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Abstract

Most systems must evolve as their missions or roles
change and/or as they adapt to new execution environments.
When evolving large distributed applications, it is partic-
ularly difficult to make changes to the data formats that
underlie their components’ communications, because such
‘format evolution’ can affect all or many application com-
ponents. Prior approaches to the problem of implement-
ing changes in the communications of a deployed system
have relied upon ad-hoc solutions or on protocol negotia-
tion to avoid message format mismatches. Unfortunately,
such solutions tend to increase the complexity of applica-
tion code. This paper presents a novel approach to the
problem of data format evolution that combines meta-data
about the data being exchanged with dynamic binary code
generation to create a robust data exchange system that
naturally supports application evolution. The idea is to
specialize the communications of application components
by dynamically generating the code that can automatically
transform incoming data into forms that receiving compo-
nents can understand. A realistic example in the context
of publish/subscribe middleware is used to illustrate how
this technique can be applied to enhance interoperability
between different version of distributed applications.

1 Introduction

Large-scale distributed applications communicate via com-
plex data exchanges. Data structures and formats are often
assumed known a priori, thereby permitting the creation of
efficient marshalling and unmarshalling codes represented
as stubs and generated by stub compilers[5]. However, the
needs and requirements of distributed applications and the
resources presented by the underlying distributed execution
platforms can change over time: (1) independent develop-

ers may implement new or improved functionalities using
enhanced message data formats or exchange protocols, and
(2) heterogeneity or dynamic changes in hardware resources
(e.g., low bandwidths of newly employed wireless links)
may necessitate further changes in message format repre-
sentation. We term such changes in data exchange messages
“format evolution”.

Format evolution presents many challenges to application
developers. In large or long-running distributed applica-
tions, format evolution is difficult because of the need
to support interoperability between old and new clients
and servers [29]. Emerging middleware technologies like
publish-subscribe [1, 4] and peer-to-peer [30, 35] further
complicate matters because they lack central control and
eliminate clear client-server demarcations. Interoperability
is also important in the case of software reuse and legacy
applications that may not be easy to replace [28, 13]. Fi-
nally, while protocol designers aim to ensure that new mes-
sage formats are backward compatible, the control of such
processes is difficult when multiple designers concurrently
make evolutionary changes.

Previous work on message interoperability has focused on
network-level solutions [16]. Such solutions are difficult to
generalize to the middleware-level problem of format evo-
lution addressed by our research because of the large di-
versity of application-level data structures and types. As
a result, application-level protocol (or format) evolution is
rarely addressed by application developers. Instead, mes-
sage formats and other elements of message exchange pro-
tocols are frozen early in the development process, limiting
an application’s ability to evolve to better serve changing
needs. Emerging approaches to the format evolution prob-
lem [7] tend to be complex or impose overheads that are
unsuitable for systems with high-bandwidth data flows.

At the networking level, a common approach to message
evolution is protocol version negotiation between interact-
ing components. Negotiation is not viable for large-scale



systems, because it is impractical to negotiate with many
clients, where each such negotiation ‘transaction’ has sig-
nificant overheads (e.g. multicast). Another approach is
to include “extensions” identified by unique global IDs and
processed by the components that understand them [21].
An alternative solution used by object-based systems as-
sumes that messages carry substantial meta-data, which is
exploited to enable message evolution. The performance
impact of carrying meta-data on high-volume data trans-
fers makes this approach problematic. Another issue is that
the current abilities of this approach remains limited. For
example, XML-based systems using SAX or DOM inter-
faces can easily tolerate the addition of data or the reorder-
ing of certain fields in existing protocols without ‘break-
ing’ old clients, but more radical restructuring (e.g., chang-
ing the structure associated with messages) is not feasi-
ble. Finally, in middleware architectures with typed mes-
saging, like OMG’s CORBA [5], Microsoft’s DCOM [8],
and Sun’s Java RMI [27], interactions between two differ-
ent data types are not allowed, despite the fact that it may
make sense to permit those interactions that may be seman-
tically correct. For example, if a message from a new server
contains an extra field that provides optional information,
clients who do not understand or expect that field should
still be able to operate. Disallowing such interactions un-
necessarily constrain inter-operation in distributed systems.

