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Abstract cessing function such as filtering, aggregation, and correla-

tion. Because stream applications are inherently distributed,

Stream processing has become increasingly importantstream processing should operate in a distributed fashion.
with emergence of stream applications such as audio/videoMoreover, distributed stream processing systems provide
surveillance, stock price tracing, and sensor data analysis. better scalability and availability for resource-intensive and
A challenging problem is to provide optimal component quality-sensitive stream processing applications. Generally,
composition in a distributed stream processing environ- a distributed stream processing system consists of a col-
ment. The goal of optimal component composition is lection of networked servers, each of which can provide a
to achieve load balancing subject to multiple function, number of stream processing components. An interesting
resource, and quality-of-service (QoS) constraints while problem in such a distributed stream processing system
composing stream applications. In this paper, we presentis to dynamically compose a quality-aware and resource-
an adaptive composition probing (ACP) approach to the efficient stream processing application from the system’s
problem. Different from previous work, ACP provides a currently available components. However, it is challenging
new hybrid approach that combines distributed composi- to find the optimal solution for the problem since (1) the
tion probing with coarse-grain global state management. problem is NP-hard [3], and (2) up-to-date resource states
Guided by the coarse-grain global state information, ACP of distributed hosts (e.g., CPU, memory) and quality-of-
selectively probes a subset of candidate components tcservice values of different components (e.g., response time,
discover an approximately optimal component composition. loss rate) are required.
Further, ACP is self-tuning, which can adaptively adjust  Stream processing has drawn much research attention
the number of probes to maintain a specified compositionrecently (e.g.,[12, 1, 11, 2]). Previous work has addressed
performance target (i.e., composition success rate) in a various problems such as load shedding [12], load migration
dynamic stream environment. While the optimal compo- [1], and operator partition [11] in a stream processing
nent composition problem is NP-hard, our ACP approach environment. However, little research has been done to
provides an adaptive polynomial approximation solution. address the optimal component composition problem that
We have conducted extensive simulation experiments tas especially important for on-demand stream processing
show the efficiency, scalability, and adaptability of the ACP service provisioning. Although component composition has
approach by comparing with other alternative solutions.  been studied under different context (e.g., [9, 13, 10, 7, 8]),
previous research falls short in addressing the optimization
issues in component composition, which is especially im-
portant for real-time stream processing systems.

In this paper, we present a nowadaptive composition
probing (ACP) approach to provide a self-tuning approx-

Emerging applications, such as trade surveillance forimation solution for the optimal component composition
security fraud, network traffic monitoring for intrusion de- problem. The ACP scheme first discovers a numbeooid
tection, sensor data analysis, and audio/video surveillancecandidate component compositions using a limited number
call for sophisticated real-time processing on data streamsof state collection probes. Then, ACP selects the best
In these applications, data streams are continuously pushedomponent composition that achieves best load balancing
to a stream processing system, where they are processeftom the discovered good candidate compositions. ACP ad-
by self-contained stream processing elements caited- dresses two key decision-making problems in composition
ponents Each component provides an atomic stream pro- probing: (1) how many candidate components to probe, and
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(2) which candidate components to probe. For the former (©,) Component  —p D@ - — goe ., Functional
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problem, ACP adaptively decides the number of probed

candidate components based on the specified performance @9} @
target (i.e., composition success rate) and current system — =
conditions (e.g., application workload, available resources). overlay fink ||| overlay fink

For the latter problem, ACP combines distributed composi-
tion probing with a hierarchical state management scheme.
The hierarchical state manager updates the global state
information in a coarse-grained fashion while keeping local
state information precise using frequent update. Thus,
ACP can intelligently select a subset of good candidate

overlay link

overlay link overlay link
components to probe under the guidance of the coarse- Server
grained global state information. The best component
composition will be selected based on the precise states (a) Distributed stream processing system
collected by the probes. ooy recognton

Compared to previous centralized approaches [5, 9], —e)—=1c) split /x@'“'\maauon
ACP achieves better scalability by replacing precise global @/v ) (FT urcton  recention
state maintenance with coarse-grain global state update o)1) (e (e
and on-demand precise state collection from distributed
hosts. Compared to previous fully decentralized approaches (b) Component graph (c) Function graph
[4, 13], ACP achieves better performance by querying the
coarse-grain global state. Hence, ACP providés/brid
approach that can achieve both efficiency and scalability
n optw_nal component composition. We have conducted p o 45 the constraints of security, software licence, and
extensive simulation study to experlment_ally evaluate.'ghe hardware requirements, we do not assume that each node
ACP approagh. Our results show the efficiency, sc.alab|ll|ty, can provide all stream processing components. The compo-
and adaptability of the ACP approach by comparing with nent composition process is to select and connect currently

the optimal algorlth_m_that has exponential overhead, anddeployed components into user required stream processing
other common heuristic approaches. applications

