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Abstract 
 

Despite voluminous previous research on adaptive 
compression, we found significant challenges when 
attempting to fully utilize both network bandwidth and 
CPU.  We describe the Fine-Grain (FG) Mixing 
strategy that compresses and sends as much data as 
possible, and then uses any remaining bandwidth to 
send uncompressed packets.  Experimental 
measurements show that FG Mixing achieves 
significant gains in effective throughput, particularly 
at higher network bandwidths.  However, non-trivial 
interactions between system components and layers 
(e.g., compression algorithms and middleware settings 
such as block size and buffer size) have significant 
impact on the overall system performance.  Finally, the 
trade-offs and performance profiles of FG Mixing are 
measured, observed, and found to be consistent over a 
wide range of combinations of compression algorithms 
(GZIP, LZO, BZIP2), workload compression ratios 
(from 1 to 4), and network bandwidth (from 0 to 400 
Mbps). 
 
1. Introduction 
 

Adaptive compression is a classic technique to 
improve the effective throughput of networks in 
changeable environments, e.g., limited, variable, and 
sometimes shifting bandwidth constraints in shared or 
wireless networks.  Recent examples include the ACE 
toolkit [18], which switches between compression 
mode when bandwidth is the constraint and no-
compression mode when bandwidth is no longer a 
constraint, and chooses the most effective compression 
algorithm for each workload [19].  Despite the variety 
of work done on adaptive compression, there are some 
interesting unexplored issues. 

The main contribution of this paper is a significant 
improvement in the effective throughput of adaptive 
compression through fine-grain adaptation by mixing 

compressed and uncompressed packets in 
transmission.  We show that the fine-grain adaptation 
mechanisms provide higher throughput than either the 
compressed approach or the non-compressed approach 
even in high speed networks. The goal of fine-grain 
adaptation is to fully utilize both the CPU and the 
network to provide the highest possible throughput. 
We also show that achieving such full resource 
utilization is non-trivial.  Seemingly small 
implementation differences (e.g., send-in-order vs. 
send-out-of-order) have significant impact on 
performance. Furthermore, careful tuning of 
middleware parameters (e.g., buffer size and block 
size) is critical for achieving the best performance. 

The robustness of our evaluation and analysis is 
based on experimental results from a wide variety of 
settings.  We measured the bandwidth consumed by 
compression algorithms with different compression 
speeds and efficiency (GZIP, LZO, BZIP2), workload 
compression ratio (from 1 to 4), and network 
bandwidth (from 0 to 400 Mbps).   

The paper is organized as follows.  Section 2 
summarizes the trade-offs between CPU and 
bandwidth in adaptive compression.  Section 3 
evaluates the Simple Switching adaptation strategy.  
Section 4 describes the Fine-Grain Adaptive Mixing of 
packets.  Section 5 investigates the complications 
arising due to algorithm parameters and competition 
for resources.  Section 6 studies the robustness of our 
results in a wide range of system configurations, e.g., 
faster networks.  Section 7 summarizes relevant related 
work and Section 8 concludes the paper. 
 
2. Problem Description 
 

Traditionally, adaptive compression work assumes 
that network bandwidth is the dominant bottleneck in 
the system.  The main objective of compression is to 
best utilize this limited bandwidth.  For example, a 
careful choice of appropriate compression algorithm 
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for each workload can increase effective transmission 
throughput in each case [18][19]. Under this 
assumption, one of several compression algorithms 
should always be used.   

While the bandwidth bottleneck assumption holds 
for slow networks, in current networked and cluster 
systems we have a wide range of network bandwidths.  
For starters, today’s typical Ethernet connections vary 
from 100Mbps to Gigabit.  Furthermore, there are 
several reasons network available bandwidth may vary 
over time.  For example, a large shared network may 
have variable competing traffic or temporary 
congestion in intermediate routers.  Other scenarios 
include wireless networks where environmental 
conditions may influence network performance and 
CPU scheduling decisions based on resource 
availability such as battery power.  In these situations, 
network bandwidth is the bottleneck only part of the 
time.  Consequently, we need to investigate the 
adaptive compression techniques that optimize 
effective throughput when the available network 
bandwidth is no longer the only bottleneck in the 
system.   