This paper introduces the concept of “Message Morphing”,
which combines message meta-data and dynamic code gen-
eration to help data exchanges deal with varying message
formats and support runtime message evolution. The basic
idea is to associate a number of transformations with each
new message data format so that the data can be converted
to other formats. If the receiver is not able to understand a
particular format, an appropriate transformation code asso-
ciated with that format is provided and dynamically com-
piled. The conversion routine transforms each incoming
message of that type to one the receiver is able to under-
stand.

Dynamic message morphing has a number of advantages.
First, because there is no negotiation, this technique is as
easily applied to peer-to-peer as to client-server architec-
tures, and it can address components separated in space
and/or time. Second, its use can guarantee both syntactic
and semantic compatibility, as per the transformations sup-
plied to the application. Third, there is no need to modify
or restart an application, because format conversions occur
on the fly and without specific application involvement. In
fact, the application may be entirely oblivious of the evo-
lutions applied to its components. Fourth, our implemen-
tation of message morphing is highly efficient, as it uses
out-of-band, binary meta-data (i.e., the PBIO [12] binary
data format), the use of which has been shown to result in
marshalling overheads less than those of well-known high

performance communication systems like MPI [20].
The remainder of the paper discusses prior approaches used
to address the problem of message format evolution in Sec-
tion 2. Section 3 explains in some detail the algorithms
and techniques used in Message Morphing. In Section 4,
we present two real scenarios for which an interoperability
problem is solved using morphing. We evaluate the costs
and overheads of message morphing with PBIO and com-
pare it with that of XML/XSLT in Section 5. Section 6 con-
cludes the paper and presents future research directions.

2 Related work

A large body of work addresses the need for interoperability
between different components of a distributed application,
across network protocols, or for legacy applications. Such
work characterizes interoperability as the set of assumptions
communicating parties make about each other [13]. Current
practice in dealing with the difficulties caused by these as-
sumptions is to use ad hoc techniques or to use protocol ne-
gotiation mechanisms to decide upon a common language
of communication.

Object-based systems use sub-classing and similar tech-
niques to interoperate across different types. Network Ob-
jects [3], for example, use the narrowest surrogate rule, by
which a client chooses the narrowest super-type for which
both the client and the owner of that object have a registered
stub. This is possible because Modula-3 (which is used
to implement network objects) only allows single inheri-
tance. CORBA-based [5] systems support interoperabil-
ity through GIOP (General Inter-ORB Protocol), which de-
scribes the wire-representation of the messages exchanged
between different ORBs (Object Request Brokers).In ad-
dition to static invocation (object types are known at run-
time), CORBA also supports object invocation using run-
time type information (usually retrieved from an Interface
Repository). Solutions to interoperability in systems like
Network Objects or CORBA are less general than those of-
fered by message morphing because they focus on type in-
formation. In other words, these solutions do not handle
messages that may be semantically correct but are not sub-
types of registered types. In comparison, message morph-
ing can be used with syntactically mismatched messages as
well, if developers specify suitable morphing code.

Spreitzer and Begel [29] observe that existing sub-typing
techniques do not scale well because of the exponential in-
crease in code size due to the number of extensions each
particular client must understand. Message morphing man-
ages this issue by using dynamic code generation (DCG),
so that morphing code is installed in a component only if
needed. The authors also discuss the additional latency in
decentralized evolution incurred by the necessary ad hoc
negotiations between clients and servers. The solutions de-



scribed in [29] present another way in which certain mes-
sage morphing actions may be automated. Specifically, the
authors propose a flexible data type system consisting of
extensible and coarse record types. The fields of extensi-
ble records are marked with a “mode” flag that indicates
whether those fields are optional. The coarse record types
ensure that extensions are compatible with sub-typing. The
receiver is responsible for understanding of each input and
determining if there is a need for negotiation.

Lee et al. [17] uses object-oriented pattern matching
to extract relevant information from self-describing mes-
sages. Applications specify handlers that are invoked when
a particular pattern is matched. This technique allows op-
tional fields to be included in a message, and it implies that
developers need not write explicit code for parsing mes-
sages. The overheads of text-based pattern-matching, how-
ever, prevents its use in the high performance environments
addressed by message morphing[12]. The same argument
applies to XML-based approaches, where (1) XML [33] al-
ready supports some forms of evolution by allowing the use
of optional and ignorable items, and (2) message morphing
techniques like those described in this paper could be ap-
plied to XML-structured messages by using transformation
languages like XSLT [34] or fxt [2]. However, we borrow
XML-style type mapping semantics based on field names,
where a field may be associated with a default value. Mes-
sage morphing generalizes that approach by using format
information in addition to default field values. Using an effi-
cient binary format description (i.e., PBIO [12]), the feature
unique to our solution is the ability to dynamically convert
formats using the transformations that are associated with
each format type. This approach expands the compatibility
space of the application, as discussed in the next section.