. The rest of the paper is organizeq as follows. Section 2 Each component receives continuous data units (e.g.,
mtroduces.the sygtem quel. Section 3 presents the ACPdata tuples, audio samples, video frames) via input queues
approach in detail. Section 4 presents the experlmentalfrom its preceding components, illustrated by Figure 1

results. Seption 5ldiscusses related work. Finally, the paper(b)_ Each component has well-defined interfaces describing
concludes in Section 6. its input requirements (e.g., data format, stream rate) and
output properties. Each component is associated with (1)
2 System Model a QoS vectofq®, ..., ¢¢i] describing the component’s QoS
values such as processing time and loss?raded (2) a
In this section, we present the distributed stream process+esource availability vectofraf’, ..., rafi] describing the
ing system architecture, stream processing request modelgurrent available resources (e.g., CPU, memory), on the
and the formal definition of the optimal component compo- node providingc;. Similarly, we also associate a QoS

Figure 1. Stream processing system model.

sition problem. vector [¢77, ..., ¢5i] and bandwidth availabilityba® with
each overlay linle;.
2.1 System Architecture Distributed components can be dynamically composed

into composite stream processing applications. Generally,

The distributed stream processing system, illustrated bycomposition topology can be a directed acyclic graph
Figure 1 (a), consists of a collection of stream processing (PAG), illustrated by Figure 1 (b). We use component
nodes (;), each of which can be a single computer or 9raph @) to represent a composed stream processing ap-
a computer cluster. For failure resilience, we connect Plication. Although the input queue can accommodate
distributed nodes using application-level overlay linkg ( transient stream rate mismatch, the input/output rates of
into an overlay mesh. Each node provides a set of streanrfW0 adjacent components must be compatible to provide
processing Componen{&l’ o Ck}' Each component pro- 1Components can be dynamically migrated among nodes. The compo-

vides an atomic stream processing functidn)(such as  nent composition operates based on the current component placement.
filtering, aggregation, correlation, and audio/video analysis.  2The component can drop data units when it is overloaded [12].




continuous processing of long-lived data streams. Such acomponents in the distributed stream processing system.
compatibility check is based on the component’s interface The optimal component composition has two principle
specifications. The component’s input/output rates aregoals. First, the composed stream processing application
controlled by resource allocation policies. The QoS values should satisfy the user’s function, QoS, and resource re-
of a composed stream processing application is the aggrequirements. Second, the stream processing application
gation of QoS values among its constituent componentsshould be instantiated on least loaded nodes and virtual
and overlay link3. The connection between two adjacent links for balanced load distribution. We uge-’, ..., 7r¢]

components is calledrtual link (I;), which consists of a set
of overlay links. The QoS of the virtual Iin[qlf‘, o qghi]is

to define theresidual end-system resources on the node
providing ¢;, and rb% to define theresidual bandwidth

the aggregation of QoS values among its constituent overlayon the virtual linkl;, respectively. The residual resources

links; The bandwidth availabilityba' is the bottleneck
bandwidth among the overlay lirtks

2.2 Stream Processing Request Model

are theremaining resourcesafter the required resources
are subtracted from current available resources on the
corresponding nodes and virtual likks We useR® =
[r{%,...,r5i] to define the required end-system resources
by the component;. The bandwidth requirement of the

The user can specify the stream processing request irvirtual link I; is denoted by':. We usec;.f to denote the

terms of: (1) function requirements described by a function
graph €), (2) QoS requirementgX"°?), and (3) resource
requirements R"¢?). The function graph, illustrated by

plate, which can be provided by the application devel-

oper. The function graph includes a set of function nodes

(F;) connected by dependency links. Different from the
conventional request-response middleware interface, ou

stream processing middleware provides session-oriented”

interfaces:

e sessionld =Find (&, Q", R"7)invokes the opti-
mal component composition algorithm to find the best
component graph. If the composition is successful,

stream processing function provided by the compomrgnt
Thus, the optimal component composition problem can be

formally defined as follows,
Figure 1 (c), defines a stream processing application tem-

