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Abstract

Streaming media objects have become widely used on
the Internet, and the demand of interactive requests to these
objects has increased dramatically. Typical interactive re-
quests include fast forward and direct jumps. Unfortu-
nately, most of existing streaming proxies are designed for
sequential accesses, and only a few solutions have been pro-
posed to maintain additional data structures in the proxy to
support some interactive operations (such as fast forward)
other than jumps, which are among the most common inter-
active requests from the clients.

Focusing on interactive accesses, in this paper we
present an analysis of streaming media workload collected
from thousands of broadband users hosted by a major ISP.
Our analysis shows that jump accesses (48%) and pauses
(51%) are the dominant client interactive requests and that
jump accesses often suffer serious delays due to slow buffer-
ing through the network. To support jump accesses ef-
fectively, we further propose a novel caching algorithm
– DISC (Dynamic Interleaved Segment Caching), which
trades cache performance for response time to client inter-
active requests. In this algorithm, segments of a media ob-
ject are cached dynamically according to client access pat-
terns. DISC can support direct jumps efficiently while en-
suring timely prefetching of uncached segments for sequen-
tial accesses. Trace-driven simulations demonstrate that
DISC outperforms other caching schemes significantly for
interactive requests with only a small degradation in cache
performance.

1 Introduction

Streaming media content delivery has become increas-
ingly important with the proliferation of multimedia content
in a broad spectrum of application areas, such as remote
education, digital libraries, military communications, and

entertainment. In addition, media files on the Internet to-
day are much larger and their playback durations are much
longer than they were just a few years ago [5, 11]. Conse-
quently, VCR-like interactive operations (e.g. jump, pause,
fast forward) are more common nowadays during the play-
back as clients search for the parts they are interested in.
This trend has been observed previously in both the edu-
cational environment and in the entertainment environment
(see e.g. [1, 6, 13]).

Efficient support for interactive operations is a challeng-
ing problem in Internet streaming. Although a number of
proxy caching solutions have been proposed for efficient
delivery of streaming media (see e.g. [4, 17], most of them
are designed to optimize client perceived quality during se-
quential accesses. They typically divide a media object into
segments and cache a few beginning segments only, expect-
ing uncached segments to be fetched later. While this de-
sign may work well when a client watches the media con-
tinuously, it provides inadequate support for interactive re-
quests from the client. For example, when the client jumps
from the current position to a later position in the media, the
proxy may not have the corresponding segment in its cache.
If it has to request the segment from the origin server, the
client is likely to suffer long delays or jitters during play-
back.

So far, only a small number of solutions have been pro-
posed to support client interactive requests in streaming.
They usually require the creation of additional data files
in the proxy or in the media server and can support only
a limited set of interactive operations such as fast forward,
rewind, and preview [9, 16]. None of them provides effec-
tive support for jumps, which according to a recent study
are among the dominant interactive operations from clients
[6].

In this paper, we first present an analysis of a streaming
media workload from thousands of broadband home users
collected at a major ISP. Our major findings include:

1. The locality of references for multimedia objects has



improved significantly during the past three years, in-
dicating that caching streaming media objects might be
more effective than before.

2. The majority of the client interactive requests are
jumps (48%) and pauses (51%) while most of jumps
are on popular objects.

3. Client jump operations often suffer long delays due to
slow buffering rate.

Our study shows that caching segments in sequential or-
der does not benefit interactive requests, such as jump ac-
cesses. Thus, a dynamic caching scheme is desirable, which
not only helps the interactive requests, but should also retain
the advantage of sequential caching. We propose Dynamic
Interleaved Segment Caching (DISC) for this purpose. In
this algorithm, segments of a media object are cached dy-
namically according to the access patterns of clients. It sup-
ports jump accesses by caching appropriate segments dis-
cretely according to the clients’ jump patterns. In the mean-
time, it ensures continuous streaming delivery for sequen-
tial accesses with prefetching support whenever necessary.
By caching objects in interleaved segments, DISC sacrifices
proxy cache performance in order to reduce the response
time to client jump requests. Simulation based experiments
demonstrate that our algorithm outperforms the continuous
segment caching strategy for interactive requests with only
a small degradation in cache performance.

