
Optimal Component Composition for Scalable Stream Processing

Xiaohui Gu, Philip S. Yu Klara Nahrstedt
IBM T. J. Watson Research Center Univ. of Illinois at Urbana-Champaign

Hawthorne, NY 10532 Urbana, IL 61801
{xiaohui, psyu}@ us.ibm.com {klara}@ cs.uiuc.edu

Abstract

Stream processing has become increasingly important
with emergence of stream applications such as audio/video
surveillance, stock price tracing, and sensor data analysis.
A challenging problem is to provide optimal component
composition in a distributed stream processing environ-
ment. The goal of optimal component composition is
to achieve load balancing subject to multiple function,
resource, and quality-of-service (QoS) constraints while
composing stream applications. In this paper, we present
an adaptive composition probing (ACP) approach to the
problem. Different from previous work, ACP provides a
new hybrid approach that combines distributed composi-
tion probing with coarse-grain global state management.
Guided by the coarse-grain global state information, ACP
selectively probes a subset of candidate components to
discover an approximately optimal component composition.
Further, ACP is self-tuning, which can adaptively adjust
the number of probes to maintain a specified composition
performance target (i.e., composition success rate) in a
dynamic stream environment. While the optimal compo-
nent composition problem is NP-hard, our ACP approach
provides an adaptive polynomial approximation solution.
We have conducted extensive simulation experiments to
show the efficiency, scalability, and adaptability of the ACP
approach by comparing with other alternative solutions.

1 Introduction

Emerging applications, such as trade surveillance for
security fraud, network traffic monitoring for intrusion de-
tection, sensor data analysis, and audio/video surveillance,
call for sophisticated real-time processing on data streams.
In these applications, data streams are continuously pushed
to a stream processing system, where they are processed
by self-contained stream processing elements calledcom-
ponents. Each component provides an atomic stream pro-

cessing function such as filtering, aggregation, and correla-
tion. Because stream applications are inherently distributed,
stream processing should operate in a distributed fashion.
Moreover, distributed stream processing systems provide
better scalability and availability for resource-intensive and
quality-sensitive stream processing applications. Generally,
a distributed stream processing system consists of a col-
lection of networked servers, each of which can provide a
number of stream processing components. An interesting
problem in such a distributed stream processing system
is to dynamically compose a quality-aware and resource-
efficient stream processing application from the system’s
currently available components. However, it is challenging
to find the optimal solution for the problem since (1) the
problem is NP-hard [3], and (2) up-to-date resource states
of distributed hosts (e.g., CPU, memory) and quality-of-
service values of different components (e.g., response time,
loss rate) are required.

Stream processing has drawn much research attention
recently (e.g.,[12, 1, 11, 2]). Previous work has addressed
various problems such as load shedding [12], load migration
[1], and operator partition [11] in a stream processing
environment. However, little research has been done to
address the optimal component composition problem that
is especially important for on-demand stream processing
service provisioning. Although component composition has
been studied under different context (e.g., [9, 13, 10, 7, 8]),
previous research falls short in addressing the optimization
issues in component composition, which is especially im-
portant for real-time stream processing systems.

In this paper, we present a noveladaptive composition
probing (ACP) approach to provide a self-tuning approx-
imation solution for the optimal component composition
problem. The ACP scheme first discovers a number ofgood
candidate component compositions using a limited number
of state collection probes. Then, ACP selects the best
component composition that achieves best load balancing
from the discovered good candidate compositions. ACP ad-
dresses two key decision-making problems in composition
probing: (1) how many candidate components to probe, and
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(2) which candidate components to probe. For the former
problem, ACP adaptively decides the number of probed
candidate components based on the specified performance
target (i.e., composition success rate) and current system
conditions (e.g., application workload, available resources).
For the latter problem, ACP combines distributed composi-
tion probing with a hierarchical state management scheme.
The hierarchical state manager updates the global state
information in a coarse-grained fashion while keeping local
state information precise using frequent update. Thus,
ACP can intelligently select a subset of good candidate
components to probe under the guidance of the coarse-
grained global state information. The best component
composition will be selected based on the precise states
collected by the probes.

Compared to previous centralized approaches [5, 9],
ACP achieves better scalability by replacing precise global
state maintenance with coarse-grain global state update
and on-demand precise state collection from distributed
hosts. Compared to previous fully decentralized approaches
[4, 13], ACP achieves better performance by querying the
coarse-grain global state. Hence, ACP provides ahybrid
approach that can achieve both efficiency and scalability
in optimal component composition. We have conducted
extensive simulation study to experimentally evaluate the
ACP approach. Our results show the efficiency, scalability,
and adaptability of the ACP approach by comparing with
the optimal algorithm that has exponential overhead, and
other common heuristic approaches.

