. Following are the advantages of our 
architecture for stream management:  
• Online Predicate Rewriting – the data-operators 

allow the stream sink to fine-tune their behavior by 
updating a remotely accessible data-structure 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Algorithm for calculating graph cost at a level 

graphCost(Node n, Level l){ 
  if(n->left == null && n->right == null) 
    return 0; 
  if(n->left != null) 
    cl =pathCost(n->node[l], n->left->node[l])  
         + graphCost(n->left, l); 
  if(n->right != null) 
    cr =pathCost(n->node[l], n->right->node[l]) 
         + graphCost(n->right, l); 
 return cl + cr; 
} 



associated with each operator. This is used to 
support dynamic modification of composition 
parameters and conditions. 

• Resource-Aware Reconfiguration – once deployed, a 
stream overlay reacts to changes in operating 
environment at two levels: to respond to changes in 
local conditions, an intra-partition level 
reconfiguration is done, while an inter-partition level 
reconfiguration handles substantial changes in 
operating conditions.  

• Operator Duplication – the system allows for 
duplication of a limited type of operators to achieve 
parallel processing of some rapid update streams in 
resource-constrained environments. This technique 
may result in some updates being re-ordered, so it is 
only applicable in certain scenarios. 

• Operator Migration – the system allows the user to 
initiate operator reconfigurations to complement the 
automatic resource-aware reconfiguration being 
done by the system. 

• Embedded Portability - the E-Code Language is a 
portable subset of C that includes enough 
functionality to implement stream operators. The E-
Code compiler can be extended to include other 
language features and can be easily ported to new 
platforms. Therefore, the operators are easily 
portable to heterogeneous nodes. 

• Minimal Impact on Performance - given that the 
data-operators are invoked for each update and are 
deployed on a remote machine, the performance of 
the system depends heavily on these operators.  
Dynamic native compilation of the data-operators 
reduces the overheads of update processing. 

 
4.   Implementation 
 
DSMI has been implemented using C++ and is closely 
integrated with the ECho and the PDS modules 
developed by our group. The system is brought-up by 
specifying a set of initial nodes, and an instance of 
DSMI is started at a well-known port on each such 
node. A node can join or leave the infrastructure at a 
later point of time. The system maintains a distributed 
hash table to map the user specified unique node names 
to the IP-address for each node. We utilize user-
specified names to facilitate the task of graph 
composition by users. The hierarchical node-
partitioning module runs an iterative variant of the 
well-known k-means [28] clustering algorithm to 
partition nodes based on end-to-end delay values.  
   A user can create a stream schema at any node by 
using the CREATE STREAM command at the 
infrastructure prompt. Registering a schema causes an 
ECho typed-channel to be created that has the 
capability to carry any update, which conforms to the 

specified schema. The node can then start streaming 
data on this channel and other node can refer to this 
stream as node_name.stream_name.  
 When a stream composition request is submitted at 
any node in the infrastructure, it is parsed to create a 
data-flow graph. Each edge in the graph is mapped to 
an ECho channel, which is instantiated with 
appropriate data carrying capability. Each operator in 
the flow graph is either a pre-compiled routine 
(operators which are hard to express as E-Code) or an 
appropriate E-Code snippet. The flow-graph operator 
consists of one or two incoming channels, an outgoing 
channel and an operator routine. Operator information 
is specified in XML and sent to the node where the 
operator has to be instantiated. Since we are using a 
pub-sub middleware, instantiating an operator consists 
of becoming a subscriber to appropriate incoming 
channel(s), a publisher to the outgoing channel and 
starting the associated operator routine. The ease of 
operator deployment helps us to reduce the overhead 
during reconfigurations as no new channels are 
created; only the channel publisher and the subscriber 
change to reconfigure the overlay. 
 