The reminder of this paper is organized as follows. We
overview RTSP, the standard Internet streaming protocol, in
Section 2. We present our trace study in Section 3. Section 4
describes the details of our interleaved segment caching al-
gorithms. Simulation results are presented in Section 5.
Section 6 describes related work and Section 7 contains our
concluding remarks.

2 RTSP Operation Overview

RTSP (Real Time Streaming Protocol) is the standard In-
ternet streaming protocol for the communication between a
media player and a media server. Figure 1 illustrates client
and server interactions for client play, pause and jump ac-
cess in RTSP. A media player uses the SETUP method to
establish a connection for a video/audio stream in a multi-
media session. The PLAY method is used to start the trans-
fer of the stream. The player sends the PAUSE method
to the media server when it needs to halt the transmission
temporarily while keeping the session state at the server.
When the client initializes a jump access, such as clicking
or dragging the playback cursor in the media player, a set
of messages exchange between the client and the server:
the player first sends a PAUSE, waiting for the server to
respond. After getting the server’s response, the player

Figure 1. Overview of RTSP Operations

may exchange some parameters with the media server using
the SET PARAMETER method. Finally, the player sends a
PLAY command to the media server, specifying the position
it wants to jump to. In contrast, for a normal startup play re-
quest, the media player simply sends a PLAY command to
the server.

3 Analysis of Client Interactivity

We collected streaming media workload from a large
group of broadband users connected to the Internet via a
major ISP. The workload covers a three-day period from
2004-09-21 17:14:20 to 2004-09-24 17:21:30. We captured
the first IP packets of all RTSP messages and the TCP/UDP
packet headers of the streaming traffic with the packet ar-
rival time using the Gigascope appliance [7]. From the
TCP/UDP headers we can derive the real transferred traffic.
Then we grouped the RTSP messages by TCP connections,
with each connection representing a RTSP streaming ses-
sion. We parsed the RTSP commands in the RTSP packets,
and extracted media URLs, playback lengths, and encod-
ing rates. Then we matched the streaming traffic with the
identified RTSP sessions based on their IP addresses, port
numbers, and data capturing time. Finally we measured the
interactive response time and data transmission rate.

There are 2,748 distinct clients in our workload. They
accessed a total of 10,266 distinct media objects from 1,110
streaming servers during 23,001 streaming sessions, which
together transferred 80 GB streaming media traffic. The
media encoding rate in this workload ranges from 8 Kbps
to 1.769 Mbps, and the user playback duration ranges from
several seconds to five hours. Compared with the work-
load study from the University of Washington three years
ago [5], both the quality and the playback time of streaming
media have improved significantly.
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Figure 2. The locality of media object refer-
ences. Both axes are in log scale.

3.1 Locality of References

We first analyze the distribution of media references in
our workload, as shown in Figure 2. The x-axis is the se-
quence of media objects sorted by their popularities in non-
increasing order, and the y-axis is the numbers of their cor-
responding references in the workload. Note that both axes
are in log scale.

The figure indicates that the reference locality of stream-
ing media objects follows a Zipf-like distribution fi ∝ 1

iα

roughly, where i is the rank of a media object, fi is its
reference number, and α ≈ 0.61 is the skewness param-
eter. A measurement study [5] performed three years ago
shows a similar distribution shape of the reference local-
ity with α ≈ 0.47. Comparing these two studies, we find
that the streaming media accesses have become more con-
centrated on popular objects, and that proxy caching can
become more effective.

3.2 Locality of Interactive Requests

We extracted user interaction commands such as PLAY,
PAUSE, and TEARDOWN from the RTSP packets, and then
identified the jump operations in each streaming session
based on the context of client accesses.