The rest of the paper is organized as follows. Section 2
introduces the system model. Section 3 presents the ACP
approach in detail. Section 4 presents the experimental
results. Section 5 discusses related work. Finally, the paper
concludes in Section 6.

2 System Model

In this section, we present the distributed stream process-
ing system architecture, stream processing request model,
and the formal definition of the optimal component compo-
sition problem.

2.1 System Architecture

The distributed stream processing system, illustrated by
Figure 1 (a), consists of a collection of stream processing
nodes (vi), each of which can be a single computer or
a computer cluster. For failure resilience, we connect
distributed nodes using application-level overlay links (ei)
into an overlay mesh. Each node provides a set of stream
processing components{c1, .., ck}. Each component pro-
vides an atomic stream processing function (Fi) such as
filtering, aggregation, correlation, and audio/video analysis.
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Figure 1. Stream processing system model.

Due to the constraints of security, software licence, and
hardware requirements, we do not assume that each node
can provide all stream processing components. The compo-
nent composition process is to select and connect currently
deployed components into user required stream processing
applications1.

Each component receives continuous data units (e.g.,
data tuples, audio samples, video frames) via input queues
from its preceding components, illustrated by Figure 1
(b). Each component has well-defined interfaces describing
its input requirements (e.g., data format, stream rate) and
output properties. Each component is associated with (1)
a QoS vector[qci

1 , ..., qci
m] describing the component’s QoS

values such as processing time and loss rate2, and (2) a
resource availability vector[raci

1 , ..., raci
n ] describing the

current available resources (e.g., CPU, memory), on the
node providingci. Similarly, we also associate a QoS
vector [qei

1 , ..., qei
m] and bandwidth availabilitybaei with

each overlay linkei.
Distributed components can be dynamically composed

into composite stream processing applications. Generally,
composition topology can be a directed acyclic graph
(DAG), illustrated by Figure 1 (b). We use component
graph (λ) to represent a composed stream processing ap-
plication. Although the input queue can accommodate
transient stream rate mismatch, the input/output rates of
two adjacent components must be compatible to provide

1Components can be dynamically migrated among nodes. The compo-
nent composition operates based on the current component placement.

2The component can drop data units when it is overloaded [12].
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continuous processing of long-lived data streams. Such a
compatibility check is based on the component’s interface
specifications. The component’s input/output rates are
controlled by resource allocation policies. The QoS values
of a composed stream processing application is the aggre-
gation of QoS values among its constituent components
and overlay links3. The connection between two adjacent
components is calledvirtual link (li), which consists of a set
of overlay links. The QoS of the virtual link[qli

1 , ..., qli
m] is

the aggregation of QoS values among its constituent overlay
links; The bandwidth availabilitybali is the bottleneck
bandwidth among the overlay links4 .

2.2 Stream Processing Request Model

The user can specify the stream processing request in
terms of: (1) function requirements described by a function
graph (ξ), (2) QoS requirements (Qreq), and (3) resource
requirements (Rreq). The function graph, illustrated by
Figure 1 (c), defines a stream processing application tem-
plate, which can be provided by the application devel-
oper. The function graph includes a set of function nodes
(Fi) connected by dependency links. Different from the
conventional request-response middleware interface, our
stream processing middleware provides session-oriented
interfaces:

• sessionId = Find (ξ, Qreq, Rreq) invokes the opti-
mal component composition algorithm to find the best
component graphλ. If the composition is successful,
the middleware creates a session record with a session
identifier (sessionId) for the user request. Otherwise,
a null sessionId is returned to indicate composition
failure.

• Process (sessionId , data streams ) starts the
continuous data stream processing using the applica-
tion’s component graph. The middleware can map the
session identifier to the component graph composed by
the previous step.

• Close (sessionId ) tears down the stream process-
ing session when the application finishes its task. The
corresponding session information is deleted from the
session table.

2.3 Problem Description

The problem of optimal component composition is to
compose best stream processing applications using existing

3In this paper, we assume that QoS metrics are additive and minimum-
optimal. For non-additive metrics (e.g., loss rate), we can make them ad-
ditive and minimum-optimal using logarithm and inverse transformations.