5.   Experiments 
 
We ran a set of experiments to evaluate the 
performance of our architecture. First, we ran 
microbenchmarks to examine specific features of our 
system. Then, we created an end-to-end setup for an 
application case study using real data from Delta 
Airlines’ OIS. Our results show that our system is 
effective at deploying and reconfiguring data-flow 
graphs for distributed processing of streaming data. 
 
5.1.   Experimental setup 
 
 The GT-ITM internetwork topology generator [8] 
was used to generate a sample Internet topology for 
evaluating our deployment algorithm. This topology 
represents a distributed OIS scattered across several 
locations. Specifically, we use the transit-stub topology 
for the ns-2 simulation by including one transit domain 
that resembles the backbone Internet and four stub 
domains that connect to transit nodes via gateway 
nodes in the sub domains.  Each stub domain has 32 
nodes and the number of total transit nodes is 128. 
Links inside a stub domain are 100Mbps. Links 
connecting stub and transit domains, and links inside a 
transit domain are 622Mbps, resembling OC-12 lines. 
The traffic inside the topology was composed of 900 
CBR connections between sub domain nodes generated 
by cmu-scen-gen [9]. The simulation was carried out 
for 1800 seconds and snapshots capturing end-to-end 
delay between directly connected nodes were taken 



every 5 seconds. These are then used as inputs for our 
distributed deployment algorithm.  
 
5.2.   Microbenchmarks 
 
 The first experiment focused on comparing the cost 
of a deployed data-flow graph using the centralized 
model as opposed to the partitioning based approach 
used in our infrastructure. Since in centralized 
approach we assume that a single node knows about 
minimum cost paths to all other nodes, the centralized 
approach gives the optimal deployment solution. 
However, the deployment time taken by centralized 
approach increases exponentially with the number of 
nodes in the network. Figure 6 shows that although the 
partitioned-based approach is not optimal, the cost of 
the deployed flow graph is not much worse than the 
deployment in the centralized approach, and is thus 
suitable for most scenarios. 
 The next experiment was conducted to examine the 
effectiveness of dynamic reconfiguration in providing 
an efficient deployment. Figure 7 shows the variation 
of end-to-end delay for a 10-node data-flow graph with 
changing network conditions, as simulated by 
introducing cross-traffic. The performance with 
dynamic reconfiguration is clearly better than with 
static deployment. It may be noted that at some points, 
cost of the dynamically reconfigured flow-graph 
becomes more than that of the static deployment. This 
happens because the cost calculation algorithm used in 
our approach calculates the graph cost that is an 
approximation of the actual deployment cost. In some 
cases the approximation is inaccurate, causing the 
reconfiguration to make a poor choice. However, these 
instances are rare, and when they do occur, the cost of 
the dynamic deployment is not much worse than the 
static deployment. Moreover, for most of the time 
dynamic reconfiguration produces a lower cost 
deployment. 

 We also conducted experiments to compare the 
bandwidth consumption with and without dynamic 
reconfiguration. This is shown in Figure 8, each source 
was assumed to have a certain update rate of the form 
bytes/sec and each link was associated with a cost 
incurred per byte of data transferred using the link. 
Thus, at any point of time a deployed data graph has a 
cost, which is dependent on the links being used by the 
flow. We simulated a change in resolution factor (the 
ratio of the amount of data flowing out versus flowing 
in) for each operator in the flow graph and measured 
the corresponding bandwidth utilization with dynamic 
reconfiguration and static deployment. We notice that 
although dynamic reconfiguration helps in keeping the 
bandwidth consumption low, it does not offer very 
substantial gains; this is because when reconfiguration 
is driven by operator resolution it offers only a limited 
space for re-deployment. 