Definition 2.1. Given a distributed stream processing sys-
tem G = (V,E) wherd” denotes the set ¢¥/| stream pro-
cessing nodesy) and £ denotes the set 0F| overlay links

r(e"’)' Given a stream processing requédst Q"¢?, R"¢?)

here¢ denotes the function grapl™<? denotes the QoS
requirements, and?"¢¢ denotes the resource requirements.
Theoptimal component compositionproblem is to find the
best component graph = (C, L) C G, whereC denotes
the set of|C| stream processing components)(and L
denotes the set ¢f | inter-component virtual linkg () such

the middleware creates a session record with a sessiorthat

identifier (sessionld) for the user request. Otherwise,
a null sessionld is returned to indicate composition
failure.

Process (sessionld ,data streams ) startsthe

continuous data stream processing using the applica-

tion’s component graph. The middleware can map the

session identifier to the component graph composed by

the previous step.

Close (sessionld ) tears down the stream process-

ing session when the application finishes its task. The

corresponding session information is deleted from the
session table.

2.3 Problem Description

The problem of optimal component composition is to

compose best stream processing applications using existin§

3In this paper, we assume that QoS metrics are additive and minimum-
optimal. For non-additive metrics (e.g., loss rate), we can make them ad-

ditive and minimum-optimal using logarithm and inverse transformations.
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Generally speaking, the optimal component composi-
tion problem is a multi-constrained optimization problem,
which optimizes a global system metric subject to a set of
constraints. In this paper, the optimization goal is to min-
imize the congestion aggregatiometric ¢(\) defined by
equation 1 for balanced load distribution. The smaller the
congestion aggregation metric is, the better load distribution
the composition presents since we instantiate the stream
rocessing application on the nodes and virtual links with
arger residual resources. The constraints include the user’s
function, QoS and resource constraints for the composed
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subject to ¢;.f = F;, VF; € £,3¢; € A

@ <q 1<i<m

rrg >0, 1<k<n,Ve €

rbli >0, VI € X

SWe use residual resources instead of current available resources

4If two adjacent components are co-located on the same machine, thefor accommodating component co-locations, which will be explained in

virtual link is said to have 0 network delay and bandwidth availability.

Section 3 with more details.



stream processing application. Equation 2 defines that the \ Global View \
component graph\ must provide all stream processin

functions specified in the function gragh Equation 3 ° aos of 6, 2 - Jisoms. 2
specifies that the QoS of the composed stream processing
application ¢, ..., ¢)] (e.g., processing time, loss rate) ===z
must satisfy the user QoS requirememt$“?, ..., ¢7¢?]. °
Equation 4 and equation 5 specify that user required systempeputy T 24\ pz==2-
resources and bandwidth resource must be satisfied (i.e.,"* :
residual resources cannot be negatives).

We can prove that the optimal component composition
problem is NP-hard since thmulti-constrained path se-
lection problem, which is known to be NP-hard [3], maps Figure 2. Adaptive composition probing.
to a special case of the optimal component composition
problem. Besides its computation intractability, it is also
challenging to acquire up-to-date QoS/resource states reand current system conditions, which will be described in
quired by the optimal component composition in a large- Section 3.4 in detail.
scale distributed stream processing system. Thus, the goal Next, we need to decide which candidate components
of our solution is to provide an efficient, scalable and self- to probe for maximizing the probability of finding the best
tuning approximation solution for the optimal component composition. We propose a hierarchical state management
composition problem. scheme to assist ACP in optimal component composition.
The hierarchical state manager maintains precise local state
at each node and a coarse-grain global state, which will
be descried in Section 3.2. Hence, ACP can select good
components to probe under the guidance of the coarse-grain

In this section, we present the adaptive composition global state and select optimal component composition
probing (ACP) approach in detail. We describe the ACP based on precise states collected by the probes. The details
overview, the hierarchical state management, the ACP algo-about the candidate component selection will be presented
rithm, the probing ratio tuning scheme, and the hop-by-hop in Section 3.5.
component selection algorithm.