3 Message Morphing Approach

3.1 Expanding Compatibility Space

The set of all message format types and/or protocol ver-
sions with which an application can successfully interoper-
ate is called its compatibility space. The use of binary mes-
saging typically implies that small changes negate compat-
ibility. This is devastating for enterprise-scale applications,
because it inhibits certain updates or improvements for cur-
rently deployed codes. Message morphing is a technique to
expand the compatibility space to a broader set of changes.

Our approach makes some basic assumptions that enable
a messaging system to implement message morphing. First,
we assume that messages are associated with meta-data that
describes message content, similar to ‘schemas’ in XML-
based systems. Second, we assume that on the receiving
side, the system is aware of the set of message schemas
or formats the receiving application is able to process. In

a complex distributed system, Application A may commu-
nicate with Application B using a set of message formats
known and interpretable by both sides (i.e. Protocol X).
As the distributed system evolves, some applications may
be upgraded to use a newer Protocol Y, an evolutionary
upgrade from Protocol X. If protocol negotiation or other
techniques are not used, a newer client may send a Proto-
col Y message to a client that only understands Protocol X
messages. Without message morphing, this situation will
almost certainly result in some kind of failure. Message
morphing avoids the failure scenario by associating addi-
tional meta-data with Protocol Y messages so that they can
be transformed, on-demand, into Protocol X messages (see
Figure 1). This approach removes fixed message formats as
an obstacle in upgrading and evolving complex distributed
applications.

Schema
Rev 2.0

Retro − xform
Code

Retro − xform
Code

Schema

Rev 0.0

Rev 1.0

Schema

b

a

Figure 1. Retro - Transformation

In message morphing, most of the activity happens upon
message receipt. Assume that message M is part of Proto-
col X. In Protocol Y, M has been upgraded to M ′, a vari-
ant of M that still fills the same role and contains largely
the same data, but perhaps differs in the way message data
is organized. Assume you have a distributed system con-
sisting of some old clients that speak only Protocol X and
some new clients that speak Protocol X and Protocol Y. In
our scenario, clients that speak the newer Protocol Y always
send Protocol Y messages, even to older clients. However,
the Protocol Y message M ′ meta-data includes a specifica-
tion of how to transform it into message M of Protocol X.
Upon receipt at a newer client, message M ′ is processed
normally. Upon receipt at an older client that expects only
Protocol X messages, message M ′ is transformed into mes-
sage M by the communication system before being deliv-
ered to the client. The details of this transformation will be
discussed later in the paper.

The technique is not without its limitations. There
are many possible ways to change an application-level



message-passing protocol that render it incompatible with
unchanged clients: adding messages, changing the seman-
tics of messages, removing previously-required message in-
formation completely, etc. We do not address all of these
cases. Instead, message morphing should be viewed as an-
other technique that can enlarge the natural compatibility
space in application-level protocols. In particular, message
morphing allows natural compatibility in some situations
that might otherwise require a costly or complex protocol
negotiation phase. Where protocol negotiation is impossi-
ble or unwieldy, such as when data is multicast or when ne-
gotiation overheads would be too high, message morphing
enables interoperability in some situations where it would
otherwise be impractical.

3.2 Implementation

The meta-information about message data in our implemen-
tation of message morphing utilizes the Portable Binary
Input/Output (or PBIO) system [12]. PBIO is a record-
oriented binary communication mechanism that supports
out-of-band meta-data. Writers (or encoders) of data pro-
vide a description of the names, types, sizes and positions
of the fields in the records they are writing. Readers (or de-
coders) provide similar information for the records they are
interested in reading. They also register handlers that are
invoked when a message of a particular format type arrives.
Figure 2 shows a sample format declaration. Each format
has a name associated with it, which may be the same or
different from that of other format. In addition to record
formats, the writer may also specify a set of transforma-
tions, which can convert the message from one format to
the other. These transformations are specified in the form
of “Ecode” [10] (a language subset of C).

typedef struct {
int cpu;
int memory;
int network;
}Msg, *MsgP;

