
Time-Constrained Service on Air∗

Yu-Chi Chung1 Chao-Chun Chen2 Chiang Lee1

1Department of Computer Science and Information Engineering
National Cheng-Kung University, Tainan, Taiwan, R.O.C.

{justim,leec}@dblab.csie.ncku.edu.tw
2Department of Information Management

Shih-Chien University Kaohsiung Campus, Taiwan, R.O.C.
chencc@mail3.kh.usc.edu.tw

Abstract

Data broadcasting is an efficient and highly scalable
technique for delivering data to mobile clients in wire-
less environments. In this paper, we study the problem of
scheduling broadcast data that are with an expected time
within which the client is expecting to receive the data item.
We analyze the problem and derive the minimum number of
broadcast channels required for such a task. Also, we dis-
cuss the problems when the number of available channels
is not enough. We propose novel solutions for both of the
cases and the performance study indicates that our method
is much better than the previous ones and performs very
close to optimal.

1 Introduction

With the fast advances of wireless technologies, mobile
clients are able to conveniently acquire more and more in-
formation in real-time. In order to cope with the asymmetric
communication property (that is, the downlink bandwidth
is much higher than the uplink bandwidth) of such envi-
ronments, data broadcasting becomes a natural solution for
wireless communication applications. A client in such a
system listens to the broadcast and waits until the required
information comes and then downloads the data. The ad-
vantages of this broadcast type of data transmission are per-
fect scalability and high utilization of precious communica-
tion bandwidth [1].

Broadcast data are selected through a certain mechanism
to ensure that they are needed by most clients, and then
are scheduled in a particular order and broadcast in such
an order, which is called a broadcast program. One of the

∗This research was partially supported by the National Science Council
in Taiwan under grant number NSC92-2213-E-006-043.

major focuses of the research in the past on the schedul-
ing of broadcast program is to reduce the average access
time, that is, the time from a client’s starting to listen (which
could be anytime) until the required information is received
[1, 2, 3, 5, 7, 10, 12, 15, 18]. However, the need of ac-
quiring and even manipulating these broadcast data under
certain constrained time is getting more and more demand-
ing with the increasing involvement of services of mobile
applications in our daily lives. For an example, the timing
of buying/selling stocks for a stock holder is very crucial. If
the stock information cannot reach a stock holder in time,
the information might become useless. For another exam-
ple, the information about traffic jam that is caused by a car
accident should also reach a mobile client heading toward
this direction timely. If a client receives such information
early enough, the client is able to react accordingly to avoid
the traffic jam. The value of the information would degrade
significantly when the client gets closer to the spot of the
accident. Another scenario is that a client may not be al-
ways patient in listening the broadcast information [9, 14].
When the waiting time is longer than the expected time of
a client, the client could switch the access from a broad-
cast channel to an on-demand channel and actively sends a
pull request through an uplink channel to ask for the desired
data, instead of passively waiting in the broadcast channel
for the data to come. Too often and too many such actions
could seriously congest the on-demand channels. There-
fore, the less can a broadcast program meet a client’s ex-
pectation, the more serious congestion could be incurred in
the on-demand channels [9]. If the waiting time of clients
in the broadcast channels can be controlled within a cer-
tain expected time, the quality of service of the on-demand
channels can also remain unaffected. These practical rea-
sons and real-time requirements motivate the need of new
research on the scheduling of broadcast data so as to fulfill
clients’ needs [8, 11, 14, 19].

In this paper, we propose scheduling mechanisms for

broadcasting data that are with an expected time. In this re-
search, each data item (or formally a broadcast data page in
our later presentation) is associated with an expected time.
We assume that the importance of the data remains the same
if a client receives the data within the expected time. Other-
wise, its value diminishes or even becomes useless. There-
fore, the broadcast program should be so designed that no
matter when a client starts to listen, the client is always able
to receive the required data either within the expected time
or as close to the expected time as possible, if within it is
impossible (due to lack of enough broadcast channels).

As for how to obtain the expected time of a data item,
several previous research results can be applied to serve this
purpose. The piggyback and the probing techniques are a
few of those suitable for this purpose [4, 9, 13, 14, 16, 17].

A difficulty of scheduling the broadcast data so as to
meet a client’s expected time is that the client could start
to listen at any time. The system has to guarantee that the
client, no matter when to start to listen, will be able to re-
ceive all the desired data pages within the expected time.
Several issues need to be considered in this research. (1)
What is the minimally required number of the channels by
which broadcast data are allocated so that clients are al-
ways able to receive the required data within the expected
time? (2) If theoretically there exists such a minimum num-
ber of channels, then how to design a scheduling algorithm
that can indeed utilize this minimum number of channels to
serve the job (i.e., to let all clients receive the required data
within the expected time)? (3) If the available channels of a
broadcast system are insufficient (i.e., less than the theoret-
ical minimum number of channels), then how to schedule
the broadcast data so as to minimize the delay incurred by
insufficient channels?

We propose solutions for all these issues. We first de-
rive the theoretical bound for the number of channels that
a broadcast system must have in order to broadcast data
within their expected time. Then, we propose an optimal al-
gorithm that always utilizes this minimum number of chan-
nels in scheduling the broadcast data. Also, we study how
to schedule the data when the number of channels is insuf-
ficient and propose a heuristic algorithm to serve the task.
Our performance results show that the proposed scheduling
algorithm for insufficient channels achieves a much better
performance than the past major solutions, and is very close
to the optimal result.