3 Design and Algorithm

3.2 Hierarchical State Management
3.1 Approach Overview

The hierarchical state management consistsfiroé-

The basic idea of the ACP approach is to use a number ofgrain local state update andoarse-grain global state
probing messages, called probes, to dynamically discovermaintenance. The local state of a node consists of the
a set of good candidate compositions among which theQoS/resource states of its neighbor nodes in the overlay
best composition is selected. The probing process concurimesh, and its adjacent overlay links. Each node keeps
rently examines different compositions and collects preciseits local state with high precision using frequent proactive
state information from good candidate components. Formeasurement at short time interval (e.g., 10 seconds). For
scalability, ACP avoids brute-force exhaustive probing by scalability, the precise local state is not disseminated to
performing adaptive selective probing. ACP addresses twoother nodes.
key decision-making problems in composition probing: (1)  The global state consists of: (1) the QoS and resource
how many candidate components should we prara?(2) states of all nodes, and (2) the QoS and resource states of all
which candidate components should we probe? virtual links between all pairs of nodes. Since each node can

Intuitively, the more candidate components we probe, provide multiple stream processing components, the QoS
the better component composition we can discover. How- states of each node include the QoS states of all stream
ever, the probing overhead also becomes larger when weprocessing components it provides. For scalability, the
probe more candidate components. We introdoicding global state update is performed at a coarse-grain level. The
ratio « € (0, 1] to define the percentage of the candidate global state update is triggered only when state variations
components we probe for each function. For example, on a node or an overlay link exceed a specified threshold.
if there are ten candidate components for the funcipn  Thus, many insignificant state variations are filtered out to
and the probing ratieae = 0.3, then we can prob8.3 x reduce the global state maintenance overhead. For example,
10 = 3 candidate components. ACP adaptively adjusts the a node updates its available memory state in the global state
probing ratio based on the target composition performanceonly when the available memory variation is larger than 100



KB. Similarly, a node updates the available bandwidth of Input: Request¢, Q*1, R™°?), deputy nodev;

its adjacent overlay link in the global state only when the Output: best component composition
available bandwidth variation is more than 200 kbps. 1. v creates the initial prob&y

One complication in the global state update is that each Calculate probing ratiox
virtual link is actually an overlay path consisting of several Create initial probe = (£, Q" R™*, @)

2. Per-hop probe processing at nade
v; checks resource/QoS conformance
if the probed composition is qualifigkden
Perform transient resource allocation
Derive next-hop functions using

overlay links. Thus, the virtual link state update requires
further aggregation from the states of its constituent overlay
links. For example, we want to update the available
bandwidth of a virtual link §;) in the global state, which

is mapped to an overlay path = (ei, ..., ex). Then, we Discover next-hop candidate components
need to calculate the available bandwidthipffrom the Select good candidates using global state
available bandwidth of its constituent overlay linka!: = Spawn probes for selected components
min(ba® ..., ba*). Similarly, we need to calculate QoS Update probes with fine-grain local states
values (e.g., delay, loss rate) for the virtual linkefore we Send probes to their next-hop components
can update its state in the global state. Thus, we select one elseDrop the received probe P

node (e.g., the least loaded node) as the aggregation node to 3. vy selects the best component composition

calculate the states of all virtual links. All other nodes send 4. vo establishes the stream processing sessian

significant QoS/resource state variations of their adjacent _ ]
overlay links to the aggregation node. The aggregation Figure 3. The ACP algorithm.
node periodically updates the global state with the states of

all virtual links between all pairs of nodes in the overlay

mesh at large time interval (e.g., 10 minutes). For load os/resource values. If the QoS/resource values are already
sharing, we switch the aggregation role among all systemnqualified, the probe is dropped immediately to reduce the

nodes (€.g., round robin or least loaded first). probing overhead. Otherwise, the node perfotrassient
) resource allocation to avoid conflicting resource admission
3.3 The ACP Algorithm caused by concurrent probings for different requesthe

transient resource allocation will be cancelled after a time-

When a stream processing request is submitted, theput period if the node does not receive a confirmation mes-
request is redirected to a node that is closest to the clientsage. Second;; derives the next-hop functions using the
based on a predefined proximity metric (e.g., geographicalfunction graph¢. The functions dependent on the current
location). The selected node, calleeéputy node initi- function are the next-hop functions. Third, acquires the
ates the ACP protocol to discover the optimal component|ocations of all available candidate components for each
composition. Figure 3 shows the pseudo-code of the ACPnext-hop function using a decentralized service discovery
protocol that mainly includes the following steps: system [6]. Fourthy; selects a number afoodcandidate