IOField Msg field[] = {
{“load”, integer, sizeof(int), IOOffset(MsgP, load)},
{“mem”, integer,sizeof(int), IOOffset(MsgP, memory)},
{“net”, integer, sizeof(int), IOOffset(MsgP, network)}};

Figure 2. PBIO format declaration

On the reader’s end, the format of the incoming record is
compared with the reader’s registered formats of the same
name. If an exact match is found, the handler registered
for that format type is invoked, else a maximal matching
algorithm called MaxMatch (described next) is used to de-
cide the best possible conversion available for that incoming

new record format. If a conversion is found, it is applied to
the new format and the handler registered for the converted
format is invoked; otherwise a default handler (if any) regis-
tered by the reader is called. This conversion is now cached
at the reader, and will be applied to all incoming records of
this format type.
MaxMatch comparison algorithm: We have designed an
algorithm called MaxMatch which gives the best possible
matching pair of formats from the two set of formats. The
best possible matching pair has least differences between
them as compared to other pairs. Before going into the de-
tails of algorithm, we provide the following definitions:

• PBIO record formats consist of fields that can be of
two types: basic and complex.

- basic types includes integer, unsigned integer,
float, char, enumeration and string

- complex types are formed from a collection of
other fields which can be both basic and complex.

• The top-level format, which defines an entire message
record, is called base format. Note that base format is
always complex.

• The weight of a format f, indicated by Wf is the to-
tal number of fields in f which includes the number of
basic type fields within its complex type fields as well.

Given two formats f1 and f2, we define a recursive function
diff, s.t.:

diff (f1, f2) = d12

where, d12 is the total number of basic type fields that are
present in f1 but not in f2. Algorithm 1 shows how to com-
pute diff.
(f1, f2) is a perfect matching format pair iff:

diff(f1, f2) = diff(f2, f1) = 0

A format pair (f1, f2) is said to have less “mismatch” than
another format pair (f ′

1, f ′
2) iff one of the following condi-

tion holds:
i. diff(f1, f2) < diff(f ′

1, f ′
2) or

ii. diff(f1, f2) = diff(f ′
1, f ′

2) and diff(f2, f1) < diff(f ′
2,

f ′
1)

Note that a format pair with the least mismatch need not
be the best matching pair. For example, two formats (say
f1 and f2) each may have one field, both of which are
different. Therefore, diff(f1, f2) is just 2. While another
two formats (say f ′

1 and f ′
2) may have four uncommon

fields (diff(f ′
1, f ′

2) = 4) but hundred matching fields.
Clearly, the second one is a better match than the first one.
So we define a normalization metric called Mismatch Ratio
to find the best match.



Algorithm 1 diff (f1, f2)
init: d12 = 0
for all field f in f1 do

if f is of basic type then
if f �∈ f2 then

d12 ← d12 + 1
end if

else
let f ′ be the complex field in f2 with the same field name
and type as f
if no such f ′ exists in f2 then

increment d12 by Wf

else
d12 ← d12 + diff (f, f ′)

end if
end if

end for
return d12

Mismatch Ratio(Mr) of a format pair (f1, f2) is defined as
the ratio between the total number of fields present in f2

and absent in f1 to the total number of fields in f2. Thus,

Mr(f1, f2) =
diff(f2, f1)

Wf2

Now we are ready to define MaxMatch. MaxMatch pair
between two sets of formats F1 and F2 is:

MaxMatch (F1, F2) = (f1, f2),

such that the following condition holds:
i. f1 ∈ F1,

ii. f2 ∈ F2,
iii. diff(f1, f2) <= DIFF THRESHOLD,
iv. Mr(f1, f2) <= MISMATCH THRESHOLD,
v. if there are more than one (f1, f2) pair that satisfies

the above four conditions, choose the one with least
Mr, then the one with least diff(f1, f2) and break ties
arbitrarily.

The two constants above (DIFF THRESHOLD and MIS-
MATCH THRESHOLD) add another dimension of flexi-
bility by allowing control of the amount of mismatch that
will be allowed in a particular system. This prevents two
grossly incompatible messages from being matched. In or-
der to allow just perfect matches, set DIFF THRESHOLD
to zero.