The rest of the paper is organized as follows. In Sec-
tion 2, we formally define our problem and the assumptions.
Then in Section 3 we derive the required minimum number
of channels and propose an algorithm that works under this
number of channels. Another method working for the case
of insufficient channels is proposed in Section 4. A pre-
liminary performance study is then presented in Section 5.
Finally, we conclude the paper in Section 6.

2 Problem Definition and Assumptions

We formulate our problem and make appropriate as-
sumptions to make it a resolvable problem as follows.
Given a number of data pages to be broadcast in multiple
broadcast channels. Each of the data pages is associated
with a known expected time. Every access of a client is only
one data page. As the expected times may be different from
each other, the problem can become too complicated to re-
solve. To make it resolvable, we assume that the expected
times can be rearranged to h groups, within each group the
expected times of the data pages being equal. ti+1 is equal
to c · ti for 1 ≤ i ≤ h − 1, where ti is the expected time
of data pages of group i. For instance, 5 data pages need to
be broadcast and their expected times are 2, 3, 4, 6, and 9,
respectively. To schedule these data pages of almost arbi-
trary expected times, the complexity of the problem would
be very high. A simple rearrangement of the expected times
may drastically reduce the complexity of the problem. We
reassign their expected times to 2, 2, 4, 4, and 8. That is,
page 2, page 4, and page 5’s expected times, originally be-
ing 3, 6, and 9, are now changed to 2, 4, and 8, respectively.
Note that their new expected times are smaller than or equal
to the original ones (i.e., 2 < 3, 4 < 6, 8 < 9), so they
still satisfy the requirements. Also, the new expected time
should be as close to the original one as possible, so that
the system does not waste the resource (i.e., bandwidth) by
broadcasting this data page too early. In this particular ex-
ample, there are three groups of expected times, and t1 = 2,
t2 = 4, t3 = 8, and c = 2 because t2 = 2 ·t1 and t3 = 2 ·t2.
The reduction of the complexity of the scheduling problem
will be seen in later sections. Also note that this rearrange-
ment of expected times is not uncommon in the research
of real-time paradigm. It is quite an elegant assumption to
simplify the problem in that research area.

With this rearrangement, the expected times are clas-
sified to h groups of identical expected times. Let these
groups be G1, G2, · · ·, Gh. Also let the j-th data page of the
i-th group be denoted as pi,j , and the number of channels
that a broadcast system really supply as N real. Let Pi be
the number of data pages of group Gi. Then, our research
problem can be restated as follows. Given data pages pi,j

to be broadcast in N real channels and pi,j being associated
with an expected time ti, where 1 ≤ i ≤ h, and 1 ≤ j ≤ Pi,
the goal is to design such a scheduling algorithm that the
produced broadcast program can satisfy all clients’ needs
as much as possible, regardless of the starting time of lis-
tening. Following this definition, we find that the problem
should be divided to two cases depending on the number of
available channels. Let the required minimum number of
channels be N . If N ≤ N real, the design goal is to satisfy
all accesses (i.e., to let every client receive the required data
page within the expected time). If N > N real, then meet-

2

ing the expected time of every data page is impossible. So
the design goal is to reduce the delay as much as possible.
The two cases are presented in the following two sections
respectively.

3 Method for Sufficient Channels

By sufficient channels, we mean that the number of chan-
nels supplied by the system is greater than or equal to the
minimum number of channels required for the task, i.e.,
N ≤ N real. We first derive a theoretical lower bound of
N . Then, we provide a scheduling algorithm that is able
to accomplish the task by utilizing the minimum number of
channels.

3.1 Minimum Number of Channels

We refer to a valid broadcast program as the one that all
data pages can be received by clients through this program
within their expected times, no matter when a client starts to
listen. Two conditions can be inferred from this definition
of a valid broadcast program:

1. pi,j is broadcast at least once between the time 1 and
ti, where “1” means the time that a broadcast program
starts.

2. The time between the k-th and the (k+1)-th broadcast
of pi,j , where k ≥ 1, has to be less than or equal to ti.

The number of data pages and how often these pages are
broadcast directly affect the required number of channels.
Their relationship is given the following theorem.

Theorem 3.1. (Minimum Number of Channels)
Let N be the minimum number of channels required for
a valid broadcast program. ti is the expected time of
data in group Gi and Pi is the number of data pages of
Gi. Let ti+1 = c · ti, where c is a positive integer and
i = 1, 2, · · · , h. Then,

N ≥
h∑

i=1

⌈
Pi

ti

⌉
(1)

For a simple example, assume that two groups of data
pages are to be broadcast. The numbers of pages of the
two groups are 2 and 3, and their expected times are 2 and
4, respectively. Then, the minimum number of channels
required for completing the job is

N ≥
⌈

2

2
+

3

4

⌉
= �1.75� = 2

Any number of channels less than this minimum number
(e.g., 1 channel in this example) is impossible to serve the
job (i.e., data pages cannot be broadcast without causing a
delay). The proof of the theorem can be found in [6]

3.2 A Scheduling Algorithm for Sufficient Chan-
nels

Now that the minimum number of channels is obtained,
our next task is to design an algorithm that always generates
a valid broadcast program and at the same time utilizes only
the minimum number of channels.

Two conditions have to be satisfied for a broadcast pro-
gram to be valid, as mentioned above. The “at least” part
and the “less than” part of the two conditions indicate that
there is a minimum number of times that a page should be
broadcast. Hence, considering a given set of empty chan-
nels, Condition (1) implies that a data page with a smaller
expected time should be assigned to the channels first. This
is because if the front channel slots are occupied by data
of a greater expected time, then eventually we may find no
vacancies in the front of the channels for data pages of a
smaller expected time so as to satisfy Condition (1). That
is to say, Condition (1) implies an assigning order of data
pages to the channels. Following that, Condition (2) tells
how data are assigned to the rest of the channel slots. That
is, a data page after the first assignment is repeatedly as-
signed to a channel slot for every ti time slots, if ti is the
expected time of the data. As this algorithm operates under
sufficient channels, we call it the Scheduling Under Suffi-
cient Channels (SUSC) algorithm. Conceptually, the algo-
rithm is greedy-based.