Step 1. Initialization. Given the component composi- components to probe, based on the probing ratio and the
tion request, the deputy node first selects a proper probingglobal state. The details about the candidate component
ratio for the request, which will be described in Section selection will be described in Section 3.5. Fifth,spawns
3.4. The probing ratio decides the number of candidate new probes fromP; for all selected next-hop candidate
components we probe for each required function. Next, thecomponents. Each new probe collects fine-grain local states
deputy node creates a probing messdgg that carries the  from v; and inherits the states collected by its parent probe.
composition request information (e.g., the function graph Finally, v; sends all new probes to the selected next-hop
&, QoS constraint§"<?, resource constrain®™°?) and the components.
probing ratioo. The ACP protocol then enters the next step: Step 3. Opt|ma| Composition selectionAll the probes
distributed hop-by-hop probe processing. The probes will belonging to a composition request will return to the initial
visit a number of selected candidate components to collectdeputy node. First, if the function graph is a DAG, the
precise QoS/resource states. deputy node derives complete component graphs by merg-

Step 2. Per-hop probe processingWhen a nod v; ing the probed component paths. For example, in Figure 2,
receives a probé’;, it processes the probe independently 5 probe can traversgy — co9 — Ca9 — Cgo OF C19 —
based on the information carried by the probe, the local o;) — ¢5, — cg0. We can then merge these two component
state, and the coarse-grain global state. Firstchecks  paths into a complete component graph. Second, the deputy

whether the QoS/resource values of the probed partialnode calculates the residual resources and accumulated QoS
stream processing application already violate the required

"To avoid redundant resource allocation, each node only temporarily
6This step applies to the deputy node too. reserves resourcesicefor each component in each request.
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probing ratio probing ratio
values for the candidate component graphs based on the (a) (b)
precise states collected by the probes. Third, the deputy
node selects qualified component compositions according Figure 5. Probing ratio tuning effect.

to the constraints specified by Equations 2-5. Fourth, the
deputy node selects the best component composition from
all the qualified compositions according to the congestion rate u(t) indicates better optimal component composition
aggregation metricp(\) defined by Equation 1. For performance at timé. We usea(t) to denote the probing
example, in Figure 4, we calculate the residual resourceratio value at time.
aggregation for the candidate component compositién as  Ideally, ACP should always use thainimal probing
P(N) = 3055 + 35055 + 30090 T o850 + 10040 = 2 ratio a(t) for achieving the target composition success
The qualified composition with the smalles{)) value is rate(t) independent of system conditions (e.g., workload
the optimal component composition. changes, system node changes). For example, Figure 5
Step 4. Application session setupFinally, the deputy  shows the composition performance (i.e., success rate) as
node establishes the stream processing application sessiothe function of probing ratio under increasing workload and
by sending confirmation messages along the selected comhigher QoS requirements. We use request rate to denote the
ponent composition. The confirmation message makes trannumber of requests submitted per minute. Higher request
sient resource allocation permanent on the selected nodegate represents larger workload. For example, in Figure 5
and virtual links. If no qualified component composition (a), if we want to achieve(t) = 95% composition success
can be found, the deputy node returns a failure message. rate when the request rate is 50 requests per minute, ACP
should set the probing ratia(t) = 0.3. However, the
3.4 Probing Ratio Tuning challenge of probing ratio tuning is that the mapping from
probing ratio to success rate is non-linear and dynamic.
We now describe the probing ratio tuning scheme. If a The mapping function can be affected by different system
function F; hask; candidate components and the probing conditions (e.g., request rate, QoS/resource requirements)
ratio is or, ACP will probe [« - k;] candidate components in a dynamic distributed stream processing system. For
for the functionF;. Intuitively, the larger the probing ratio example, Figure 5 (a) shows the mapping functions from
is, the better composition performance the ACP can achieveprobing ratio to composition success rate under different
since more candidate components are examined. Howeveriequest rate. Figure 5 (b) shows the composition success
larger probing ratio also means larger probing overheadrate as the function of the probing ratio under different QoS
since more probes are generated. Thus, the probing ratidgequirements. Higher QoS means shorter processing time
represents a tuning knob to control the trade-off betweenand lower loss rate requirements.
composition performance and probing overhead. We use To address the problem, ACP performs on-line profiling
composition success ratgt) to characterize the system’s to dynamically derive the mapping function from probing
composition performance at sampling timeThe compo-  ratio to composition success rate. Based on the profiling

sition success rate is calculated pft) = %m results, ACP can predict the minimal probing rati¢t)

where Success Num(t) denotes the number of successful 9IVeNn a target success r&tg(t_). The on-line profiling

compositions during last sampling perifd— At,t] and is triggered when the prediction error exceeds a certain