In this paper, we focus on the trade-offs between 
network bandwidth and CPU in a dynamically variable 
network environment.  In our graphs, the available 
network bandwidth is the primary variable.  At the low 
end of available bandwidth is the traditional absolute-
network-bottleneck zone, where network bandwidth is 
always the bottleneck and 100% compression is 
guaranteed to win over alternatives.  This is the case as 
long as the available network bandwidth remains 
insufficient to transmit all the data being compressed.   

The absolute-network-bottleneck zone is delimited 
by Max-Compression-Bandwidth, the point where 
compression fully utilizes the CPU and the compressed 
data fully occupies the available network bandwidth.  
Concretely, Figure 1 shows the Max-Compression-
Bandwidth at about 44Mbps for an actual combination 
of CPU, network, compression algorithm, and data 
workload (explained in Section 3.2).  When network 
bandwidth available exceeds Max-Compression-
Bandwidth, pure compression is no longer guaranteed 
to win, since it starts to leave some network bandwidth 
unused. 

Above Max-Compression-Bandwidth, in the 
variable-bottleneck-zone, pure compression saturates 
the CPU and underutilizes network bandwidth.  
Conversely, no-compression may saturate the network 
bandwidth, but leaves CPU underutilized.  The goal of 
fine-grain adaptive compression techniques to take 
advantage of these underutilized resources.  Further, 
we will show that their performance critically depends 
on middleware settings. 

Simple Adaptation(Switching) - Bandwidth Utilized
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Figure 1 Bandwidth Used by Simple Switching 

 
3. Simple Switching Adaptation 
 
3.1. Simple Switching Algorithm 
 

A straightforward approach to adaptive 
compression is to avoid the critical bottleneck in the 
system.  If network bandwidth is saturated we adopt 
the All-Compressed strategy to compress all packets 
and improve bandwidth utilization.  If CPU is 
saturated we switch to the Non-Compressed strategy to 
stop compression and send only uncompressed 
packets.  The Simple Switching approach is in either 
the all-compressed or the non-compressed mode at any 
given moment in time.  An example of the switching 
approach is the ACE system [18].  In this section, we 
evaluate the performance of the switching approach. 

 
3.2. Experimental Setup 

 
Our experiments were conducted on two Dell 

Precision 350n workstations, each running an Intel 
Pentium-4, 2.24 GHz processor, with 512KB cache, 
533MHz front side bus, and 512MB RDRAM. (These 
machines arrived with their hyper-threading feature 
disabled by default.)  Each of these machines runs 
Redhat Linux 7.3 with the 2.4.18-3 kernel. The 
machines were connected through 100 Mbps Ethernet 
for most of the experiments and a Gigabit Ethernet 
switch for Figure 14. 

We used the “tc” tool under Linux to limit and 
control available bandwidth between the two nodes. 
All our implementations use TCP as the transport layer 
protocol. The main workload is a file containing the 
coordinates, velocities and types of atoms from a 
molecular dynamics application (one of the workloads 
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used in [19]).  Except for the figures in Section 6.3, 
where we compare several different compression 
algorithms, all the experiments use the GZIP library, 
version 1.2.4 [4][8], based on the Lempel-Ziv (LZ) 
algorithm.  The average compression ratio of GZIP on 
this workload is about 2 to 1.  In Section 6 we describe 
additional experiments that show the robustness and 
generality of our results and analysis with respect to 
other workloads, compression algorithms, and faster 
networks. 

The graphs in the paper show experimental results 
with sufficient repetition to achieve the 95% 
confidence level and a targeted error band of less than 
1 Mbps.  The standard deviation in all cases was less 
than 1 Mbps. 

Simple Adaptation (Switching) - Throughput
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Figure 2 Throughput of Simple Switching 
 

3.3. Evaluation of Simple Switching 
 

Figure 1 compares the network bandwidth 
consumption of three strategies: All-Compressed (light 
diamonds), Non-Compressed (crosses), and Simple 
Switching (dark X’s).  The main experimental variable 
is the variation in available network bandwidth, from 
0-100Mbps.  The Y-axis shows the physical network 
bandwidth consumption by the three strategies.  All-
compressed sends only compressed data.  Non-
compressed sends only uncompressed data.  Simple 
Switching is the strategy outlined in Section 3.1.  