5.3.   Application case study 
 
 The next set of experiment was conducted on 
Emulab [23] with real data from the Delta OIS 
combined with simulated streams for Weather and 
News. The experiment was designed to emulate 4 
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Figure 8. Variation in bandwidth consumption with  
dynamic reconfiguration using Operator Profiling



different airport locations. The inter-location delays 
were set to ~20ms while delays within an airport 
location were set to ~2ms. The emulation was 
conducted with 13 nodes (Pentium-III, 850Mhz, 
512MB RAM, RedHat Linux 7.1) and each location 
had only limited nodes connected to external locations. 
The experiment was motivated by the requirement to 
feed overhead displays at airports with up-to-date 
information. The overhead displays periodically update 
the weather and news at ‘destination’ location and 
switch over to seating information for the aircraft at 
boarding gate. Other information displayed on such 
monitors includes names of wait-listed passengers, and 
current status of flight, etc. We deployed a flow graph 
with two operators, one for combining the weather and 
news information at destination and the other for 
selecting the appropriate flight data, which originates 
from a central location (Delta’s TPF facility in this 
case).  
 The first experiment conducted on Emulab studied 
the behavior of system in case of network perturbation 
and then studied its response to processor overload. 
Once the data flow graph for providing an overhead 
display feed was deployed, we used iperf [24] to 
introduce traffic in some of the links used by the flow-
graph. This is represented by the first delay spike in 
Figure 9. With dynamic reconfiguration the flow-graph 
responds well to the spike in traffic; in contrast, the 
statically deployed graph experiences an increased 
delay. The next spike is a result of an increased 
processing load at both the operator nodes. Again with 
dynamic reconfiguration we end with a better delay 
than the static deployment. Even with dynamic 
reconfiguration the end-to-end delay spikes, but the 
time before the deployment adjusts is so short 
(milliseconds) that the spike is effectively 
unnoticeable.  
 The next experiment was conducted to compare the 
time for initial deployment and reconfiguration. Figure 
10 shows that the times are quite small; only a few 

hundred milliseconds in the worst case. The figure 
illustrates the advantage of using a pub-sub 
middleware for deploying the flow graph. The pub-sub 
channels have to be created only at the time of 
deployment; reconfiguration just involves a change in 
publisher and subscriber to this channel and is 
therefore even faster. It may also be noted that once the 
channels for the data-flow graph have been created, 
deployment is essentially a distributed process, which 
starts once the corresponding nodes receive the 
operator deployment messages. This makes 
deployment time to increase almost linearly with the 
number of nodes. 
 

Table 1. Middleware: Send & Receive Costs 
Msg Size 
(bytes) 

Send Cost 
(ms) 

Receive Cost 
(ms) 

125 0.084 0.154 
1250 0.090 0.194 
12500 0.124 0.327 

 

Middleware Microbenchmarks on Emulab 
 Table 1 gives a measure of the low send and receive 
overheads imposed by the middleware layer at the 
intermediate nodes using the above setup. Send-side 
cost is the time between a source submitting data for 
transmission to the time at which the infrastructure 
invokes the underlying network 'send()' operation. 
Receive side costs represent the time between the end 
of the 'receive()' operation and the point at which the 
intermediate operator or the sink receives the data. 
Additional performance measurements reported in [5] 
compare middleware performance to that of other high 
performance communication infrastructures.  
 
6.   Conclusions & Future Work 
 
In this paper we presented DSMI, a highly scalable and 
resource-aware approach to distributed stream 
management. The approach makes use of in-network 
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data aggregation to distribute the processing and 
reduce the communication overhead involved in large-
scale distributed data management.  One of the 
important features of our infrastructure is its ability to 
efficiently and scalably deploy data-flows across the 
network. The run-time reconfiguration of the deployed 
flow graph in response to change in operating 
conditions and support for high-level language 
constructs to describe data-flows are other 
distinguishing features of the infrastructure. As a part 
of ongoing work we are examining how to avoid loss 
of updates and state in case of reconfiguration. We are 
also examining how to represent reconfiguration as a 
database-style transaction, motivated by similar work 
done by our group [25]. Another aspect of the 
infrastructure that is of particular interest to us is the 
closer integration of reconfiguration policy with the 
application level requirements. Overall, our 
architecture is a flexible, scalable platform for 
distributed processing of stream data. 
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