Reader-side message processing:
The reader processes the incoming encoded message in a

number of steps, which are outlined in Algorithm 2. There
are some interesting attributes of this algorithm. First, the
expensive steps of the algorithm (from 11-27) are executed
for only those formats that have not been seen previously
by the reader. Once a format has been seen, the transforma-
tion and the handler information are cached and will be used

Algorithm 2 Receiver-side message processing
Init:
Let m be the incoming message.
Let fm be the format of m.
Let Fr be the set of formats with the same name as fm

that this reader can interpret.
5: Let Ft be the set of formats that fm can be transformed

to (using the transformations associated with it) includ-
ing fm.

if fm seen previously then
Use cached information to transform the message (if
needed) and invoke the appropriate format handler
return

10: end if
(f1, f2)←MaxMatch(fm, Fr)
if (f1, f2) is a perfect match then

Invoke handler registered by the reader for f2

return
15: end if

(f ′
1, f ′

2)←MaxMatch(Ft, Fr)
if there is no such (f ′

1, f ′
2) then

Reject this message
return

20: end if
if f ′

1 �= fm then
Generate and cache the code that would do the fm to
f ′
1 transformation using dynamic code generation

Transform ‘m’ from its original format fm to f ′
1

end if
25: if (f ′

1, f
′
2) is not a perfect match then

Put in the default values for the missing fields.
Remove fields in f ′

1 that are not in f ′
2

end if
Invoke handler for f ′

2

30: return

when messages of that format are received again. Second,
the MaxMatch algorithm is used to find the best possible
format match available. If there is no such match, it sim-
ply rejects the messages with that format. Third, the algo-
rithm shows how message morphing is used to expand the
compatibility space. New formats that were previously not
understood by the reader are converted to match older, un-
derstood formats, and enter into the compatibility space of
the reader. This provides both backward and forward com-
patibility and allows for interoperability between both old
servers and new clients and new servers and old clients.
Message morphing has several advantages:

- With the expansion of the compatibility space, the client
or the reader is now able to recognize far more message
formats than was previously possible.

- Applications are no longer forced to use a less efficient



representation to ensure interoperability with all clients.
This makes it easier to introduce new features and func-
tionalities, servers become more scalable, and it enables
more efficient use of resources (e.g., concerning net-
work bandwidth).

- Independent specialization of system is facilitated, and

- Complex systems become more malleable.

4 Examples

To understand how message morphing operates, we study
evolution in two different systems. The first is an event-
based publish-subscribe system, and the other describes
evolution in a typical E-Commerce application.

4.1 The ECho Event Delivery System

ECho [11, 9] is a distributed event delivery middle-
ware system, developed at Georgia Tech, that supports a
publish-subscribe model of group communication. It uses
channel-based subscriptions, similar to the CORBA Event
Services [6]. An event channel is the mechanism through
which event sinks and sources are matched. Source clients
submit messages (or events) to a specific channel and only
the sink clients subscribed to that channel are notified of
these messages. Channels are the entities through which the
extent of event propagation is controlled. Figure 3 depicts a
set of processes communicating using event channels.

Process A

Event
Channel

Channel
Event

Event
Channel

Process C

Process B

Figure 3. Processes using Event Channels for
communication.

Since the release of the first version (v 1.0) of ECho in
1999, it has been used in research projects ranging from
high performance applications [15, 23] and scientific visu-
alization [32] to multimedia applications [24] and energy
conservation in low power mobile devices [26]. ECho has
evolved multiple times in order to adapt to changing needs
and to accommodate improvements in its design. One such

ChannelOpenResponseMsg:
List of members:

CMcontact info;
channel ID;

List of Sources:
CMcontact info;
channel ID;

List of Sinks:
CMcontact info;
channel ID;

ChannelOpenResponseMsg:
List of members:

CMcontact info;
channel ID;
is Source; /*boolean*/
is Sink; /*boolean*/

a. Version 1.0 b. Version 2.0

Figure 4. ChannelOpenResponse message
format in different ECho Version

instance of evolution was a change in its ChannelOpenRe-
sponse message. When a process wants to join a chan-
nel, it sends a ChannelOpenRequest message to the cre-
ator of that channel. The creator in turn replies back with
a ChannelOpenResponse message, which consists of the
list of processes already subscribed to that channel. Fig-
ure 4.a shows the format of this message in ECho version
1.0. Member-list is the list of all subscribers. The src-list
and the sink-list contains all the processes subscribed as
source and sink respectively. Note that the member-list in
the message is a superset of the src-list and sink-list.