Figure 2 compares the effective throughput 
achieved by the three strategies. Figure 2 is obtained 
by decompressing the output of the All-Compressed 
and Simple Switching strategies and comparing them 
with the bandwidth consumption of the Non-
Compressed strategy. 

We divide the graphs into two zones.  First, the 
absolute-network-bottleneck zone appears on the left 

side Figure 1, delimited by the Max-Compression-
Bandwidth at about 44Mbps.  In this zone, all three 
strategies use all the available bandwidth since the 
network bandwidth is the bottleneck.  All-Compressed 
always wins in this zone, as shown in Figure 2.  
Accordingly, the Simple Switching strategy always 
uses the All-Compressed strategy in this zone.  

Second, in the variable-bottleneck-zone (from 
44Mbps and up), All-Compressed becomes unable to 
utilize the increasingly available bandwidth (the flat 
diamond curve in Figure 1, and Figure 2), since it 
saturates the CPU.  The Non-Compressed strategy is 
shown as the diagonal line in both Figure 1 and Figure 
2, gradually gaining on the All-Compressed in the 
variable-bottleneck-zone and eventually winning at 
about 88Mbps.   

At Max-Compression-Bandwidth (about 44Mbps), 
when the CPU becomes the bottleneck, Simple 
Switching starts probing available network bandwidth 
by sending some uncompressed packets.  If probing 
finds that the available bandwidth is greater than the 
maximum compression throughput (Product of Max-
Compression-Bandwidth and average compression 
ratio), it is advantageous to stay in the Non-
Compressed mode.  On the other hand, if probing finds 
the available bandwidth to be less than the maximum 
compression throughput, it is better to compress and it 
reverts back to the All-Compressed mode. 

Similarly, when Simple Switching enters the Non-
Compressed mode, it starts to probe for available CPU.  
In a way analogous to the network bandwidth probing, 
the CPU probing compresses a small percentage (5% 
in our implementation) of packets.  If sufficient CPU is 
encountered, it reverts to All-Compressed mode. 

Figure 3 analyzes the mix of packets sent, 
separating the compressed data from the uncompressed 
data.  The dark X’s represent the total bandwidth 
consumed, which is divided into two components. The 
light diamonds show the compressed packets, which 
dominate on the left.  

In Figure 3, we see the effect of CPU and network 
probing. Once we move out of the absolute-bottleneck-
zone (around 44 Mbps), we see an increase in the 
number of uncompressed packets due to network 
probing. As available bandwidth increases, the 
duration and frequency of this probing rises, and so 
does the contribution of non-compressed packets to the 
total bandwidth. Similarly, even beyond the variable-
bottleneck zone, we see residual compressed 
bandwidth. This is due to CPU probing and it is 
responsible for the slight advantage that Simple 
Switching has over the Non-Compressed strategy 
(upper right hand corner of Figure 2). 
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Figure 3 Packet Mix in Simple Switching 

 
In summary, Simple Switching appears to get “the 

best of both worlds” by tracking the winning strategy 
at the two ends of network bandwidth spectrum. 
However, the oscillating behavior of Simple Switching 
in the variable-bottleneck-zone makes it under-perform 
with respect to the other two strategies.  Compared to 
Non-Compressed, Simple Switching underutilizes the 
available bandwidth by as much as 20Mbps at 70Mbps 
available bandwidth (the downward curve in Figure 1). 
Compared to All-Compressed, Simple Switching has 
lower effective throughput by a non-trivial margin (up 
to 10% between 50Mbps and 70Mbps in Figure 2).  
Additionally, the residual gain due to use of 
compression beyond 88Mbps (Figure 2) indicates that 
further improvements could be had with a fine-grain 
adaptation techniques. 
 