Let B be such a multi-channel broadcast program de-
signed by the SUSC algorithm. In effect, B can be thought
of as a two-dimensional array type of data structure, where
each row represents a broadcast channel and each column
has a set of time slots containing data pages to be broadcast
at the same time. Formally the SUSC algorithm is presented
in the following.

1. Arrange all data pages to be broadcast in ascending or-
der according to their expected time. Those data pages
of the same expected time are from the same group Gi,
and their order is unimportant.

2. Get the first page in the list obtained above, letting it
be pi,j .

3. Call the GetAvailableSlot subroutine. This subroutine
searches in B an available (unused) time slot. The
search starts from the first time slot of the first chan-
nel till the ti-th time slot of the same channel. If an
available time slot is found, then GetAvailableSlot re-
turns this time slot. Otherwise, the search will go on to
the next channel to find an available channel. Note that
it is nontrivial that an available time slot can always be
found in the designated window of channel slots. The-
orem 3.2 shows that this time slot indeed always exists.

3

4. Let the returned time slot from the GetAvailableSlot
subroutine be (x, y), where x is the channel number
and y the slot number. As pi,j should be broadcast
�th/ti� times, starting from (x, y) we assign pi,j once
for every ti time slots. That is, pi,j is assigned to slots
(x, y), (x, y+ ti), (x, y+2 · ti), · · ·, (x, y+(�th/ti�−
1) · ti).

5. Repeat steps 2 ∼ 4 until all data pages are assigned to
B.

Note that certain steps of the algorithm can be further
optimized to reduce the execution time. For example, the
search of an available slot in Step 3 need not be always
starting from the first slot of every channel. As this fur-
ther reduction is secondary to the context, we omit it in the
presentation for ease of understanding the concept of the
method. The details of the algorithm is given in Algorithm 1
and Algorithm 2.

Algorithm 1: Pseudo code of the SUSC Algorithm.
GIVEN:N , h, th, and all data pages to be arranged in a
broadcast program B.
FIND: A valid broadcast program.
Sorting all data pages in ascending order according to their
expected time ;
for i = 1 to h do

for j = 1 to Pi do
(x, y) = GetAvailableSlot(N , ti, B) ;
/*�th/ti� is the broadcast frequency of pi,j */

for k = 1 to �th/ti� do B[x, y + (k − 1) · ti]← pi,j ;

Algorithm 2: Pseudo code of GetAvailableSlot Algo-
rithm.

GIVEN:N , ti, B.
FIND: An available time slot to contain pi,j .
for x = 1 toN do

for y = 1 to ti do
if B[x, y] is an available slot then return (x, y) else return
“Not found” ;

3.3 Validity of the SUSC Algorithm

Two main points need to be clarified in order to prove the
validity of the algorithm. They are given in the following
two theorems. Readers may refer to [6] for the proof of the
theorems.

Theorem 3.2. There always exists an available time slot
(x, y) in B, where 1 ≤ x ≤ N and 1 ≤ y ≤ ti, in
executing the GetAvailableSlot of the SUSC algorithm
such that pi,j can be arranged in (x, y).

Theorem 3.3. For data page pi,j whose first appearance
in B is (x, y), its k-th appearance must be at slot (x, y +
(k − 1)ti), for all 1 ≤ k ≤ �th/ti�.

4 Scheduling Under Insufficient Channels

When the number of available channels is less than the
minimum number given in Theorem 3.1, the SUSC algo-
rithm becomes infeasible for data scheduling. New algo-
rithms need to be designed for this situation.

We first consider two possible solutions.

• Simply drop some data pages to reduce the amount of
data to be broadcast so that the expected time of all
broadcast data can be satisfied.

• Do not drop any data pages. Instead, we reduce the
number of times that a data page is broadcast so that
all broadcast data can fit in the insufficiently provided
channels.

The task for the first solution is to choose some data pages
and drop them from the broadcast list. Once they are re-
moved and the remaining data can fit in the provided chan-
nels, the assignment can then be accomplished by using the
SUSC algorithms presented in the last section. Although
this solution seems rather simple and effective, it is in fact
inadequate because the problem is not completely resolved.
Those clients who do not obtain data from the broadcast
channels are forced to issue requests to the server and ac-
cess data through the on-demand channels. This hence in-
creases the client population of on-demand channels and as
a result, the quality of service of the on-demand channels
are still severely degraded by using this solution.

For these reasons, we take the second approach - reduc-
ing the number of times that a page is broadcast - as our
solution to the problem. The tradeoff is that a client may
not be able to receive the data within the expected time.
Our idea is to equally disperse the delay caused by channel
insufficiency to all broadcast data. However, because the
expected times of these data are different, how to arrange
them so that the delay of each data page remains about the
same becomes a difficult task. Of course, if the number of
available channels is far less than required,then no meth-
ods including ours can prevent clients from switching to the
on-demand channels to obtain their data. But, only if the
system-provided broadcast channels reach as few as 1/5 of
the required minimum number of channels, the delay that a
client experiences in using our method is quite limited and
ignorable, and the performance becomes almost as good as
the theoretically optimal performance. In this section, we
propose this method, formally the Progressively Approach-
ing Minimum Average Delay (PAMAD) method.