As reported in [6], where the fast forward and rewind
occupy less than 1% in their workloads, similar results have
been observed in our workload. Among all interactive re-
quests, about half (48%) of them are jump requests, and the
rest (51%) are pause requests.

Figure 3 shows the cumulative fraction of jump requests
on media objects ordered in non-increasing popularities. As
indicated in the figure, jump requests are highly concen-
trated on a small number of popular objects. For exam-
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Figure 3. The locality of jump requests

ple, the top 100 popular objects account for about half of
all jump accesses. The skewness of jump request distribu-
tion enables the feasibility of supporting jump operations
through proxy caching.

3.3 Analysis of Jump Access Performance

A media player maintains a running buffer, which is
preloaded with media data before playback starts, to smooth
possible playback jitter due to the fluctuation of end-to-end
bandwidth between the server and the client. The buffer size
ranges from 5 seconds to 30 seconds of requested media
data for most of commercial media players. Old media data
is drained out and new media data is filled into the buffer
continuously during streaming. When a user clicks the play
button or drags the playback progress cursor on the media
player to start a streaming session or to specify a seeking
position, the user usually has to wait for a period of time
before playback begins. This user waiting time mainly con-
sists of three parts: the round trip time for communication
between the client and the server, the server response time
from the time when the server receives the command to the
time when it sends the first demanded data packet, and the
buffering time to fill the media player buffer.

Figure 4 shows the server response time to the media
startup requests and the server response time to the jump
requests, for streaming sessions with interactive operations.

As shown in the figure, the server response time of a
jump request is much larger (about ten times longer) than
that of a startup request. However, most of the server re-
sponse times are less than 1 second.

The media player cannot start the playback until the
buffer is full. When a media player sends a startup or jump
request to the server, it specifies its desired buffering speed
in the request message. Dissecting the messages exchanged
between media players and media servers, we find a client

3
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Figure 4. The server response time of jump
requests and startup requests

player always requests a server to fill the buffer as fast as
possible to minimize user waiting time. However, the server
responds with different speeds to the jump requests and to
the startup requests, with a maximum of about 5 times of
normal playback speed.
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Figure 5. The buffering speeds

Figure 5 shows the demanded buffering speed and the
actual buffering speed for jump requests, with a compari-
son to the buffering speed for startup requests. In this figure,
the x-axis represents the sessions where jump accesses hap-
pened. The demanded buffering speed is always the speed
at the maximal available bandwidth between the client and
the server. The average buffering speed for startup play re-
quests is about 4.4 times of normal playback speed, while
the average buffering speed for jump requests is only about
1.8 times of normal playback speed. Compared with the
startup delay where the buffering happens for the first time,
the longer user waiting time for a jump request is mainly

caused by slow buffering speed. A possible reason may be
the handling priority for different requests on the stream-
ing server: it is easy to understand that the streaming server
should satisfy continuous streams first, and put interactive
requests in second priority.

Our above findings through the measurement study mo-
tivate us to use the proxy caching approach to reduce user
waiting time for client jump accesses, which has not been
addressed in the proxy or server as far as we know.

4 Dynamic Interleaved Segment Caching
Strategy

To support client jump accesses, we propose the in-
terleaved segment caching strategies. In this section, we
first present the basic interleaved segment caching (BISC)
strategy to illustrate the principle of interleaved segment
caching, followed by the proposition of our dynamic inter-
leaved segment caching (DISC) algorithm. In these strate-
gies, each object consists of a number of segments, each of
which is composed of small blocks, where each block rep-
resents a sequence of actions in time or space.

4.1 Basic Interleaved Segment Caching

Our previous analysis shows that jump requests often
suffer long buffering delays. One way to reduce such delays
is through proxy caching. However, existing segment-based
streaming proxies usually cache only the beginning portion
of a media object [3]. We call them Continuous Segment
Caching (CSC) strategies. This is illustrated in Figure 6
(a) where the first four segments of an object are cached
sequentially. Such a design can reduce startup latency, pro-
vide free-of-jitter delivery, and improve cache performance
based on object popularity. However, they lack the sup-
port to jump requests: once a client jumps to an uncached
segment, the client will experience a long delay due to the
buffering time.