4. Fine-Grain Mixing of Packets 
 

One way to escape from the oscillation, and hence 
inefficiencies found in Simple Switching is to use fine-
grain adaptation, where the system sends both 
compressed and uncompressed packets at the same 
time, instead of switching modes.  The goal of the Fine 
Grain (denoted as FG in the rest of the paper) Mixing 
adaptive strategy is to fully utilize both CPU and 
network bandwidth.  We achieve this goal by 
compressing as much as feasible, and start sending 
uncompressed packets when additional bandwidth 
becomes available.  While a relatively simple idea, FG 
Mixing introduces non-trivial interactions between 
system components and layers.  

 

 
Figure 4 A Summary of the Three Strategies. 
Simple Switching performs a comparison to 
enable/disable compression. The other two 
rely on the slowness of IO to parallelize 
compression and IO. 
 
4.1. Two-Thread FG Mixing 
 

A straightforward implementation of the FG Mixing 
method uses two threads, each dedicated to one 
resource: CPU or network bandwidth. The 
Compression Thread compresses packets and the 
Packet Sending Thread sends packets.  The two 
threads communicate through a common queue in 
temporary buffer (for a system-level implementation 
the TCP buffer could be used).  The Compression 
Thread picks up uncompressed packets from the queue 
and puts back compressed packets.  The Packet 
Sending Thread picks up packets (both compressed 
and uncompressed) from the queue and sends them 
out.  The job of the Compression Thread is to 
compress the waiting packets so that all available CPU 
(not used in packet sending) is utilized to increase 
effective throughput.   

We considered and implemented two variants of the 
above algorithm.  Although their implementation 
differences appear minor at the first glance, they ended 
up with non-trivial performance differences.  The first 
variant is called send-in-order, with both threads 
starting from the queue head.  The second variant is 
called send-out-of-order, with both threads working on 
the next available packets on the queue.  While the 
send-in-order variant is simpler, it requires 
synchronized access to the queue.  As the network 
speed increases, the effect of synchronization delay on 
the Sending Thread is exacerbated. The send-out-of-
order variant eliminates these delays, but it requires the 
receiver to sort the incoming packets in a buffer. 

Figure 5 compares the effective throughput of the 
two variants on a 100Mbps Ethernet and Figure 6 on a 
Gigabit network.  The send-out-of-order variant 
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outperforms the send-in-order variant by less than 
0.5Mbps up to about 320Mbps, when the 
synchronization problems start to slow down the send-
in-order variant. The send-out-of-order implementation 
starts to slow down at about 380Mbps.  

The performance curves of FG Mixing (denoted by 
dark X’s) and Non-Compressed (denoted by light +’s) 
together with the secondary Y axis form a trapezoid. 
The rising left leg of the trapezoid is incident on the 
All-Compressed line indicating two things – All the 
data sent is being compressed and that the network is 
the bottleneck in this region. The upper base starts 
where the All-Compressed line flattens out indicating a 
CPU bottleneck. Beyond this point the Non-
Compressed and FG Mixing lines are nearly parallel 
indicating that any increase in the throughput of FG-
Mixing is due to increase in number of non-
compressed packets. This trapezoidal figure is 
characteristic of FG Mixing and can also be observed 
in later graphs. 
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Figure 5 Throughput of 2-Thread FG Mixing 

Two Thread Adaptive On a Gigabit Network
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Figure 6 FG Mixing in Gigabit Network 

 

4.2. Estimated Maximum Achievable 
Throughput 

 
Although Figure 5 shows significant performance 

gains of FG Mixing over All-Compressed and Non-
Compressed, a remaining question is whether FG 
Mixing could be further improved.  (The Simple 
Switching strategy is omitted for clarity, since it 
emulates the combination of All-Compressed and Non-
Compressed.)  To answer this question, we define an 
estimation of the practical limit on the achievable 
throughput for a given workload and compression 
algorithm, called Estimated Maximum achievable 
throughput (line with circles in Figure 5).   