4If two adjacent components are co-located on the same machine, the
virtual link is said to have 0 network delay and∞ bandwidth availability.

components in the distributed stream processing system.
The optimal component composition has two principle
goals. First, the composed stream processing application
should satisfy the user’s function, QoS, and resource re-
quirements. Second, the stream processing application
should be instantiated on least loaded nodes and virtual
links for balanced load distribution. We use[rrci

1 , ..., rrci
n ]

to define theresidual end-system resources on the node
providing ci, and rbli to define theresidual bandwidth
on the virtual linkli, respectively. The residual resources
are theremaining resourcesafter the required resources
are subtracted from current available resources on the
corresponding nodes and virtual links5. We useRci =
[rci

1 , ..., rci
n ] to define the required end-system resources

by the componentci. The bandwidth requirement of the
virtual link li is denoted bybli . We useci.f to denote the
stream processing function provided by the componentci.
Thus, the optimal component composition problem can be
formally defined as follows,

Definition 2.1. Given a distributed stream processing sys-
tem G = (V,E) whereV denotes the set of|V | stream pro-
cessing nodes (vi) andE denotes the set of|E| overlay links
(ei). Given a stream processing request〈ξ, Qreq, Rreq〉
whereξ denotes the function graph,Qreq denotes the QoS
requirements, andRreq denotes the resource requirements.
Theoptimal component compositionproblem is to find the
best component graphλ = (C,L) ⊂ G, whereC denotes
the set of|C| stream processing components (ci) and L
denotes the set of|L| inter-component virtual links (li) such
that

min φ(λ) =
∑

ci∈λ

n∑

k=1

rk
ci

rrk
ci + rk

ci
+

∑

li∈λ

bli

rbli + bli
(1)

subject to ci.f = Fi, ∀Fi ∈ ξ, ∃ci ∈ λ (2)

qλ
i ≤ qreq

i , 1 ≤ i ≤ m (3)

rrci

k ≥ 0, 1 ≤ k ≤ n, ∀ci ∈ λ (4)

rbli ≥ 0, ∀li ∈ λ (5)

Generally speaking, the optimal component composi-
tion problem is a multi-constrained optimization problem,
which optimizes a global system metric subject to a set of
constraints. In this paper, the optimization goal is to min-
imize thecongestion aggregationmetric φ(λ) defined by
equation 1 for balanced load distribution. The smaller the
congestion aggregation metric is, the better load distribution
the composition presents since we instantiate the stream
processing application on the nodes and virtual links with
larger residual resources. The constraints include the user’s
function, QoS and resource constraints for the composed

5We use residual resources instead of current available resources
for accommodating component co-locations, which will be explained in
Section 3 with more details.
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stream processing application. Equation 2 defines that the
component graphλ must provide all stream processing
functions specified in the function graphξ. Equation 3
specifies that the QoS of the composed stream processing
application [qλ

1 , ..., qλ
m] (e.g., processing time, loss rate)

must satisfy the user QoS requirements[qreq
1 , ..., qreq

m ].
Equation 4 and equation 5 specify that user required system
resources and bandwidth resource must be satisfied (i.e.,
residual resources cannot be negatives).

We can prove that the optimal component composition
problem is NP-hard since themulti-constrained path se-
lection problem, which is known to be NP-hard [3], maps
to a special case of the optimal component composition
problem. Besides its computation intractability, it is also
challenging to acquire up-to-date QoS/resource states re-
quired by the optimal component composition in a large-
scale distributed stream processing system. Thus, the goal
of our solution is to provide an efficient, scalable and self-
tuning approximation solution for the optimal component
composition problem.

3 Design and Algorithm

In this section, we present the adaptive composition
probing (ACP) approach in detail. We describe the ACP
overview, the hierarchical state management, the ACP algo-
rithm, the probing ratio tuning scheme, and the hop-by-hop
component selection algorithm.

3.1 Approach Overview

The basic idea of the ACP approach is to use a number of
probing messages, called probes, to dynamically discover
a set of good candidate compositions among which the
best composition is selected. The probing process concur-
rently examines different compositions and collects precise
state information from good candidate components. For
scalability, ACP avoids brute-force exhaustive probing by
performing adaptive selective probing. ACP addresses two
key decision-making problems in composition probing: (1)
how many candidate components should we probe?and (2)
which candidate components should we probe?

Intuitively, the more candidate components we probe,
the better component composition we can discover. How-
ever, the probing overhead also becomes larger when we
probe more candidate components. We introduceprobing
ratio α ∈ (0, 1] to define the percentage of the candidate
components we probe for each function. For example,
if there are ten candidate components for the functionFi

and the probing ratioα = 0.3, then we can probe0.3 ×
10 = 3 candidate components. ACP adaptively adjusts the
probing ratio based on the target composition performance
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Figure 2. Adaptive composition probing.

and current system conditions, which will be described in
Section 3.4 in detail.