The fact that the contact information for a single re-
mote client could appear three times in the ChannelOpen-
Response message was an artifact of the incremental devel-
opment of ECho. As ECho was extended to include Quality
of Service information in connections, contact information
became more complex and the multiple listings were an ob-
vious liability, leading to duplicated code. In version 2.0,
ECho changed the format of this message to simplify it and
to reduce information duplication. The new format is shown
in Figure 4.b. Note that two new boolean attributes were
added to the list structure, which eliminated the need for
two extra lists.

The ChannelOpenResponse change reduced the size of
the response message by more than half, thereby reducing
overhead, but it created an additional problem of interoper-
ability with the older version of ECho. There is no standard
existing technique that will allow the clients of these two
formats to interoperate, although the messages of the new
format contain all of the information carried by the mes-
sages with the old format. A quick workaround for this
problem was to include version information in the Chan-
nelOpenRequest message and send the appropriate version
of the response. Though this solution worked, it had obvi-
ous disadvantages: extra computation at the creator of the
channel, increased coding complexity (in terms of lines of
code), and its lack of generality.

This situation is greatly simplified with message mor-



int i, sink count = 0, src count = 0;
old.member count = new.member count;
for (i=0; i < new.member count; i++) {

old.member list[i].info = new.member list[i].info;
old.member list[i].ID = new.member list[i].ID;
if(new.member list[i].is Source) {

old.src count = src count + 1;
old.src list[src count].info = new.member list[i].info;
old.src list[src count].ID = new.member list[i].ID;
src count++;
}
if (new.member list[i].is Sink) {

old.sink count = sink count + 1;
old.sink list[sink count].info = new.member list[i].info;
old.sink list[sink count].ID = new.member list[i].ID;
sink count++;
}
}

Figure 5. Message transformation code

phing, by associating a transformation in the form of
ecode(shown in Figure 5) with the new format at the chan-
nel creator. The morphing middleware at the subscriber side
(with old ECho version) converts the response message to
the old format by applying this transformation. Except for
specifying the transformation code, no other changes are
required anywhere in the system. Overhead is reduced be-
cause of smaller message sizes and the offloading of the
processing to the subscriber.

The application based on the newer version of ECho can
easily interoperate with those using older ECho versions,
and they have lower overheads due to their more efficient
message formats.

Retailer Supplier

Order Sent

Order Status
received

Broker

XML/
XSLT

Format
transformation

Order Sent

Order Status
received

(Retailer’s format) (Supplier’s format)

Figure 6. B2B Messaging with XML/XSLT.

4.2 Business Process Messaging

Business process messaging, (whether business-to-
business (B2B) or business-to-consumer (B2C)) involves
exchanging data between business applications to integrate
the business work flow and processes. A major issue in such
integration is the need to facilitate communication between
different applications from different vendors, each gener-
ating data in their own formats. Figure 6 shows a supply

Order Status Received
(Supplier’s format)

Order Sent Order Sent

Order Status Received
(Supplier’s format)

Retailer Supplier

Message Morphing

(Retailer’s format) (Retailer’s format)

Message Morphing

Broker

Figure 7. B2B Messaging with Morphing.

chain integration, where an intermediate broker acts as a
bridge between retailers and suppliers by transforming the
data exchanged between them. The broker may support
one or both of point-to-point and publish/subscribe modes
of communication. This is the typical architecture of to-
day’s many commercially-available solutions like Sun’s In-
tegration Server [31], IBM’s WebSphere MQ [14], Oracle
Advanced Queuing [22]. For illustration purposes, we will
concentrate on the functionality of Oracle Advanced Queu-
ing (AQ).

AQ provides the flexibility of configuring communica-
tion between different applications and uses XML as its
data exchange format. In Figure 6, both retailer and sup-
plier are using different message formats. To enable com-
munication between them, the order data from the retailer
is transformed by the AQ Broker using the appropriate XSL
style-sheet into a format recognized by the intended sup-
plier. Similarly, the order status data from the supplier is
transformed by the AQ Broker into a format recognized by
the specific retailer, again using an XSL style-sheet. This
integration solution, though useful, is not without problems.
First, it uses XSL transformations, which are computation-
ally expensive. Second, all conversions are done by the bro-
ker, which can easily become a bottleneck. The problem
might be temporarily solved by using a network of brokers,
but this will again lead to increased costs and complexities.