RequestNum(t) denotes the number of total composition thresholds (e.g.,6 = 2%), which means that the system

requests duringt — At,#]. Higher composition success conditions have changed. For example, if the target success
’ rate isu(t), ACP predicts the minimal probing ratio(¢)

8]f two components are located on the same node (e.gandcs), the

residual bandwidth between the two components isxsssince the virtual 9We assume that the target success rate is achievable. ACP stops
link between two co-located components do not consume any networkincreasing the probing ratio if the probing overhead already reaches its
bandwidth. limit.



based on the current profiling results. At the end of this candidate components according to the user's QoS/resource
sampling period, ACP gets the measured successféte requirements and the state information retrieved from the
If |u(t) — p'(t)] > 4, profiling is triggered to derive the global state. We usig;“?, ..., ¢,¢%] to denote the user’s QoS
new mapping function from probing ratio to composition requirements for the composed stream processing applica-
success rate. tion. Let us assume that the accumulated QoS values of
Because ACP is highly efficient, the success rate in- the partial component composition traversed by the received
creases very fast as we increase the probing ratio. Theprobe P; are [¢},...,¢)]. A candidate component; is
success rate can quickly reaches the saturation point (i.e.unqualified if any of the following inequalities is true:
the highest achievable success rate) at a small probing ratio,

C; li e - -
illustrated by Figure 5. Thus, the probing ratio tuning @+ g >q T 1<i<m (6)
space is very limited, which makes probing ratio profiling ragt <rit, 3,1 <i<n @)
a simple task. The profiling process starts from the base babi < bbi (8)

probing ratio (e.g.« = 0.1) and gradually increases the

probing ratio at a certain step (e.g.1) until the success  The equation 6 means that the user’s QoS constraints cannot
rate hits the saturation value. To guarantee high predictionbe satisfied. The equation 7 means that the candidate
accuracy, profiling should use realistic workload that are component; cannot meet the end-system resource require-

representative of the current system conditions (e.g., requesinents. The equation 8 means the virtual linkctacannot

rate, QoS requirements, resource requirements, applicatiomeet the bandwidth requirement.

templates). Such a workload can be the trace replay of Third, v; further selectsgyood candidate components

actual workloads in the last sampling period. from the above derivedjualified components. Let us
assumey; finds Z qualified candidate components.Af<
3.5 Candidate Component Selection M, thenw; can probe all the qualified candidate components

satisfying the probing ratio constraint. Otherwisgneeds

to selectM best qualified components frodd qualified
ones. To meet the multi-constrained QoS requirements
(41, ..., ¢:¢1], we define aisk function D(c;) for a can-
didate component; as follows,

After the deputy node decides the probing ratio, it
executes the ACP protocol to send out composition probes.
When a nodev; receives a probe?;, it needs to decide
which next-hop candidate components to examine under
the probing ratio constraint. For example, if the next-ho A i li A i l;
funcrt)ion Fighaski candidate componen?s and the probingsJ D(c;) = max(ql + q,,.1€q+ @ + Q,TquL qm) 9)
ratio is «, then the nodey; is allowed to probeM = gl dm

« - k;] candidate components fé;,. Under the guidance oA Ci b
c[)f the loarse-grain glot?al state,selectsM best c%ndidate The larger the rand% is, the more closely the QoS
components as follows: accumulatior(¢)* +¢¢ +q.') approaches its constraigft™?.

First, v; queries the global state to retrieve the coarse- The candidate components with smaller risk function values
grain QoS/resource states of all candidate componentsare considered as better components since their maximum
c1,...,ck. We usel; to denote the virtual link from the QoS violation risk values are smaller. Thus,is a better
current component to;. The QoS states of the candidate candidate component to probe thanif D(c;) < D(c;).
componente; and the virtual linkl; are described by If two candidate components have similar risk function
[q7%, ..., q51] and [qlli, ...,q%], respectively. The resource values, we compare them based on the load distribution
states of the candidate componeftinclude current re-  goal. We define a congestion functi@i(c;) as follows,
source availabilitie$ra?’, ..., ra]. The resource states of
the virtual link {; include its current available bandwidth
bali. On the other handy; acquires the resource/QoS
requirement information from the received probe. We use
[, ..., '] to denote the application’s end-system resource The component with smalleV (c;) values is a better
requirements, and’ to denote the user's bandwidth re- candidate to probe since it is less loaded. The above can-
quirement. We can calculate the residual resources of didate component selection scheme guarantee that probes
asrr;’ = ra;’ — r;" and the residual bandwidth &f as traverse alongoodcandidate compositions. The fine-grain
rbt = bali — bli. QoS/resource states collected by the probes will be used to