Next, we need to decide which candidate components
to probe for maximizing the probability of finding the best
composition. We propose a hierarchical state management
scheme to assist ACP in optimal component composition.
The hierarchical state manager maintains precise local state
at each node and a coarse-grain global state, which will
be descried in Section 3.2. Hence, ACP can select good
components to probe under the guidance of the coarse-grain
global state and select optimal component composition
based on precise states collected by the probes. The details
about the candidate component selection will be presented
in Section 3.5.

3.2 Hierarchical State Management

The hierarchical state management consists offine-
grain local state update andcoarse-grain global state
maintenance. The local state of a node consists of the
QoS/resource states of its neighbor nodes in the overlay
mesh, and its adjacent overlay links. Each node keeps
its local state with high precision using frequent proactive
measurement at short time interval (e.g., 10 seconds). For
scalability, the precise local state is not disseminated to
other nodes.

The global state consists of: (1) the QoS and resource
states of all nodes, and (2) the QoS and resource states of all
virtual links between all pairs of nodes. Since each node can
provide multiple stream processing components, the QoS
states of each node include the QoS states of all stream
processing components it provides. For scalability, the
global state update is performed at a coarse-grain level. The
global state update is triggered only when state variations
on a node or an overlay link exceed a specified threshold.
Thus, many insignificant state variations are filtered out to
reduce the global state maintenance overhead. For example,
a node updates its available memory state in the global state
only when the available memory variation is larger than 100
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KB. Similarly, a node updates the available bandwidth of
its adjacent overlay link in the global state only when the
available bandwidth variation is more than 200 kbps.

One complication in the global state update is that each
virtual link is actually an overlay path consisting of several
overlay links. Thus, the virtual link state update requires
further aggregation from the states of its constituent overlay
links. For example, we want to update the available
bandwidth of a virtual link (li) in the global state, which
is mapped to an overlay pathli = 〈e1, ..., ek〉. Then, we
need to calculate the available bandwidth ofli from the
available bandwidth of its constituent overlay links:bali =
min(baei , ..., baek). Similarly, we need to calculate QoS
values (e.g., delay, loss rate) for the virtual linkli before we
can update its state in the global state. Thus, we select one
node (e.g., the least loaded node) as the aggregation node to
calculate the states of all virtual links. All other nodes send
significantQoS/resource state variations of their adjacent
overlay links to the aggregation node. The aggregation
node periodically updates the global state with the states of
all virtual links between all pairs of nodes in the overlay
mesh at large time interval (e.g., 10 minutes). For load
sharing, we switch the aggregation role among all system
nodes (e.g., round robin or least loaded first).

3.3 The ACP Algorithm

When a stream processing request is submitted, the
request is redirected to a node that is closest to the client
based on a predefined proximity metric (e.g., geographical
location). The selected node, calleddeputy node, initi-
ates the ACP protocol to discover the optimal component
composition. Figure 3 shows the pseudo-code of the ACP
protocol that mainly includes the following steps:

Step 1. Initialization. Given the component composi-
tion request, the deputy node first selects a proper probing
ratio for the request, which will be described in Section
3.4. The probing ratio decides the number of candidate
components we probe for each required function. Next, the
deputy node creates a probing message (P0) that carries the
composition request information (e.g., the function graph
ξ, QoS constraintsQreq, resource constraintsRreq) and the
probing ratioα. The ACP protocol then enters the next step:
distributed hop-by-hop probe processing. The probes will
visit a number of selected candidate components to collect
precise QoS/resource states.

Step 2. Per-hop probe processing.When a node6 vi

receives a probePi, it processes the probe independently
based on the information carried by the probe, the local
state, and the coarse-grain global state. First,vi checks
whether the QoS/resource values of the probed partial
stream processing application already violate the required

6This step applies to the deputy node too.

Input: Request〈ξ, Qreq, Rreq〉, deputy nodev0;
Output: best component compositionλ.
1. v0 creates the initial probeP0

Calculate probing ratioα
Create initial probeP0 = (ξ, Qreq, Rreq, α)

2. Per-hop probe processing at nodevi

vi checks resource/QoS conformance
if the probed composition is qualifiedthen

Perform transient resource allocation
Derive next-hop functions usingξ
Discover next-hop candidate components
Select good candidates using global state
Spawn probes for selected components
Update probes with fine-grain local states
Send probes to their next-hop components

elseDrop the received probe P
3. v0 selects the best component composition
4. v0 establishes the stream processing session

Figure 3. The ACP algorithm.