Message Morphing provides an elegant solution to this
problem. Here, the broker, instead of doing conversions by
itself, simply associates an ECode segment with the incom-
ing message. This code segment can transform it to a for-
mat recognized by its intended receiver (see Figure 7). The
actual transformation is done at the receiver. Interoperabil-
ity between the retailer and the supplier is still achieved,
but with the added advantage of reduction in computational
overheads at the broker. Also, adding new vendors with
completely different formats becomes easier. The broker
just has to be provided with the new ECode segments that
can transform messages to the format understood by new
vendors.

As noted earlier, message morphing is not a magic bullet
that can create compatibility in every situation. Many types
of changes to existing protocols, including changing the
semantics of messages and removing previously-required



information completely can make compatibility with un-
changed clients impossible. Our aim in message morphing
is to enlarge the natural compatibility space in application-
level protocols. In our implementation of message morph-
ing in the ECho publish/subscribe middleware, the use of
PBIO for dynamic message formats provides some assis-
tance because it provides XML-like capabilities without in-
curring the overheads of inline textual meta-data. Message
morphing techniques extend that capability beyond simple
structural similarity to cover situations where the new mes-
sages may be structurally dissimilar but still contain similar
data in some form.

5 Evaluation

Systems that seek to aid application evolution can be evalu-
ated on two basic criteria: the degree to which they expand
the compatibility space of applications, and the extent of
the overhead they add to basic communication. The former
is difficult to evaluate in general, particularly when differ-
ent techniques expand compatibility in different ways. In
this paper, we consider the latter measure. In particular, we
compare the performance of PBIO-based message morph-
ing with that of XML/XSLT and demonstrate the feasibil-
ity of our method. XML is chosen because it is a widely-
used form of communication and provides interoperability
across heterogeneous environments. It also supports basic
message evolution in the form of plug-and-play flexibility,
as discussed earlier. XSLT (Extensible Stylesheet Language
- Transformation) is a language for transforming the struc-
ture of an XML document. It is extensively used to produce
HTML documents from XML as well as in business process
messaging, as shown in the example above.

Because XSLT could be used to implement morphing of
XML-encoded messages in the same fashion in which mes-
sage morphing can transform binary messages, the most
direct way to compare the two is to examine the costs as-
sociated with each transformation. However, to put those
measures into proper context we also examine the encoding
and decoding times associated with each of these encoding
mechanisms, as well as the overall message sizes (which
impacts network transmission time, a significant factor in
overall message latency). In our evaluations, libxml2 [18]
Version 2.6.8 is used to parse XML messages, and the trans-
formation of XML messages is carried out with libxslt [19]
library Version 1.1.5. The tests are carried on a 2.2 GHz
dual Intel XEON machine with 1GB memory and running
the RedHat 9 linux distribution.
Encoding Cost: Figure 8 shows the cost of encoding a mes-
sage of type ChannelOpenResponse Version 2.0 (shown in
Figure 4.b) for five different sizes (obtained by varying the
size of member list) in PBIO and XML. The XML string
is created using sprintf() for data-to-string conversions and

Message size (KB) .1 1 10 100 1000
Unencoded v2.0 .10 1.0 10 100 1000
PBIO Encoded v2.0 .13 1.0 10 100 1000
Unencoded v1.0 .23 2.9 30 300 2990
XML v2.0 .66 6.4 62 608 5956
XML v1.0 .79 12.0 121 1194 11712

Table 1. ChannelOpenResponse message
size(in KB) in different format

a modified version of strcat() which returns the pointer to
the end of the string written rather than the start of the des-
tination string. This saves time to re-locate the end of the
string at each call. The cost of XML encoding in the figure
includes the processing necessary to convert the data from
binary to string form and to copy the element begin/end
blocks into the output string. PBIO is optimized for mar-
shalling structured binary data and not small strings.1 De-
spite this, the encoding time for XML is still at least twice
of that for PBIO.
Decoding cost without evolution: The encoded message
obtained from above is then decoded using the respective
decoder on the same machine. The decoder parses the en-
coded message and generates a data structure block sim-
ilar to the one from which it was formed. Figure 9 shows
the results of decoding XML- and PBIO-encoded messages.
PBIO is much less expensive than XML for parsing encoded
messages. This is possible because PBIO makes use of dy-
namic code generation to create a customized conversion
subroutine for every incoming message type.
Message Size: Table 1 shows the sizes of two version of
ChannelOpenResponse message when encoded with PBIO
and XML. The unencoded ChannelOpenResponse message
Version 2.0 is taken as the base line, and its size is varied
from 100 bytes to 10MB. PBIO encoding adds less than 30
bytes of data to the original message, so the numbers in the
first two rows are almost the same. On rollback to Version
1.0, the message size increases by three times because the
list data in Version 2.0 is copied to two other lists in Version
1.0. The message size increases dramatically when encoded
in XML. The size overhead of XML depends not only on
data but also on the tags used in describing XML data. This
size expansion adds to significant network and processing
overheads and tends to make it inappropriate for use as a
wire format where performance is a concern [12].
Decoding cost with evolution: We measure the overhead
of message evolution by decoding the PBIO-encoded Chan-
nelOpenResponse message in ECho Version 2.0 to Ver-
sion 1.0 type shown in Figure 4 using the transformation
specified in Figure 5. This is compared with the cost of
XML/XSL transformation of the corresponding versions of