The Estimated Maximum is informally defined as 
an idealized strategy.  It fully utilizes all available CPU 
to compress and send data.  In addition, it fully utilizes 
the residual bandwidth by sending uncompressed 
packets up to the physical bandwidth limit. This means 
in the absolute-network-bottleneck zone, the Estimated 
Maximum is equal to the throughput achieved by All-
Compressed, since there is no excess bandwidth 
available. And in the variable-bottleneck-zone, the 
Estimated Maximum is equal to the difference between 
the input for the compression algorithm and its output 
plus the entire available physical bandwidth.  We 
believe the Estimated Maximum achievable throughput 
strategy is appropriately named since it consumes all 
available CPU and network bandwidth.  

outin ComprPhysBandComprEstMax −+=            (1) 
The first term represents full CPU utilization. The 

next two terms give the residual bandwidth, which is to 
be utilized by sending uncompressed packets. This 
equation assumes that sending packets consumes 
negligible CPU. 

In Figure 5 we see a very small difference between 
the Estimated Maximum and FG Mixing (less than 4.8 
Mbps for the send-in-order variant and 4.3 Mbps for 
the send-out-of-order variant).  In other words, the FG 
Mixing (particularly the send-out-of-order variant) is 
near the practical limit of achievable bandwidth by 
adaptive compression.  This is the result of fully 
utilizing both the available CPU and network 
bandwidth. 

However, there are some complications in the 
implementation of the send-out-of-order two-thread 
variant, e.g., the need for the client side to sort the 
potentially out of order packets.  We designed and 
implemented a refined single-threaded implementation 
to address these issues.  

 
4.3. Single-Thread FG Mixing 
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The single thread implementation improves the 
two-thread variants by replacing the Packet Sending 
thread with kernel-level implicit multithreading, e.g., 
by using Unix style non-blocking sockets.  As long as 
the TCP buffer is non-empty, a non-blocking socket 
will keep sending the packets as fast as TCP allows.  In 
the mean time, the single thread keeps compressing the 
packets in the buffer.  Thus we are able to send packets 
in order while avoiding the synchronization problems 
of the send-in-order variant of two-thread FG Mixing. 

If network bandwidth is the bottleneck, the single 
thread strategy will keep the entire buffer compressed.  
This is the case of absolute-network-bottleneck zone.  
In the variable-bottleneck zone, since TCP will keep 
sending as long as the buffer is non-empty, all the 
available network bandwidth will be utilized with a 
mix of compressed and uncompressed packets.  
Similar to the send-out-of-order variant of FG Mixing, 
the single thread implementation of FG Mixing also 
achieves performance near that of Estimated 
Maximum.  The performance figure for the single 
thread implementation is similar to Figure 5.  A 
comparison of the above adaptive compression 
strategies is shown in Figure 12. 

Here, we analyze the mix between compressed and 
uncompressed packets in Figure 7. In contrast to the 
complex behavior of Simple Switching (Figure 3) due 
to oscillation, in Figure 7 we see a steady rise of 
compressed packets up to Max-Compression-
Bandwidth at 44Mbps and then all the excess 
bandwidth being occupied by uncompressed packets.  
In the variable-bottleneck zone, there is a slight 
downward slope in the total compressed packets due to 
the increasing need for CPU used by the network 
protocol layers to send a large amount of data.  Figure 
7 reflects the definition of Estimated Maximum (1), 
except for the downward slope, a detail omitted by 
Estimated Maximum. 

Single Threaded Version- Split of Bandwidth Utilized
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Figure 7 Packet Mix, Single Thread FG Mixing 

Effect of Block Size on Throughput
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Figure 8 Sensitivity to Block Size 

 

5. Sensitivity to Algorithm Settings and 
Competition for Resources 

 
One of the important findings in our research is the 

interference between system components as well as the 
importance of selecting the right algorithm parameters 
for achieving the best performance. As we try to 
optimize resource utilization, the interactions of our 
algorithms with other system components, make the 
overall resource optimization of CPU and network 
bandwidth non-trivial and often non-obvious. In the 
subsequent experiments, we concentrate on the single-
thread implementation, as it performs the best in most 
cases. FG-Mixing in the subsequent sections refers to 
the single-thread implementation described in Section 
4.3 unless explicitly stated otherwise.  