QoS/resource values. If the QoS/resource values are already
unqualified, the probe is dropped immediately to reduce the
probing overhead. Otherwise, the node performstransient
resource allocation to avoid conflicting resource admission
caused by concurrent probings for different requests7. The
transient resource allocation will be cancelled after a time-
out period if the node does not receive a confirmation mes-
sage. Second,vi derives the next-hop functions using the
function graphξ. The functions dependent on the current
function are the next-hop functions. Third,vi acquires the
locations of all available candidate components for each
next-hop function using a decentralized service discovery
system [6]. Fourth,vi selects a number ofgoodcandidate
components to probe, based on the probing ratio and the
global state. The details about the candidate component
selection will be described in Section 3.5. Fifth,vi spawns
new probes fromPi for all selected next-hop candidate
components. Each new probe collects fine-grain local states
from vi and inherits the states collected by its parent probe.
Finally, vi sends all new probes to the selected next-hop
components.

Step 3. Optimal composition selection.All the probes
belonging to a composition request will return to the initial
deputy node. First, if the function graph is a DAG, the
deputy node derives complete component graphs by merg-
ing the probed component paths. For example, in Figure 2,
a probe can traversec10 → c20 → c40 → c60 or c10 →
c30 → c50 → c60. We can then merge these two component
paths into a complete component graph. Second, the deputy
node calculates the residual resources and accumulated QoS

7To avoid redundant resource allocation, each node only temporarily
reserves resourcesoncefor each component in each request.
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values for the candidate component graphs based on the
precise states collected by the probes. Third, the deputy
node selects qualified component compositions according
to the constraints specified by Equations 2-5. Fourth, the
deputy node selects the best component composition from
all the qualified compositions according to the congestion
aggregation metricφ(λ) defined by Equation 1. For
example, in Figure 4, we calculate the residual resource
aggregation for the candidate component composition as8:
φ(λ) = 20

20+20 + 10
20+10 + 40

20+40 + 200
∞+200 + 400

400+400 = 2.
The qualified composition with the smallestφ(λ) value is
the optimal component composition.

Step 4. Application session setup.Finally, the deputy
node establishes the stream processing application session
by sending confirmation messages along the selected com-
ponent composition. The confirmation message makes tran-
sient resource allocation permanent on the selected nodes
and virtual links. If no qualified component composition
can be found, the deputy node returns a failure message.

3.4 Probing Ratio Tuning

We now describe the probing ratio tuning scheme. If a
function Fi haski candidate components and the probing
ratio is α, ACP will probedα · kie candidate components
for the functionFi. Intuitively, the larger the probing ratio
is, the better composition performance the ACP can achieve
since more candidate components are examined. However,
larger probing ratio also means larger probing overhead
since more probes are generated. Thus, the probing ratio
represents a tuning knob to control the trade-off between
composition performance and probing overhead. We use
composition success rateµ(t) to characterize the system’s
composition performance at sampling timet. The compo-
sition success rate is calculated byµ(t) = SuccessNum(t)

RequestNum(t) ,
whereSuccessNum(t) denotes the number of successful
compositions during last sampling period[t − 4t, t] and
RequestNum(t) denotes the number of total composition
requests during[t − 4t, t]. Higher composition success

8If two components are located on the same node (e.g.,c1 andc2), the
residual bandwidth between the two components is set∞ since the virtual
link between two co-located components do not consume any network
bandwidth.
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Figure 5. Probing ratio tuning effect.

rateµ(t) indicates better optimal component composition
performance at timet. We useα(t) to denote the probing
ratio value at timet.

Ideally, ACP should always use theminimal probing
ratio α(t) for achieving the target composition success
rateµ(t) independent of system conditions (e.g., workload
changes, system node changes). For example, Figure 5
shows the composition performance (i.e., success rate) as
the function of probing ratio under increasing workload and
higher QoS requirements. We use request rate to denote the
number of requests submitted per minute. Higher request
rate represents larger workload. For example, in Figure 5
(a), if we want to achieveµ(t) = 95% composition success
rate when the request rate is 50 requests per minute, ACP
should set the probing ratioα(t) = 0.3. However, the
challenge of probing ratio tuning is that the mapping from
probing ratio to success rate is non-linear and dynamic.
The mapping function can be affected by different system
conditions (e.g., request rate, QoS/resource requirements)
in a dynamic distributed stream processing system. For
example, Figure 5 (a) shows the mapping functions from
probing ratio to composition success rate under different
request rate. Figure 5 (b) shows the composition success
rate as the function of the probing ratio under different QoS
requirements. Higher QoS means shorter processing time
and lower loss rate requirements.