1Marshalling small strings is not well supported, and is therefore con-
siderably more expensive than prior results for PBIO (reported in [12]).
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Figure 9. Decoding cost.
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Figure 10. Decoding cost with
msg evolution

the ChannelOpenResponse message. PBIO-based message
morphing overhead has two main components: (i) cost of
decoding the message to its native format (i.e. Version 2.0
ChannelOpenResponse), and (ii) cost of message transfor-
mation (from Version 2.0 to Version 1.0). The overhead of
XML/XSL decoding consists of three components: (i) cost
of preparing a XML parse-tree from the encoded message,
(ii) cost of applying the XSL transformation and generat-
ing the new parse-tree, and (iii) cost of traversing the new-
tree to form a data structure block of type ChannelOpenRe-
sponse Version 1.0. In each case, a pointer to the encoded
message buffer was passed to the decoder routine and the
cost was measured in the form of time spent in the decoder.

Figure 10 show the result of the above measurement.
Time taken by XML/XSLT is an order of magnitude larger
than that taken by PBIO-based message morphing. This is
because the cost of parsing ascii-based XML and applying
XSL transformation to it is much higher than binary-based
message morphing.

It is interesting to compare these results with those in the
earlier experiment (see Figure 9) where no format conver-
sion is done. The time taken there is much smaller than in
this case. The extra cost is mostly because of the cost of for-
mat translation, which depends on the nature of that trans-
formation and the degree of mismatch between the two mes-
sage types involved. The transformation (in Figure 5) used
in this experiment involves scanning all of the input data be-
fore generating the final output. This is in fact a relatively
expensive example of transformation, and we have chosen
it deliberately to demonstrate the low overheads of mes-
sage morphing. This cost would be even lower for evolu-
tion in real-world situations like the brittle parameter prob-
lem [17], where unnecessary details in the newer message
versions prevent interoperability with the old client. Also,
there are different coding optimization that we are currently
doing in our message morphing library which will lower
this cost further.

6 Conclusions and Future Work

This paper highlights the need for message format evolu-
tion in the context of large, long-running distributed ap-
plications, and it proposes Message Morphing to deal with
such evolution. Message morphing allows snippets of “con-
version code” to be associated with message formats, where
each snippet specifies the transformations necessary to con-
form the incoming message into a format understood by
the receiver. This conversion code can express more gen-
eral transformations and provide more interoperability than
XML-like data representation mechanisms, thereby offer-
ing a significantly wider range of message evolution possi-
bilities. Also, because this code can be converted dynam-
ically into a native conversion subroutine, this technique
is appropriate even for high-volume, high-bandwidth data
flows.

Experimental results show that message morphing is
well-suited for high performance communication because
of its use of an efficient binary data format, PBIO. Further,
message morphing can support various kinds of evolution,
but some transformations can still be costly. Developers
must carefully design transformations that are low in cost
but sufficiently general to enable desired evolutions.

In future work, we will evaluate the overheads of mes-
sage morphing in the context of a large-scale application
to augment the micro-measurements presented in this pa-
per. We also hope that further experience in using message
morphing in commercial applications will help us refine the
MaxMatch algorithm. Our current approach works well for
the examples we have considered so far, but more proto-
col evolution trials may show the utility of different feature
sets, such as the ability to weight different fields and sub-
fields based on some measure of “importance”. Finally, we
plan to use this technique in the larger context of our Ser-
vice Morphing [25] work, where we meet application and
end-user needs in the presence of run-time variation using
dynamically-adapting services and dynamically-generated
added functionality.
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