Given only partial segment caching is allowed, the ratio-
nale of BISC is to disperse originally continuously cached
segments of an object so that the chance of a cache hit dur-
ing a jump access is higher. This is exemplified by Figure
6 (b). As long as the client jumps to a cached segment,
the buffering time is reduced. Furthermore, when the client
jumps to an uncached segment, it can be directed to the
closest cached segment with some approximation. On the
downside, BISC will cache fewer beginning segments of
an object than CSC. Since the beginning part of an object
is normally more popular than the later part, BISC trades
byte hit ratio (the proxy performance) for response time (the
client performance) to jump requests.

Despite of the reduced cache performance, BISC can
provide the same continuous delivery guarantee as CSC for

4
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(a) Continuous Segment Caching

(b)Basic Interleaved Segment Caching

(c) Dynamic Interleaved Segment Caching

Figure 6. Rationale of Basic Interleave Seg-
ment Caching

the same amount of cache space. In summary,

1. To client sequential access, BISC can provide the
same continuous streaming delivery as CSC does, with
prefetching support whenever necessary;

2. Additionally, when prefetching is needed, the poten-
tial wastage of prefetched data caused by client early
terminations in BISC is less than that in CSC.

Prefetching is necessary when the end-to-end bandwidth
between the media server and the client is less than the me-
dia object playback rate. By assuming that

• the object length is L;

• the object encoding rate (also the client playback rate)
is E on average;

• the end-to-end bandwidth between the proxy and the
server is B on average;

we will show how to design BISC and show its aforemen-
tioned features.

With the support of partial data caching for media ob-
jects, a certain fraction of an object can be cached in the
proxy before client access to guarantee a timely prefetch-
ing [4]. Statically, it is easy to find that in the worst sce-
nario when the client is going to access the entire object,
the minimum length X that needs to be cached must satisfy
the following:

L

E
>

L − X

B
, (1)

which leads to

Xmin = L × (1 −
B

E
). (2)

We assume Xmin consists of S segments, which are
cached continuously according to the CSC strategy. Once

a client requests the object, the proxy starts to prefetch the
remainder segments S + 1, S + 2, ..., until the termination
of the media object or the end of client access. The caching
of the initial S segments guarantees a timely prefetching of
B
E

L data.
In BISC, we disperse these S segments discontinuously

with the segment length Ls =
L(1−B

E
)

S
and the distance to

the next cached segment being
B

E
L

S
. Thus, caching of one

segment needs to guarantee the timely prefetching of data

of length
B

E
L

S
. Based on Equation 1, this is guaranteed.

To show the second feature, suppose at any point, the
possibility of client termination is Px. In the CSC strategy,
the average prefetched data wastage on average is thus

∫
L(1− B

E
)

0

Px×

x

E
×Bdx+

∫
L

L(1− B

E
)

Px×(
x

E
×B−(x−L(1−

B

E
)))dx.

(3)

While in BISC, the prefetched data wastage on average
is the sum of from each L

S
unit. So we get

i=S−1∑
i=0

∫ i L

S
+

L(1− B

E
)

S

i L

S

Px ×
x

E
× Bdx +

∫ (i+1) L

S

i L

S
+

L(1− B

E
)

S

Px × (
x

E
× B − (x −

L(1 − B
E

)

S
))dx. (4)

If Px is independent of the position in the object, then for
BISC, the average wasted data can be represented as

S × Px × (

∫ L(1− B

E
)

S

0

x

E
× Bdx +

∫ L

S

L(1− B

E
)

S

(
x

E
× B − (x −

L(1− B
E

)

S
))dx). (5)

If we assume that the client terminates her request with a
50% probability at any access point, for the CSC strategy,
the average prefetched data wastage is

1

4
L2 B

E
× (1 −

B

E
) (6)