To address the problem, ACP performs on-line profiling
to dynamically derive the mapping function from probing
ratio to composition success rate. Based on the profiling
results, ACP can predict the minimal probing ratioα(t)
given a target success rate9 µ(t). The on-line profiling
is triggered when the prediction error exceeds a certain
thresholdδ (e.g.,δ = 2%), which means that the system
conditions have changed. For example, if the target success
rate isµ(t), ACP predicts the minimal probing ratioα(t)

9We assume that the target success rate is achievable. ACP stops
increasing the probing ratio if the probing overhead already reaches its
limit.
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based on the current profiling results. At the end of this
sampling period, ACP gets the measured success rateµ′(t).
If |µ(t) − µ′(t)| > δ, profiling is triggered to derive the
new mapping function from probing ratio to composition
success rate.

Because ACP is highly efficient, the success rate in-
creases very fast as we increase the probing ratio. The
success rate can quickly reaches the saturation point (i.e.,
the highest achievable success rate) at a small probing ratio,
illustrated by Figure 5. Thus, the probing ratio tuning
space is very limited, which makes probing ratio profiling
a simple task. The profiling process starts from the base
probing ratio (e.g.,α = 0.1) and gradually increases the
probing ratio at a certain step (e.g.,0.1) until the success
rate hits the saturation value. To guarantee high prediction
accuracy, profiling should use realistic workload that are
representative of the current system conditions (e.g., request
rate, QoS requirements, resource requirements, application
templates). Such a workload can be the trace replay of
actual workloads in the last sampling period.

3.5 Candidate Component Selection

After the deputy node decides the probing ratio, it
executes the ACP protocol to send out composition probes.
When a nodevi receives a probePi, it needs to decide
which next-hop candidate components to examine under
the probing ratio constraint. For example, if the next-hop
function Fi haski candidate components and the probing
ratio is α, then the nodevi is allowed to probeM =
dα · kie candidate components forFi. Under the guidance
of the coarse-grain global state,vi selectsM best candidate
components as follows:

First , vi queries the global state to retrieve the coarse-
grain QoS/resource states of all candidate components
c1, ..., ck. We useli to denote the virtual link from the
current component toci. The QoS states of the candidate
componentci and the virtual link li are described by
[qci

1 , ..., qci
m] and [qli

1 , ..., qli
m], respectively. The resource

states of the candidate componentci include current re-
source availabilities[raci

1 , ..., raci
n ]. The resource states of

the virtual link li include its current available bandwidth
bali . On the other hand,vi acquires the resource/QoS
requirement information from the received probe. We use
[rci

1 , ..., rci
n ] to denote the application’s end-system resource

requirements, andbli to denote the user’s bandwidth re-
quirement. We can calculate the residual resources ofci

asrrci
i = raci

i − rci
i and the residual bandwidth ofli as

rbli = bali − bli .
Second, vi filters out unqualified candidate components

by checking the input/output stream rate compatibility
between the current-hop component and candidate next-
hop components. Then,vi further removes unqualified

candidate components according to the user’s QoS/resource
requirements and the state information retrieved from the
global state. We use[qreq

1 , ..., qreq
m ] to denote the user’s QoS

requirements for the composed stream processing applica-
tion. Let us assume that the accumulated QoS values of
the partial component composition traversed by the received
probe Pi are [qλ

1 , ..., qλ
m]. A candidate componentci is

unqualified if any of the following inequalities is true:

qλ
i + qci

i + qli
i > qreq

i , ∃i, 1 ≤ i ≤ m (6)

raci
i < rci

i ,∃i, 1 ≤ i ≤ n (7)

bali < bli (8)

The equation 6 means that the user’s QoS constraints cannot
be satisfied. The equation 7 means that the candidate
componentci cannot meet the end-system resource require-
ments. The equation 8 means the virtual link toci cannot
meet the bandwidth requirement.