4

4.1 Model of Average Delay Time

Given a broadcast program, the average delay, denoted
as D, of all broadcast data is the sum of access probability
times average delay of every data page. That is,

D =
h∑

i=1

Pi∑
j=1

probaccess(pi,j) · avg delay(pi,j)

where probaccess(pi,j) is the access probability and
avg delay(pi,j) is the average delay of pi,j . Suppose that
each data page has the same chance of being accessed by
clients. Then probaccess(pi,j) should be 1/n, where n is
the number of broadcast data pages.

The other term avg delay(pi,j) in the above equation is
obtained in this way. Given a data page pi,j in a broad-
cast program B, the time interval between the k-th and the
(k + 1)-th appearances in B remains the same for all k be-
cause our design rationale (that will be used in the design of
the PAMAD algorithm) is that the delay should be equally
dispersed among the broadcast data. Hence, this time inter-
val, which is greater than ti, can be considered to have two
segments, a delay period and an expecting period. Figure 1
gives an illustration of these two periods, in which tk(pi,j)
is the time of the k-th appearance of pi,j . A client enter-
ing the broadcast system within the expecting period can
receive the data without delay. On the other hand, a delay is
inevitable if the client enters within the delay period.

t
k-1

(p
i,j
) t

k
(p

i,j
)-t

i
t
k
(p

i,j
)

t i

expecting perioddelay period

Figure 1. An example of delay period and ex-
pecting period.

As the probability of having a delayed access is propor-
tional to the length of delay period, this probability can be
represented as (tk(pi,j)−ti)−tk−1(pi,j)

tk(pi,j)−tk−1(pi,j)
. Upon the occurrence

of delay (meaning that the client enters the broadcast sys-
tem within the delay period), the average delay time should
be one half of the delay period, i.e., (tk(pi,j)−ti)−tk−1(pi,j)

2 .
Hence, the average delay caused by entering the broadcast
system during the delay period is (tk(pi,j)−ti)−tk−1(pi,j)

tk(pi,j)−tk−1(pi,j)
·

(tk(pi,j)−ti)−tk−1(pi,j)
2 .

Let the number of times that pi,j is broadcast in B be
si,j . The average delay caused by all broadcast data pages
is therefore

D =
h∑

i=1

Pi∑
j=1

probaccess(pi,j) · avg delay(pi,j) =
1

n
·

h∑
i=1

Pi∑
j=1

1

si,j


si,j∑

k=1

max

(
(tk(pi,j)−ti)−tk−1(pi,j)

tk(pi,j)−tk−1(pi,j)
· (tk(pi,j)−ti)−tk−1(pi,j)

2
, 0

)
This expression indicates that the delay D is affected by

two major factors, the time instant that a page is broadcast
(i.e., tk(pi,j)) and the number of times this page is broad-
cast (i.e., si,j). In the following, we first discuss how to
determine tk(pi,j). Based on this result, we derive the opti-
mal number of times that pi,j is broadcast which results in
the smallest average delay.

4.2 Arrangement of tk(pi,j)

As just stated, our design rationale is that delay should
be equally dispersed among the broadcast data. Let tmajor

be the time interval of a major cycle of B. Then the time
distance between this and the next appearances of pi,j in
B should be �tmajor/si,j�. Using this expression, we can
rewrite D as follows.

D =
1

n
·

h∑
i=1

Pi∑
j=1

1

si,j


si,j ·max

((� tmajor

si,j
� − ti)

2

2 · � tmajor

si,j
�

, 0

)


As tmajor and ti are both constant and known before-
hand, D is therefore solely dependent on si,j , the number
of times pi,j should appear in B. This in turn determines
the time instant that pi,j should appear in B, i.e., tk(pi,j).

4.3 Derivation of Broadcast Frequency

The next problem is to determine the best si,j such that
D is minimum. Assume that there are n pages to broadcast
and let si,j varies between 1 and r. Then, we have totally rn

possible broadcast frequencies. Hence, a brute-force algo-
rithm will lead to a solution of complexity O(rn). Heuris-
tics must be used to reduce the complexity of the problem.

As the expected time of data pages within a group is the
same, their broadcast frequency should also be the same.
Hence, we can reduce the problem from computing the
broadcast frequency of each data page to that of each group.
So the average delay obtained earlier becomes the average
delay for a group (of data pages with the same expected
time), or average group delay. Let Si be the number of
times that group Gi data are broadcast (i.e., the broadcast
frequency of Gi). So S1 ·P1 +S2 ·P2 + . . .+Sh ·Ph is the
number of all pages (containing multiple appearances of the
same page) in B. Let F = S1 ·P1 +S2 ·P2 + . . .+Sh ·Ph.
Then, probaccess(Gi) is equal to Si·Pi

F . The average group
delay, denoted as D′, can be represented as follows.

D′ =
h∑

i=1

probaccess(Gi) · avg delay(Gi)

=
h∑

i=1

Si · Pi

F ·
(
max

(
(
F
N real

· 1

Si
− ti)·(

(
tmajor

Si
)− ti

2
), 0

))
(2)

In this expression, N real is the number of channels re-
ally provided by the system (which is supposed to be less

5

than N because we are considering the insufficient channel
case now).

Our goal now is to find S1, S2, · · ·, Sh for broadcasting
data of G1, G2, · · ·, Gh which result in the minimum aver-
age group delay. Our idea is this. Suppose that we already
know the best frequencies S1, S2, · · ·, Sh−1 for broadcast-
ing G1, G2, · · ·, Gh−1 when the length of a major cycle is
th−1. Then, we may utilize this result in looking for the
best Sh for scheduling the next group Gh in the broadcast
program. This concept can in turn be applied to obtaining
the best Sh−1 if the best combination of S1, · · ·, Sh−2 is
known. Following this, the whole problem can be divided
into a number of subproblems and the result of each sub-
problem can be applied to resolving the subproblem of the
next stage.