While for BISC, the average prefetched data wastage is

1
4L2 B

E
× (1 − B

E
)

S
(7)

The average wastage in BISC is only 1
S

of that in
CSC! This also indicates that with a larger number of seg-
ments (and the smaller size of the segments), the average
prefetched data wastage will be less. However, in practice,
the length of a segment cannot be too small. The change of

5



the size of the segment affects the number of the segments,
which in turn affects the distance between segments. For
effective support of jump accesses, capturing the jump dis-
tance is important. If S segments are allowed to be cached,

the ideal jump distance J is L
S
−

L(1−B

E
)

S
=

B

E
L

S
. Similarly,

if we find J (by characterizing the client jump access pat-
tern), we can determine how many segments for this object

as S =
B

E
L

J
, and thus the length of each cached segment

should be J
B

(E − B). This is the principle we use in our
algorithm designs.

Additional changes can be made on the BISC strategy
for different purposes. As shown in Figure 6 (c), in a local
range, segment 3,4 can be cached successively instead of
caching segment 3, 5 if necessary. In a larger range, given
a jump distance, there are different segment chains that can
be cached within BISC, such as caching segment 2, 4, 6, 8
instead of 1, 3, 5, 7 in Figure 6 (b). These adjustments can
be utilized to improve cache performance, such as when the
segment popularity changes. In the following subsection,
we present our dynamic interleaved segment caching algo-
rithm, in which the adjustment described above can apply.
Particularly, dynamic interleaved segment caching consid-
ers the client sequential access pattern and the jump access
pattern dynamically.

4.2 Dynamic Interleaved Segment Caching

BISC always caches objects in interleaved segments.
However, in practice, some objects are accessed sequen-
tially most of the time and will benefit more from contin-
uous caching. Thus, we propose our heuristic algorithm,
DISC, which can provide sufficient support to jump ac-
cesses while improving the cache performance over BISC.
Except for this point, BISC shares the same components
with DISC as we presented below.

In DISC, each object gets cached fully when it is ac-
cessed for the first time to set up an observation period for
the client access pattern. Later, when the fully cached object
is selected as a victim by the replacement policy, a quota is
calculated to determine the number of its segments that can
remain in the cache. (The quota computation will be ex-
plained later in the section.) The algorithm needs to decide
whether it should try to favor future jump accesses or future
sequential accesses. If the frequency of the jump accesses
is significant, it may be worthwhile to favor future jump ac-
cesses by caching dispersed segments of the media object.
Otherwise, it may be worthwhile to favor future sequential
accesses by caching sequential segments of the object. The
caching strategy (BISC or CSC) of the object is adjusted
periodically to accommodate the present client access pat-
tern. Two object replacement policies are used to reclaim
the cache space when needed from fully cached and par-
tially cached objects, respectively. To improve cache per-

formance, self replacement is active for interleaved cached
segments based on segment popularity.

To facilitate the DISC algorithm, the following items in
a data structure are maintained and updated in the proxy
along the client accesses for each object.

• T : the pre-determined period to adjust the quota of
each object;

• E: the average of the extracted object encoding rate
samples in T ;

• B: the average of the bandwidth sampled from the
proxy to the server for the prefetching of this object
in T ;

• W : the entirely accessed object length from clients;

• Q: the quota of the object;

• P : the popularity of the object (the number of accesses
excluding jump accesses), and the client average ac-
cess length is W

P
;

• N : the total number of the jump accesses to the object;

• D: the total of the jump distances of client accesses,
and the average is thus J = D

N
;

• Pj : the popularity of the jth segment of the object,
reset at the beginning of each period;

• T0: the first time the object is accessed;

• Tnow: the current time;

• R: the ratio of client jump accesses to object populari-
ties, which is N

P
;

• Rth: the threshold for R;

• Fth: the threshold for client unit jump frequency
( N
P×L

);

• Pth: the threshold for popularity ratio changes.