Third , vi further selectsgood candidate components
from the above derivedqualified components. Let us
assumevi findsZ qualified candidate components. IfZ ≤
M , thenvi can probe all the qualified candidate components
satisfying the probing ratio constraint. Otherwise,vi needs
to selectM best qualified components fromZ qualified
ones. To meet the multi-constrained QoS requirements
[qreq

1 , ..., qreq
m ], we define arisk functionD(ci) for a can-

didate componentci as follows,

D(ci) = max(
qλ
1 + qci

1 + qli
1

qreq
1

, ...,
qλ
m + qci

m + qli
m

qreq
m

) (9)

The larger the ratioq
λ
i +q

ci
i +q

li
i

qreq
i

is, the more closely the QoS

accumulation(qλ
i +qci

i +qli
i ) approaches its constraintqreq

i .
The candidate components with smaller risk function values
are considered as better components since their maximum
QoS violation risk values are smaller. Thus,ci is a better
candidate component to probe thancj if D(ci) < D(cj).
If two candidate components have similar risk function
values, we compare them based on the load distribution
goal. We define a congestion functionW (ci) as follows,

W (ci) =
n∑

k=1

rci

k

rrk
ci + rci

k

+
bli

rbli + bli
(10)

The component with smallerW (ci) values is a better
candidate to probe since it is less loaded. The above can-
didate component selection scheme guarantee that probes
traverse alonggoodcandidate compositions. The fine-grain
QoS/resource states collected by the probes will be used to
select the best component composition. Thus, ACP can
most efficiently find the optimal component composition
although it only examines a subset of all candidate com-
positions.
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4 Experiments

We have conducted extensive simulation study to ex-
perimentally evaluate the ACP approach10. Our results
show that ACP can achieve better efficiency, scalability, and
adaptability than other common approaches.

4.1 Evaluation Methodology

We implemented an event-driven optimal component
composition simulator in C++. The simulator first uses
the degree-based Internet topology generator Inet-3.0 [14]
to generate a 3200 node power-law graph to represent the
IP-layer network. The simulator then randomly selects
N ∈ [200, 500] nodes as stream processing nodes, which
are connected into an overlay mesh. Each node has10% ·N
neighbors. The initial resource capacities and QoS states of
stream processing nodes and network links are uniformly
distributed within certain range based on the real-world
measurements. The simulator simulates both IP-layer and
overlay data routing using delay-based shortest path routing
algorithm. Each node provides a number of components
whose functions are selected from 80 pre-defined func-
tions. The function graph of a stream processing request
is randomly selected from 20 pre-defined stream processing
application templates. Each function graph is either a path
or a DAG with two branch paths. Each path or branch path
includes [2,5] nodes. The resource and QoS requirements
are uniformly distributed. Each application session lasts 5
to 15 minutes. The global state update is triggered when the
value variation of a resource or QoS metric exceeds10% of
its maximum value.

For comparison, we also implement three other common
approaches:optimal, random, andstatic algorithms. The
optimal algorithm exhaustively searches all candidate com-
ponent compositions to find the best composition. The ran-
dom algorithm randomly selects a candidate component for
each required function. The static algorithm selects a fixed
candidate component for each function. We also imple-
ment two othercomposition probingapproaches:selective
probing (SP) andrandom probing(RP). The SP approach
only uses the ACP’s per-hop candidate component selection
scheme but replaces the optimal composition selection
(Equation 1) with random composition selection. The RP
approach performs random per-hop candidate component
selection but uses the ACP’s optimal composition selection
scheme. The RP approach represents the fully distributed

10We have implemented a prototype of distributed component compo-
sition system and deployed the system in the wide-area network testbed
PlanetLab. The prototype implements bounded composition probing (i.e.,
a simpler version of ACP) and supports multimedia stream processing.
Readers are referred to [4] for more details. Integrating the ACP scheme
into the prototype is one of our on-going work.
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Figure 6. Efficiency evaluation.

approach since it only requires local states. Both SP and RP
approaches use the same probing ratio as the ACP approach.

4.2 Results and Analysis

First, we evaluate the efficiency of the ACP approach
illustrated by Figure 6. In this set of experiments, we use a
400-node distributed stream processing system and a fixed
probing ratioα = 0.3. In Figure 6 (a), the x-axis shows
different request rate; The y-axis shows the average success
rate achieved by different algorithms measured over all
the requests generated during 100-minute simulation. We
observe that ACP consistently achieves better performance
than other heuristic algorithms and similar performance as
the optimal algorithm. Figure 6 (b) shows the overhead
of different algorithms. The optimal algorithm’s overhead
is measured by the number of probes required by the
exhaustive search per minute. The ACP’s overhead is
measured by the number of probes and global-state update
messages generated per time minute. The RP’s overhead
only includes the probing overhead. Compared to the opti-
mal algorithm that uses brute-force exhaustive search, ACP
can reduce overhead by as much as 95%. Compared to the
RP approach, ACP can achieve much better performance
by paying a small coarse-grain global state maintenance
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Figure 7. Scalability evaluation.

overhead. In contrast, the centralized algorithm would
require4002 messages per minute to perform precise global
state update assuming one minute update period is good
enough. Hence, ACP can achieve near-optimal performance
with similar overhead as the fully distributed approach.