In addition to the above design rationale, a lower bound
restriction is also employed in determining the broadcast
frequencies. The restriction is that the data pages of every
group have to be broadcast at least once in the program,
even if some of the data pages of Gi (for 1 ≤ i ≤ h) may
have to be arranged over the limit of ti. This is to avoid the
possibility that a data page may never be broadcast in the
program. Our method proceeds in the following manner.

Step 1: The first step is to determine S1 for broadcasting
G1 in t1 time. As broadcasting once is enough for meeting
the expected time t1, S1 is 1.

Step 2: Now we determine S1 and S2 for broadcasting
G1 and G2, respectively, within t2 which incurs the mini-
mum average group delay. From this case on, we need to in-
troduce a new parameter ri to represent the number of times
that Gi has been broadcast up to the i-th intermediate step.
Note that Si, different from ri, is to represent the number of
times that Gi is broadcast in the entire broadcast program
(i.e., after all h groups of data are scheduled). Therefore,
ri ≤ Si.

As the expected time of G2 is t2, G2 need only be broad-
cast once within t2 time interval for the same reason as in
Step 1. So r2 = S2 = 1. The rest of the channel slots
within t2 time can all be used to broadcast G1, which is r1
times. That is, for every allocation of G2 in the program,
G1 would be assigned in the program r1 times. Therefore,
S1 = r1 ·r2 = r1 ·1 = r1 up to this stage. Substituting these
for S2 and S1 in Equation 2, we have the average group de-
lay of broadcasting the first two groups of data G1 and G2

(denoted as D′
2) within a t2 time interval.

D′
2 =

r1 · P1

r1 · P1 + P2
·max


(r1 · P1 + P2

N real
· 1
r1
− t1

)
·

tmajor

r1
− t1

2
, 0




+
P2

r1 · P1 + P2
·max


(

r1 · P1 + P2

N real
− t2

)
·

tmajor

1
− t2

2
, 0



(3)

Note that in this expression, only tmajor and r1 are un-
known. However, because tmajor represents the length of
a broadcast program in which G1 is broadcast r1 times and

G2 is broadcast once, tmajor can be obtained as follows.

tmajor =




r1 · P1 + 1 · P2

N real


 (4)

That is, tmajor is a function of r1. This in turn implies
that r1 is the only known parameter in D′

2. By varying the
value of r1, we are able to obtain the optimal r1, denoted as
ropt
1 , that incurs a minimum D′

2.
Step 3: Similar to Step 2, we determine S1, S2, and S3

for broadcasting G1, G2, and G3 respectively within a t3
time interval and this broadcast program incurs the mini-
mum average group delay. We know that S3 = r3 = 1
so that G3 in this step need only be broadcast once for the
same reason that has been stated in the previous steps. Also
from the above discussion, we know that S2 = r2 · r3 = r2,
and S1 = r1 · r2 · r3 = r1 · r2. Then, the average group
delay of broadcasting the first three groups of data (denoted
as D′

3) can be rewritten as follows.

D′
3 =

r1 · r2 · P1

r2 · (r1 · P1 + P2) + P3
·

max


(

r2 ·(r1 ·P1+P2)+P3

N real
· 1

r2 ·r1
− t1

)
·

tmajor

r1·r2
− t1

2
, 0




+
r2 · P2

r2 · (r1 · P1 + P2) + P3
·

max


(

r2 ·(r1 ·P1+P2)+P3

N real
· 1

r2
−t2

)
·

tmajor

r2
− t2

2
, 0




+
P3

r2 · (r1 · P1 + P2) + P3
·

max


(

r2 · (r1 · P1 + P2) + P3

N real
− t3

)
· tmajor − t3

2
, 0


 (5)

Same as in Step 2, tmajor can be obtained as follows.

tmajor =




r2 · r1 · P1 + r2 · P2 + P3

N real


 (6)

In this equation, r1 is obtained from the last step (i.e., ropt
1).

Hence, only r2 is unknown. That means r2 is the only un-
known variable in D′

3. By varying r2, we will be able to
find the minimum D′ and locate ropt

2 . Then, S1 and S2 are
obtained.

Step h: Generalizing the above expressions, we have the
average group delay of Step h as follows.

D′
h =

h−1∑
i=1

∏h−1
l=i rl · Pi∑h−1

j=1

(∏h−1
k=j rkPj

)
+ Ph

·

max






∑h−1
j=1

(∏h−1
k=j rkPj

)
+Ph

N real ·∏h−1
m=i rm

−ti


·

tmajor∏h−1
n=i

rn
− ti

2
, 0




+
Ph∑h−1

j=1

(∏h−1
k=j rkPj

)
+ Ph

·

max






∑h−1
j=1

(∏h−1
k=j rkpj

)
+ Ph

N real
−th


·tmajor−th

2
, 0




(7)

6

By varying rh−1, we will be able to determine D′
h and lo-

cate ropt
h−1. Accordingly, we have all Si’s as follows.

Si =

{ ∏h−1
j=i rj if i = 1, 2, . . . , h− 1

1 if i = h

Algorithm 3 gives the pseudo code of deriving this set of
broadcast frequencies S1, S2, · · ·, Sh. As Step 1 (i.e., i=1)
is always trivial, it is omitted from Algorithm 3. Up to now,
we have obtained the optimal broadcast frequencies of all
groups of data. Our next step is to schedule these data pages
according to the obtained broadcast frequency, which is pre-
sented next.