4.2.1 Object Admission and Replacement

Upon a new object access, the object admission policy al-
ways tries to store the object fully so that an observation
window can be set. In the observation window, the client
accesses (P ), the sum of the access length (W ), the num-
ber of jump accesses (N ), the total jump distance (D), the
average channel bandwidth (B), and streaming bandwidth
(E) (which is extracted from the object encoding rate) are
updated accordingly.

If there is insufficient cache space, the replacement pol-
icy is called. The replacement policy looks for the fully
cached object first. Among the fully cached objects, the

6



oldest one, based on Tnow − T0, is always selected as a
victim. Upon the selection, the corresponding quota and
caching initialization will be applied (see Section 4.2.2). If
no sufficient space is found after all fully cached objects are
checked, the popularity based replacement policy applies to
partially cached objects. The replacement always replaces
the segments of the least popular object, based on P , from
its tail until sufficient cache space is found.

4.2.2 Quota and Cache Initialization

Once a fully cached object is selected as a victim by the
replacement policy, the following steps are involved in the
DISC algorithm initialization.

• Allocating Quota: when the average bandwidth from
the proxy to the server is less than the playback rate,
the quota Q is calculated to allocate sufficient cache
space for this object to ensure in-time prefetching. It
is the larger of the average access length of this object
and the calculated value of Xmin in equation 2. Math-
ematically, Q = max(L(1 − B

E
), W

P
). If the playback

rate is less than the bandwidth, then no prefetching is
required and Q = 0.

• Segmenting Object: Having the quota Q, and calculat-
ing the average jump distance as J = D

N
, the number

of segments of this object S and the segment length are
calculated as B×L

E×J
and J

B
(E − B). If N is zero, the

object has one segment cached.

• Initializing Continuous Segment Caching: If the client
unit jump frequency, calculated as N

P×L
, is less than

the threshold Fth, the quota is filled with the beginning
portions of the object. The rest segments are evicted
from the proxy. Note that large objects tend to have
more jump accesses. Hence, we include the object
length L in the calculation of Fth.

• Initializing Basic Interleaved Segment Caching: If the
client unit jump frequency is larger than or equal to the
threshold Fth, segments starting from the first one are
cached in interleaved fashion with the jump distance
of J . The rest segments that are not on this interleaved
segment chain are evicted.

4.2.3 Self Replacement

The self replacement policy is active in each period for ob-
jects with interleaved cached segments. It compares the
popularity of cached segments to uncached segments in the
same chain to determine if the cached segments are suffi-
ciently popular. If not, the cached segments are replaced
with more popular uncached segments if the popularity of
the cached chain is less than any of the uncached one by

Pth. The popularity measure can be either the number of
jump accesses or the number of total accesses. Any replace-
ment is performed on a one-to-one basis, and therefore the
self replacement neither reduces nor increases the amount
of cache space occupied by the media object.

For example, if a media object has k segments in the
cache. Then the algorithm first determines which k seg-
ments of the object are most popular right now. If not all
of them are in the cache, then the algorithm can swap them
in provided that the difference in popularity is greater than
Pth. The actual replacement is performed in an on-demand
manner, i.e., only when some client accesses them.

4.2.4 Implicit Periodical Update

Since network conditions and client accesses change over
time, the quota of each object needs to be updated periodi-
cally to reflect the current situation. When a period finishes,
the current conditions and the new average access length are
taken into consideration to get a new quota for this object.
Also, the average jump distance J may have deviated from
its original value with time. Lastly, a continuous cached ob-
ject may have more client jump accesses and thus its R may
become larger than the threshold Rth, while an interleaved
cached object may receive diminishing jump accesses, caus-
ing its R to be less than the threshold. The implicit period-
ical update policy takes care of these changes implicitly at
the end of each period with the following steps for partially
cached objects:

• Recalculate the quota of the object with the newly up-
dated B, E, W , and P . If the quota gets larger, the
object replacement policy is called to reclaim the addi-
tional space.

• Upon the success of space reclamation if necessary, the
ratio R is recalculated and different steps are taken ac-
cordingly as follows.