Second, we evaluate the scalability of the ACP approach
illustrated by Figure 7. We use different distributed stream
processing systems with 200 to 600 nodes. As we add more
nodes into the distributed stream processing, the number
of candidate components for each function increases pro-
portionally so as to increase the capacity of the distributed
stream processing system. We impose the same workload
(request rate = 80 requests/minute) on those different dis-
tributed stream processing systems. Figure 7 (a) shows
the performance comparison results. We observe that ACP
achieves similar scaling property as the optimal algorithm.
Figure 7 (b) shows that ACP has much lower overhead than
the optimal algorithm. The overhead reduction increases as
the node number increases.

Finally, we evaluate the adaptability of the ACP ap-
proach, illustrated by Figure 8. We impose a dynamic
workload on a 400-node distributed stream processing sys-
tem and set the target composition success rate at90%.
The success rate sampling period is 5 minutes. During
a 150-minute simulation, the dynamic workload starts at
40 requests/minute, then increases to 80 requests/minute at
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Figure 8. Adaptability evaluation.

time 50, and drops to 60 requests/minute at time 100. Figure
8 (a) shows the performance of the probing approach that
uses afixedprobing ratioα = 0.3. The success rate starts
from 100% and drops to about 80% when the request rate
increases to 80, and then comes back to about 90% when
the request rate decreases to 60. We then enable probing
ratio tuning and repeat the same experiment, illustrated by
Figure 8 (b). We observe that ACP can effectively adjust
the probing ratio to maintain the composition success rate
at the target value 90%. The probing ratio is initially0.1
and increases to0.2 after the first sampling period at time
5. After the request rate increases to 80 at time 50, the
success rate drops to 55%, which triggers ACP to increase
the probing ratio to 0.5. Finally, the probing ratio drops to
0.3 at time 105 after the request rate decreases to 60 at time
100. The above experimental result demonstrates that ACP
can maintain a target composition success rate in a dynamic
stream processing environment (e.g., changing workload)
by adaptively tuning the probing ratio.

5 Related Work

Recently, stream processing has received much research
attention. Researchers have proposed load shedding solu-
tions (e.g., [12]) to trade-off processing precision for timely
response when the system experiences resource shortage.
Other projects have addressed the problems of load bal-
ancing [11] and load migration [1] in either cluster-based
or wide-area distributed stream processing systems. Grid-
based middleware system [2] has also been proposed for
distributed stream processing systems. Different from the
above work, our research focuses on providing optimal
component composition for distributed stream processing
systems. The contribution of our research is to provide
a stream processing application composition solution that
considers load distribution, QoS provisioning, and function
dependency.

Component composition has been studied under differ-
ent research context, such as service composition (e.g.,[9,
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13, 5, 6]), systems software composition [10, 7], and multi-
media application configuration (e.g., [8]). In contrast, this
paper focuses on scalable optimal component composition
that is especially important for distributed stream process-
ing systems. Previous work either ignores the composition
optimality issue or only addresses part of it. Different
from previous centralized resource-aware service compo-
sition solutions [5, 9] or fully decentralized approaches
[6, 4], ACP represents ahybrid approach that uses global
state to guide distributed composition probing for better
performance. Moreover, ACP can adaptively adjust the
probing ratio to achieve target composition performance
with minimal probing overhead.

6 Conclusion

We have presented the adaptive composition probing
(ACP) approach to provide an efficient, scalable, and self-
tunable approximation solution for the optimal component
composition problem. Our ACP approach can achieve
balanced load distribution while satisfying user’s function,
resource, and QoS constraints in a distributed stream pro-
cessing environment. Compared to previous approaches,
ACP makes two novel contributions. First, ACP proposes a
new hybrid approach that combines distributed composition
probing with hierarchical state management. Second, ACP
is self-tuning, which can adaptively adjust the number of
probes to maintain target composition performance with
minimal probing overhead. Our extensive simulation results
show that ACP can achieve better efficiency, scalability, and
adaptability compared to other common approaches. Future
research directions for optimal component composition in-
clude: (1) applying control theory to tune the probing ratio
more precisely, (2) supporting other application specific
constraints (e.g., security level, software licence) in compo-
nent composition, and (3) integrating dynamic component
placement (or migration) with the component composition
system.
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