Algorithm 3: PAMAD Calculate Frequency Algorithm
to deriving the broadcast frequencies of broadcast data.

GIVENN real, h, th.
FIND A set of broadcast frequencies.
for i = 2 to h do

for j = 1 to � Nreal·ti−Pi∑i−2
j=1(

∏ i−2
k=j

rk·Pj)+Pi−1
� do

if min(D′
i) occurs at ropt

i−1 then ri−1 ← ropt
i−1;

for i = 1 to h do
if i = h then Si = 1;
else Si =

∏h−1
j=i rj ;

4.4 Generating Broadcast Program

Now we come to the last stage of the proposed PAMAD
method. Knowing the broadcast frequencies of all data
groups, we can schedule these data pages in the available
channels. The details of this scheduling task is given in Al-
gorithm 4. Their concepts are explained in the following.

The length of a broadcast cycle, having been mentioned
previously, can be obtained by using the obtained broadcast
frequencies S1, S2, · · ·, Sh.


∑h

i=1 Si · Pi

N real


 (8)

Within this major cycle, each data page of Gi should be
placed Si times. These placements should be evenly spread
over the time slots of the major broadcast cycle. That means
the interval between two placements of the same data page
is tmajor

Si
. However, as this may not be an integer, it should

be adjusted to indicate exactly a time slot to hold the data
page. Therefore, we have the exact spot for the k-th place-
ment of a data page in the major cycle: � tmajor

Si
·(k−1)�+1.

It is possible when placing the other data pages of the
same group or a different group, the time slot � tmajor

Si
· (k−

1)� + 1 of the first channel has been occupied by a pre-
viously placed data page. When this occurs, we simply
search from the first channel to the last (i.e., the N real-th
channel) for an empty space to hold the data page. If all of
them are full, then we start from the next column (i.e., the

(� tmajor

Si
·(k−1)�+2)-th column) and repeat the same search

process for an empty space until we reach the (� tmajor

Si
·k�)-

th column. Within these columns of spaces, an empty time
slot can always be found because the length of a major cy-
cle has been calculated to hold all broadcast data pages. In
this way, data pages of a group are evenly spread according
to their broadcast frequency over the broadcast program.

Algorithm 4: The Progressively Approaching Minimum
Average Delay (PAMAD) Algorithm.

GIVENN real, h, th, and all data pages to be arranged in a
broadcast program.
FIND Broadcast program B.
Call PAMAD Calculate Frequency (see Algorithm 3) to get the
broadcast frequency of each group;
Sort all data pages in descending order according to their
broadcast frequency;
Required number of slots← 0;
for i = 1 to h do

Required number of slots←
Required number of slots+Si·Pi ;

tmajor ← �Required number of slots
Nreal �;

for i = 1 to h do
for j = 1 to Pi do

for k = 1 to Si do
for x = � tmajor

Si
· (k − 1)� + 1 to � tmajor

Si
· k� do

if x > tmajor then break ;
for y = 1 to N real do

if B[x, y] is an empty slot then B[x, y]← pi,j ;

Let us use an example to illustrate how the PAMAD al-
gorithm works. Figure 2(a) gives the data pages of three
groups, G1, G2, and G3, and their corresponding expected
times, t1, t2, and t3, respectively. G1 has three data pages
(page 1 to page 3), G2 has five data pages (page 4 to page
8), and G3 three data pages (page 9 to page 11). That is,
P1 = 3, P2 = 5, and P3 = 3. From Equation (1) we know
that four channels are minimally required for broadcasting
these groups of data pages without causing any delay. As-
sume that only three channels are available at this moment,
as shown in Figure 2(a), so that the PAMAD algorithm is
applied to design the broadcast program. In this method,
the broadcast frequencies (referring to Section 4.3) of the
groups of data are derived first. The process is given in
Figure 2(b). Step 1 is a trivial step in which G1 data are
broadcast just once within the t1 time (where t1 = 2). In
Step 2, we compute how many times G1 data should be
broadcast within t2 time (where t2 = 4). From Equation
(3), we find D′

2 = 0.12 when r1 = 1, and D′
2 = 0 when

r1 = 2. As G1 need only be broadcast at most twice within
the first four time units (because at this step we are consider-
ing the broadcast frequency within time interval t2) without
incurring any delay, we do not have to consider the case of
r1 ≥ 3. As r1 = 2 gives the smallest D′

2, we have ropt
1 = 2.

7

In Step 3, we compute the number of times that G1 and G2

data should be broadcast within t3 time (where t3 = 8). We
are going to obtain the ropt

2 that causes the least D′
3. From

Equation (5) we find that D′
3 = 0.15 at ropt

1 = 2 and r2 = 1,
and D′

3 = 0.04 at ropt
1 = 2 and r2 = 2. The cases for

r2 ≥ 3 need not be considered further because broadcasting
G2 data twice is enough for the clients without causing any
delay in retrieval. As r2 = 2 results in a smaller D′

3, we
have ropt

2 = 2. Hence we have the broadcast frequencies
for all three groups: S1 = ropt

1 · ropt
2 = 4, S2 = ropt

2 = 2,
and S3 = 1, as given in Figure 2(b).