• If N
P×L

≥ Fth, the BISC initialization is activated
with the current value of J . With the new object divi-
sion, a new chain of segments is selected and marked
to be cached. The cached segments without a mark are
evicted. However, if the to-be-cached segments are not
in the cache, their caching is delayed until some client
accesses them. This saves updating overhead.

• If N
P×L

< Fth, the CSC strategy is activated. The cor-
responding segments are marked for caching while the
rest are evicted from the cache. Again, if the to-be-
cached segments are not in the cache, their caching is
delayed until some client accesses them to save updat-
ing overhead.
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Figure 7. Jump Access Hit Ratio

4.2.5 Proactive Prefetching

To improve the client perceived QoS with jump accesses
and sequential accesses, the proactive prefetching technique
is utilized. For a client access to a continuously cached
object, if the access starts from a uncached data segment,
it is delayed until the demanded segment is fetched from
the server. If the client accesses the cached data segment,
the proactive prefetching prefetches the uncached data seg-
ments continuously, until the end or the client termination.
For a client access to an interleaved cached object, if the
access starts from an uncached data segment, it is always
re-directed to the closest cached segment. Upon the client
accessing the cached segment, proactive prefetching is acti-
vated to prefetch the succeeding uncached segments in case
the client is going to access them.

5 Simulation Results

To evaluate the performance of our proposed heuristic
algorithms, we conduct extensive trace-driven simulations
based on our collected workload described in Section 3. In
our experiments, we select workload of different time peri-
ods (1 hour to 3 days) and set different buffer sizes for me-
dia players, ranging from 5-30 seconds of media data to be
played. Due to page limits, we only present the results for
workload of one day. The buffer size of media players is set
to 15 seconds of data for the requested object. Fth is 0.025
while Pth is 0.5. Experiments with other parameters have
similar results. In the following figures, CSC represents the
continuous segment caching approach. BISC represents the
basic interleaved segment caching method, sharing all other
components with DISC as we presented, except that it en-
forces interleaved segment caching for each object. DISC
denotes the dynamic interleaved segment caching algorithm
we presented in Section 4.
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Figure 8. Average Jump Buffering Time
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Figure 9. Cache Performance

Figure 7 shows the jump hit ratio of the media proxy.
Jump hit ratio denotes how many client jumps hit in the
proxy, averaged by the total number of jump accesses from
clients. It reflects the percentage of client jump accesses
that do not depend on the slow buffering rate. As shown
on the figure, with the increase of proxy cache size, both
BISC and DISC can significantly improve the number of
jump access hits over CSC by about 17 and 12 percentage
points on average, respectively.

A jump access hit does not mean that buffering can be
totally avoided unless all data to be buffered are cached
on the proxy. For the three different approaches, Figure 8
shows the average jump buffering time, which is the buffer-
ing time to jump accesses averaged over the number of jump
accesses. As expected, DISC outperforms BISC, BISC out-
performs CSC in general. But it is interesting to note that
the improvement fluctuates when the cache size increases
due to changes of segment sizes.

Since BISC and DISC sacrifice cache performance, in
Figure 9 we measure the cache performance in terms of byte
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Figure 10. Prefetching Efficiency

hit ratio, which reflects the reduction of the outgoing traffic
due to proxy caching. DISC reduces relatively more net-
work traffic with respect to BISC. But both of them degrade
the cache performance when compared with CSC by about
8 and 10 percentage points.

As presented in Section 4, BISC and DISC outperform
CSC in terms of reducing the prefetched data wastage when
the prefetching is needed. Figure 10 shows the prefetching
wastage ratio of the media proxy, which is the prefetching
wastage of DISC and BISC relative to that of CSC. In the
figure, the x-axis represents the objects which have larger
encoding rate than the network bandwidth from the proxy
to the server, ordered in object playback length. The num-
ber of such media objects is not large because the work-
load is collected from the broadband users. Shown in the
figure, BISC achieves better results than DISC. However,
when the object playback length increases, the number of
the segments are getting larger for the object, thus the dif-
ference between BISC and DISC becomes smaller, as we
analyzed in Section 4.