Second v; filters out unqualified candidate components select the best component composition. Thus, ACP can
by checking the input/output stream rate compatibility most efficiently find the optimal component composition
between the current-hop component and candidate nextalthough it only examines a subset of all candidate com-
hop components. Theny; further removes unqualified positions.

n
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We have conducted extensive simulation study to ex- % 70 e
perimentally evaluate the ACP approdth Our results [ N —
show that ACP can achieve better efficiency, scalability, and g 40 —
adaptability than other common approaches. 7 ol + ——
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4.1 Evaluation Methodology T 6w s 1
request rate (request number/minute)
We implemented an event-driven optimal component Al e O o o s

composition simulator in C++. The simulator first uses
the degree-based Internet topology generator Inet-3.0 [14]
to generate a 3200 node power-law graph to represent the
IP-layer network. The simulator then randomly selects
N € [200,500] nodes as stream processing nodes, which
are connected into an overlay mesh. Each nodé bfgs N
neighbors. The initial resource capacities and QoS states of
stream processing nodes and network links are uniformly
distributed within certain range based on the real-world
measurements. The simulator simulates both IP-layer and
overlay data routing using delay-based shortest path routing
algorithm. Each node provides a number of components
whose functions are selected from 80 pre-defined func- () overhead comparison
tions. The function graph of a stream processing request
is randomly selected from 20 pre-defined stream processing
application templates. Each function graph is either a path
or a DAG with two branch paths. Each path or branch path

includes [2,5] nodes. The resource and QoS requwementsapproach since it only requires local states. Both SP and RP

are uniformly distributed. Each application session lasts 5 . :
. L approaches use the same probing ratio as the ACP approach.
to 15 minutes. The global state update is triggered when the PP ! probing rat PP

value variation of a resource or QoS metric excedys of
its maximum value.

For comparison, we also implement three other common ) o
approachespptimal, random andstatic algorithms. The  First, we evaluate the efficiency of the ACP approach
optimal algorithm exhaustively searches all candidate com-illustrated by Figure 6. In this set of experiments, we use a
ponent compositions to find the best composition. The ran-400-node distributed stream processing system and a fixed
dom algorithm randomly selects a candidate component forProbing ratioa = 0.3. In Figure 6 (a), the x-axis shows
each required function. The static algorithm selects a fixed different requestrate; The y-axis shows the average success
candidate component for each function. We also imple- rate achieved by different algorithms measured over all
ment two otheccomposition probingapproachesselective the requests generateo! during 1OQ-m|nute simulation. We
probing (SP) andrandom probing(RP). The SP approach observe that ACP consistently achieves better performance

only uses the ACP’s per-hop candidate component selectiorf’@n other heuristic algorithms and similar performance as
scheme but replaces the optimal composition selectionth® optimal algorithm. Figure 6 (b) shows the overhead

(Equation 1) with random composition selection. The RP pf different algorithms. The optimal algorithm's_ overhead
approach performs random per-hop candidate componentS measyred by the num_ber of probes re,quwed by th.e
selection but uses the ACP’s optimal composition selection @xhaustive search per minute. The ACP’s overhead is

scheme. The RP approach represents the fully distributed€asured by the number of probes and global-state update
messages generated per time minute. The RP’s overhead
10we have implemented a prototype of distributed component compo- only includes the probing overhead. Compared to the opti-
sition system and deployed the system in the wide-area network testbedmg| algorithm that uses brute-force exhaustive search, ACP
PlanetLab. The prototype implements bounded composition probing (i.e., 0
a simpler version of ACP) and supports multimedia stream processing. can reduce overhead by as much as 95%. Compared to the
Readers are referred to [4] for more details. Integrating the ACP schemeRP approach, ACP can achieve much better performance

into the prototype is one of our on-going work. by paying a small coarse-grain global state maintenance

(a) performance comparison
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Figure 6. Efficiency evaluation.