Next, the length of a major cycle can be obtained
from Equation (8). In this example, the cycle length is
�S1·P1+S2·P2+S3·P3

3 � = � 4·3+2·5+1·3
3 � = � 25

3 � = 9. Then,
based on the derived optimal broadcast frequencies of the
data groups, the data pages are evenly assigned and spread
over the available channel space. Figure 2(c) gives an inter-
mediate results after assigning G1 data to the channels, and
Figure 2(d) shows the finished broadcast program. Note that
no matter when a client starts to listen to this final program,
the client is guaranteed to experience on average a minimal
delay in obtaining the required data.

G
1
: t

1
 = 2

G
3
: t

3
 = 8

G
2
: t

2
 = 4

1 3

4 8~

9 11~

~
8

CH 1

CH 2

CH 3

(a) Data to be broadcast.

'

'

Step 2. Step 3.

r1 = 1
r
1

 = 2
r2 = 1

r = 2

D3 = 0.15

D = 0.04

(r2 = 2 is better than r2 = 1)

S1 = r1 * r2 =4

S2 = r
2 =2

S3 = 1

'D2 = 0.12

r1 = 2 'D
2

= 0

(r1 = 2 is better than r1 = 1)

Step 1.

Group 1 data are

broadcast once
32

opt opt

opt opt

(b) Derivation of broadcast frequency.

1 2 87643 5 9

1 1 1 1

2

3

2 22

3 33

(c) The broadcast program
after inserting G1.

1 2 87643 5 9

1 1 1 1 7474 10

2 2 2 2 8585 11

3 3 3 3696

(d) Final broadcast pro-
gram.

Figure 2. An illustrating example.

5 Performance Evaluation

In the case of sufficient channels, we have presented
an algorithm that always utilizes the minimum number of
channels to broadcast. As all expected times are satisfied
in this method, the problem has been resolved perfectly.
Hence, nothing needs to be evaluated for this case. In the
case of insufficient channels, however, the method needs to
be carefully evaluated. We propose to use average delay

(AvgD) as the performance metrics for evaluating the per-
formance of a broadcast program under insufficient chan-
nels. Average delay is the time that on average a client has
to wait in addition to the expected time for the desired data
to come.

In order to investigate the performance under different
data sets, the broadcast data generator creates data of h
groups, G1, G2, · · ·, Gh, and assign each group of data
an expected time. Data of G1 have the smallest expected
time and those of Gh have the greatest expected time. The
number of data pages created for the groups follows one
of the four group size distributions, i.e., normal, S-skewed,
L-skewed, and uniform distributions. Figure 3 gives an il-
lustration of the distributions. In all four distributions, the
overall number of data pages are 1000.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 1 2 3 4 5 6 7 8

nu
m

be
r

of
 d

at
a

pa
ge

s

group ID

S-skewed L-skewed

Uniform

Normal

Figure 3. Group size distributions of the
groups.

In order for a comparison, we choose a work in the lit-
erature that is closest to ours, the periodic broadcast (PB)
method [19]. However, as the original paper of the PB
method only provides an algorithm for a single channel en-
vironment [19], we have to extend their idea to cope with
multiple channel environments. In order to make fair com-
parisons, assignment of data to multiple channels is the
same as that of the PAMAD algorithm once the broadcast
frequency is determined (referring to Algorithm 4 of the PA-
MAD method). We call this algorithm the modified PB (m-
PB) algorithm.

Also for comparison purpose, we implemented an opti-
mal (OPT) algorithm which exhaustively searches for a set
of optimal broadcast frequencies that incurs the minimum
delay. So this algorithm provides the optimal performance
results, although its searching time is unacceptably high.

Figure 4 gives the default values used in the experiments.
All the experiments are performed on a personal computer

8

of Intel Pentium 2.4 GHz CPU with 1024 MB RAM running
Windows 2000 operating systems.

Parameter Default value

n - total number
1000

of data pages
h - number of groups

8
(or expected times)
ti - expected time 4, 8, 16, 32, 64, 128, 256, 512

group size distributions {normal,L-skewed,S-skewed,uniform}
number of requests 3000

Figure 4. Parameter settings.

The evaluation result is shown in Figure 5. The num-
ber of channels varies from 1 to the minimum sufficient
channels. In every subfigure, three algorithms, PAMAD,
m-PB, and OPT, are compared. Three interesting facts are
observed from these subfigures:

• In all four group size distributions, we found that the
result of PAMAD almost overlaps with that of the OPT
algorithm, and is much better than the m-PB method.
This reveals that the PAMAD algorithm, although
based on heuristics, achieves almost the optimal per-
formance as we have expected in Section 4. And, the
optimality of the algorithm is irrelevant to both the
number of available channels and the type of group
size distribution. That is, it performs extremely close
to optimal regardless of the number of channels pro-
vided (server side factor) and the expected time (client
side factor).

• This optimality also reveals that reducing broadcast
frequency while channels are not enough is a much
better approach than keeping the same broadcast fre-
quency of a data page (which incurs a longer major
broadcast cycle).

• From the figures we also found that when the number
of available channels increases to about 1/5 of the min-
imally sufficient channels (i.e., the number of channels
on the right end of the horizontal axis of the figures),
the average delay AvgD of our method decreases to an
amount almost ignorable. For one instance, the min-
imum sufficient channels is 64 in Figure 5(d). The
value of AvgD declines dramatically when the number
of channels increases from 1 to 10. After 10 channels,
AvgD of our method becomes almost ignorable. This
phenomenon appears in all four types of group size dis-
tributions. Hence, we conclude that in an environment
where expected time constraints are not rigidly en-
forced or when the number of channels are not enough
for running the SUSC algorithm, then as few as 1/5
of the minimally sufficient channels would be an ideal

secondary choice, because with these channels almost
the same good performance can be obtained.