 
5.1. Effect of Block Size on Throughput 
 

The first system parameter of non-trivial influence 
is the block size in the buffer being used for 
compression. In our implementation, each packet 
corresponds to a block. As we see in Figure 8, the 
throughput of FG Mixing increases monotonically with 
the block size from 4KB to 32KB, but it drops at 
64KB. This apparent inconsistency is due to 
compression efficiency fluctuations caused by 
interactions within the implementation of the 
compression algorithm. 

For the LZ class of compression algorithms, 
increasing the input size generally results in better 
compression ratio. This also leads to lower per byte 
compression times as input size increases. This 
observation is borne out in Figure 8. But in the case of 
64 KB, we see an uncharacteristic decrease in 
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throughput. Upon further analysis, we found that the 
GZIP library in use (v.1.2.4) had an internal, 
temporary buffer of 32 KB, which makes 32 KB the 
most efficient block size for this implementation of 
GZIP. 

This is an example of non-trivial interactions 
between system components, in this case the mismatch 
between the input size and internal buffer size of the 
compression algorithm.  

Effect of Buffer Size on Throughput (16 Kbyte Block)

0

20

40

60

80

100

120

140

160

5 15 25 35 45 55 65 75 85 95

Physical Network Available Bandwidth (Mbps)

E
ffe

ct
iv

e 
Th

ro
ug

hp
ut

 (M
bp

s)

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 B
uf

fe
r F

ill 
Le

ve
l

32K Buffer - Throughput
64K Buffer - Throughput
32K Buffer - Utilization
64K Buffer - Utilization

 
Figure 9 Sensitivity to Buffer Size 

 
5.2. Effect of Buffer Size on Throughput 
 

Related to the block size issue is the available 
buffer size.  We found that a larger buffer is needed in 
the absolute-network-bottleneck zone to accommodate 
the storage of more packets when the network becomes 
a bottleneck.  As the network becomes faster, the need 
for large buffer decreases.  

For clarity we show only two buffer sizes to 
illustrate this trend in Figure 9.  For a fixed block size 
of 16KB, we measured the performance results with 
32KB buffer and 64KB buffer.  In addition to the 
effective throughput shown on the left side, we added 
the buffer fill level scale on the right to show the 
inverse correlation between network bandwidth and 
buffer size.  In our experiments, buffer utilization is 
the average of the buffer fill level, measured at 
intervals of approximately 100 milliseconds. 

With a relatively small buffer (32KB, twice the 
block size), the effective buffer size is limited to two 
blocks.  This is due to the need to reserve half of the 
buffer (one block) at the beginning of each 
compression cycle, in case the compression algorithm 
fails to compress the block.  This limited buffer size 
reduces the effective throughput as shown in Figure 9. 

With a larger buffer (64KB), we see a super-linear 
growth in effective buffer size due to successful 
compression.  As each block is compressed, the 

remaining room in the buffer can accommodate more 
packets, since the “last block effect” only affects one 
quarter of the total buffer.  Clearly, a larger buffer is 
able to cope better with bandwidth bottlenecks in the 
absolute-network-bottleneck zone. Once we move into 
the variable-bottleneck zone, the network starts to 
consume packets faster than the compression algorithm 
can produce. The result is a lower need for buffering. 

The issue of network protocol buffering is non-
trivial.  There is evidence that a significant portion of 
TCP latency is due to the send-buffer size [7], where a 
larger buffer introduces longer latency.  Our results 
showing a decreasing need for buffering could support 
adaptive send-buffer adjustments as advocated in [7].  
Although in this paper we focus on bandwidth, the 
interactions between different quality of service 
dimensions such as bandwidth and latency are 
interesting topics of future research. 