4.2 Results and Analysis
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I time 50, and drops to 60 requests/minute at time 100. Figure
I 8 (a) shows the performance of the probing approach that
| uses dixedprobing ratioa = 0.3. The success rate starts
] from 100% and drops to about 80% when the request rate
2000 . increases to 80, and then comes back to about 90% when
N e e | the request rate decreases to 60. We then enable probing

80000

60000

40000

overhead (msg num/min)

200 300 400 500 600 ratio tuning and repeat the same experiment, illustrated by
node number Figure 8 (b). We observe that ACP can effectively adjust
(b) overhead comparison the probing ratio to maintain the composition success rate
at the target value 90%. The probing ratio is initiallyl
Figure 7. Scalability evaluation. and increases t0.2 after the first sampling period at time

5. After the request rate increases to 80 at time 50, the

success rate drops to 55%, which triggers ACP to increase
overhead. In contrast, the centralized algorithm would the probing ratio to 0.5. Finally, the probing ratio drops to
require400? messages per minute to perform precise global 0.3 at time 105 after the request rate decreases to 60 at time
state update assuming one minute update period is good00. The above experimental result demonstrates that ACP
enough. Hence, ACP can achieve near-optimal performancecan maintain a target composition success rate in a dynamic
with similar overhead as the fully distributed approach. stream processing environment (e.g., changing workload)

Second, we evaluate the scalability of the ACP approachPY adaptively tuning the probing ratio.
illustrated by Figure 7. We use different distributed stream
processing systems with 200 to 600 nodes. As we add mores  Related Work
nodes into the distributed stream processing, the number

of candidate components for each function increases pro- Recenﬂy, stream processing has received much research
portionally so as to increase the capacity of the distributed attention. Researchers have proposed load shedding solu-
stream processing system. We impose the same workloadions (e.g., [12]) to trade-off processing precision for timely
(request rate = 80 requests/minute) on those different dis-response when the system experiences resource shortage.
tributed stream processing systems. Figure 7 (a) showsOther projects have addressed the problems of load bal-
the performance comparison results. We observe that ACPancing [11] and load migration [1] in either cluster-based
achieves similar scaling property as the optimal algorithm. or wide-area distributed stream processing systems. Grid-
Figure 7 (b) shows that ACP has much lower overhead thanhased middleware system [2] has also been proposed for
the optimal algorithm. The overhead reduction increases agdistributed stream processing systems. Different from the
the node number increases. above work, our research focuses on providing optimal
Finally, we evaluate the adaptability of the ACP ap- component composition for distributed stream processing
proach, illustrated by Figure 8. We impose a dynamic systems. The contribution of our research is to provide
workload on a 400-node distributed stream processing sys-a stream processing application composition solution that
tem and set the target composition success rat@)#t considers load distribution, QoS provisioning, and function
The success rate sampling period is 5 minutes. Duringdependency.
a 150-minute simulation, the dynamic workload starts at Component composition has been studied under differ-
40 requests/minute, then increases to 80 requests/minute ant research context, such as service composition (e.g.,[9,



13, 5, 6]), systems software composition [10, 7], and multi-
media application configuration (e.g., [8]). In contrast, this
paper focuses on scalable optimal component composition
that is especially important for distributed stream process-
ing systems. Previous work either ignores the composition
optimality issue or only addresses part of it. Different
from previous centralized resource-aware service compo-
sition solutions [5, 9] or fully decentralized approaches
[6, 4], ACP represents hybrid approach that uses global
state to guide distributed composition probing for better
performance. Moreover, ACP can adaptively adjust the
probing ratio to achieve target composition performance
with minimal probing overhead.

6 Conclusion

We have presented the adaptive composition probing
(ACP) approach to provide an efficient, scalable, and self-
tunable approximation solution for the optimal component
composition problem. Our ACP approach can achieve
balanced load distribution while satisfying user’s function,
resource, and QoS constraints in a distributed stream pro-
cessing environment. Compared to previous approaches,
ACP makes two novel contributions. First, ACP proposes a
new hybrid approach that combines distributed composition
probing with hierarchical state management. Second, ACP
is self-tuning which can adaptively adjust the number of
probes to maintain target composition performance with

minimal probing overhead. Our extensive simulation results 9

show that ACP can achieve better efficiency, scalability, and
adaptability compared to other common approaches. Future

research directions for optimal component compaosition in- [10]

clude: (1) applying control theory to tune the probing ratio
more precisely, (2) supporting other application specific
constraints (e.g., security level, software licence) in compo-

nent composition, and (3) integrating dynamic component [11]

placement (or migration) with the component composition
system.
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