6 Conclusions

In this paper, we studied the problem of time-constrained
services on air. We proposed solutions for both the suf-
ficient channel and the insufficient channel cases. When
channels are more than the derived minimum number (i.e.,
sufficient channels), the designed SUSC algorithm provides
optimal performance. When channels are insufficient, the
proposed PAMAD algorithm still provides almost optimal
performance by requiring as few as 1/5 of the minimum
number of sufficient channels. Overall, the performance
study reveals that the proposed solutions are very promis-
ing.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broad-
cast disks: data management for asymmetric communica-
tion environments. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD),
pages 199–210, San Jose, CA USA, May 22-25 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-
based data delivery using broadcast disks. IEEE Personal
Communications, 2(6):50–60, December 1995.

[3] S. Acharya, M. Franklin, and S. Zdonik. Prefetching from
a broadcast disk. In Proceedings of the 12th International
Conference on Data Engineering, pages 276–285, New Or-
leans, Louisiana, February 26-March 1 1996.

[4] J. Cai and K.-L. Tan. Tuning integrated dissemination-
based information systems. Data & Knowledge Engineer-
ing, 3(1):1–21, May 1999.

[5] C.-C. Chen, L.-F. Lin, and C. Lee. Benefit-oriented data
retrieval in data broadcast environment. In Proceedings of
9th International Conference on Database Systems for Ad-
vances Applications (DASFAA04), pages 916–921, Jeju Is-
land, Korea, March 17-19 2004.

[6] Y.-C. Chung, C.-C. Chen, and C. Lee. Time-constrained
service on air. Technical report, Department of Com-
puter Science and Information Engineering National
Cheng-Kung University, Tainan, Taiwan, R.O.C.,
http://dblab.csie.ncku.edu.tw/˜justim/expected-time.ps,
2004.

[7] A. Datta, D. Vandermeer, A. Celik, and V. Kumar. Broad-
cast protocols to support efficient retrieval from database
by mobile users. ACM Transactions on Database Systems,
1(24):1–79, March 1999.

[8] J. Fernandez-Conde and K. Ramamritham. Adaptive dis-
semination of data in time-critical asymmetric communica-
tion environments. In Proceedings of the 11th Euromicro
Conference on Real-Time Systems(ECRTS99), York, Eng-
land, June 9-11 1999.

[9] C.-L. Hu and M.-S. Chen. Dynamic data broadcasting with
traffic awareness. In Proceeding of the 22nd International

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 180 160 140 120 100 80 60 40 20 1

A
vg

D

available channels

PAMAD
m-PB
OPT

(a) S-skewed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 47 45 40 35 30 25 20 15 10 5 1

A
vg

D

available channels

PAMAD
m-PB
OPT

(b) Normal.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
vg

D

available channels

PAMAD
m-PB
OPT

(c) L-skewed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 64 60 55 50 45 40 35 30 25 20 15 10 5 1
A

vg
D

available channels

PAMAD
m-PB
OPT

(d) Uniform.

Figure 5. Average delay of four types of group size distributions.

Conference on Distributed Computing Systems (ICDCS’02),
pages 112–119, Vienna, Austria, July 2-5 2002.

[10] Q. Hu, W.-C. Lee, and D. L. Lee. A hybrid index technique
for power efficient data broadcast. Distributed and Parallel
Database, 9(2):151–177, March 2001.

[11] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new
broadcasting scheme for metropolitan video-on-demand
systems. In Proceedings of the ACM SIGCOMM’97 Con-
ference, pages 89–100, Cannes, France, September 1997.

[12] J.-H. Hwang, S. Cho, and C.-S. Hwang. Optimized
scheduling on broadcast disks. In Proceedings of the Sec-
ond International Conference on Mobile Data Management
(MDM01), pages 91–104, Hong Kong, Chian, January 8-10
2001.

[13] T. Imielinski and S. Viswanathan. Adaptive wireless infor-
mation systems. In Proceedings of the ACM Special Interest
Group on DataBase Systems, pages 19–41, 1994.

[14] S. Jiang and N. H. Vaidya. Scheduling data broadcast to
“impatien” users. In Proceedings of the ACM international
workshop on Data engineering for wireless and mobile ac-
cess, pages 52–59, Seattle, WA USA, August 20 1999.

[15] K. Prabhakara, K. A. Hua, and J. Oh. Multi-level multi-
channel air cache designs for broadcasting in a mobile en-
vironment. In Proceesings of 13th International Confer-
ence on Data Engineering (ICDE 2000), pages 167–176,
San Diego, CA, USA, February 28-March 3 2000.

[16] W.-C. L. Quinlong Hu, Dik Lun Lee. Dynamic data delivery
in wireless communication environments. In Proceedings of
ER’98 Workshops on Mobile Data Access, volume 1552 of
Lecture Nodes in Computer Science, pages 218–229, 1998.

[17] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive
data broadcast in hybrid networks. In Proceedings of the
23rd International Conference on Very Large Data Bases,
pages 326–335, August 1997.

[18] P. Triantafillou, R. Harpantidou, and M. Paterakis. High per-
formance data broadcasting: A comprehensive system’s per-
spective. In Proceedings of the Second International Confer-
ence on Mobile Data Management (MDM01), Hong Kong,
Chian, January 8-10 2001.

[19] P. Xuan, S. Sen, O. Gonzalez, J. Fernandez, and K. Ramam-
ritham. Broadcast on demand: Efficient and timely dissem-
ination of data in mobile environments. In Proceedings of
the 3rd IEEE Real-Time Technology and Applications Sym-
posium (RTAS ’97), pages 38–48, Montreal, Canada, June
9-11 1997.

10