6 Related Work

In recent years, Internet media content delivery has at-
tracted a lot of research effort from the community [12, 3,
4, 14, 15]. A number of studies are focused on workload
characterization of client interactive requests to the rapidly
increased Internet streaming media contents. The client in-
teraction patterns are studied for frequencies of different
types of client interactions and distributions of session on
and off times for MANIC audio content system [19], the
educational eTech and BIBS media servers [1], and the ed-
ucational internal server of a large international corpora-
tion [13]. Study [1] also presents the session arrival process
and proposes caching strategies for interactive workloads.
In [6], four audio and video workloads from educational

and entertainmental sites are studied for client interactions,
which indicates that 99% of the client interactive requests
are jump accesses. The difference and similarities in typical
client behavior of three workload classes are also presented.
Recently, authors in [18] consider the buffering impact in
the Windows Media on the response time to client requests.
Different from the previous studies where the workloads are
collected from a special entertainment server or educational
environment, the workload in our study is collected from
a large ISP, servicing a large number of broadband home
users, who access all kinds of Web sites. And our analy-
sis finds the impact of the network to the response time to
interactive requests, particularly to the jump accesses.

Most of the previous research has studied the interac-
tive request support on the media server. Three typical
approaches are proposed for the media server to support
fast forward. One is to display frames at a rate n-times
faster than normal playback, such as [8], which requires
n-times frames to be retrieved, leading to an n fold load to
the server. In the second approach, skipping frames and its
variations based on segments [2], only the nth frames are
displayed at the normal playback rate. Building streams for
interactive operation only by special encoding schemes is
the third strategy [10, 22]. Some other researchers have con-
sidered the disk model, such as the RAID [21] disk model,
and multicast [20] for client interactive request support. On
the proxy side, some solutions to support client interac-
tive requests for Internet streaming delivery have also been
proposed to create additional data files, called summariza-
tion [16] or hotspots [9], containing discontinuous but rep-
resentative scenes of a media object, and cache them sepa-
rately from the media files. In [16], the proxy is responsi-
ble for shot boundary detection and key-frame selection and
summarization. A client can preview the summarization to
decide whether he/she is going to continue the request. The
summarization and media data can be both cached in multi-
ple cooperative proxies. While in [9], the proxy only caches
the hotspots to reduce client interaction requests (normally
short) to the video servers which house the videos. By relat-
ing these summarization and hotspots to the video data, they
provide support to fast forward and rewind. In addition,
they can also support the preview function. However, they
have not considered the support of client jump accesses.

Compared to existing work, our approach is the first to
consider client jump access support, which is a majority of
client interactive requests. Our dynamic interleaved seg-
ment caching not only considers the client jump access pat-
tern, but also the sequential access pattern.

7 Conclusion

With the increase of the amount and playback length of
streaming media objects over the Internet, more and more
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client interactive requests demand efficient support. Previ-
ous research efforts in the media server or the proxy paid lit-
tle attention to client jump access, which is one of the dom-
inant client interactive requests. By studying the stream-
ing media workload collected from thousands of broadband
home users through a large ISP, we found that not only
has client access locality improved significantly in the past
three years, but the dominant client jump accesses often
suffer large delay due to the slow buffering rate through
the network. To reduce the response time to interactive re-
quests, we propose dynamic interleaved segment caching,
where the object segments are cached according to the client
access pattern dynamically. Conducting simulation-based
evaluation, we show our proposed algorithm can greatly
reduce the response time to client jump accesses, while
slightly sacrificing proxy cache performance.

Our future work includes evaluations of DISC against
BISC and CSC based on synthetic and collected Internet
workloads. To generate typical synthetic workloads for our
evaluations and for other researchers, we will study more
detailed client jump patterns in extensive traces. Evalua-
tions of different thresholds to give other recommendations
under different patterns are also planed.
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