 
5.3. FG Mixing under Competition 
 

Up to now we have been studying adaptive 
compression under light or no competing load.  One of 
the major applications of adaptive compression is good 
resource utilization despite environmental changes.  In 
Figure 10 we see the results of injecting a competing 
network load that occupies 50% of the network 
bandwidth (about 45Mbps in the 100Mbps Ethernet 
setup), which effectively shifts the performance of the 
algorithm to the left of the previous graphs by that 
margin.  As expected, Non-Compressed loses the 
entire 45Mbps in throughput, All-Compressed loses 
only a little (the experiment was in the variable-
bottleneck-zone).  FG Mixing loses the uncompressed 
packets, but keeps the compressed packet flowing, still 
gaining a little over the All-Compressed. 
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Figure 10 Competing Network Load  
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Figure 11 XML Workload 

 
6. Robustness of Fine-Grain Mixing 
 
6.1. Different Workloads 

 
We tested our implementations on other workloads 

including commercial data in XML format, matrices 
from a fluid dynamics application, tar distributions and 
binaries with different compression ratios.  As an 
illustrative example, Figure 11 shows the results of our 
experiments with the XML workload, which had an 
average compression ratio of 4.2, the highest ratio 
amongst the tested workloads. The graph maintains its 
trapezoid shape, with the rising leg at a steeper angle, 
showing a bigger gain due to the higher compression 
ratio.  The results of other workloads (of compression 
ratio between 1 and 4) show the same trapezoid with 
expected rising legs, so they are omitted here.  

 
6.2. Different Compression Algorithms 

 
Since all previous experiments have used GZIP, as 

summarized in Figure 12, a natural question is whether 
the results would be the same with other compression 
algorithms.  To test this hypothesis, we ran the same 
experiments with other representative compression 
algorithms. BZIP2 is an algorithm that runs 
significantly slower than GZIP, but that produces a 
higher compression ratio.  Figure 13 shows that for a 
slower compression algorithm, the trapezoid is shifted 
to the left. BZIP2 has a Max-Compression-Bandwidth 
of about 10Mbps instead of 44Mbps, with the same 
performance gains, losses, and crossover points, but at 
a lower point of available network bandwidth. 

In contrast, Figure 14 shows the results of using a 
fast compression algorithm (LZO), which consumes 

little CPU and offers a relatively low compression 
ratio.  In this graph, the trapezoid is elongated towards 
the right side.  LZO has a Max-Compression-
Bandwidth of about 170Mbps, with the same 
performance gains, losses, and crossover points, but at 
a higher point of available network bandwidth. 
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Figure 12 Summary of GZIP Compression  

Performance with the BZIP2 Compression Algorithm

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90
Physical Bandwidth Available (Mbps)

Ef
fe

ct
iv

e 
Th

ro
ug

hp
ut

 (M
bp

s)

Simple Adaptation

Two Thread - In Order

Single Thread

Non Compressed

All Compressed

Estimated Maximum

 
Figure 13 Comparison with BZIP2 

Performance with the LZO Compression Algorithm
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Figure 14 LZO on Gigabit Network  
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Figure 15 FG Adaptation on Gigabit Network 

 
6.3. Faster Networks 
 
To evaluate FG Mixing in a faster network, we 
replaced the 100Mbps Ethernet with a Gigabit 
network.  The results have been seen in Figure 6, 
comparing the send-in-order variant with the send-out-
of-order variant, and Figure 14, studying a fast 
compression algorithm.  Figure 15 extends Figure 12 
into Gigabit networks, showing the same trapezoid 
shape moved towards left as we increase the network 
bandwidth while holding the node configuration 
constant. 
 
6.4. Faster CPUs 
 

Since the trade-offs investigated in this paper are 
CPU and network bandwidth, we see that a faster 
network moves the trapezoid of interest towards left 
(expanding the variable-bottleneck-zone).  Conversely, 
a faster CPU moves the trapezoid of interest towards 
right (expanding the absolute-network-bottleneck-
zone).  This is also suggested by Figure 14, where a 
fast compression algorithm effectively “speeds up” the 
CPU performance.   Consequently, we omit the 
experiments on faster CPUs. 

 
7. Related Work 
 

Adaptive compression is a natural solution for 
networks with variable bandwidths, e.g., shared 
environments and heterogeneous networks such as 
those discussed by Douglis [5], Katz and Brewer [11] , 
and Mogul et al [14].  There are several ways to adapt 
to different situations.  An interesting dimension of 

adaptive compression research is finding and using the 
best compression algorithm for each combination of 
data, system and network conditions.  Examples 
include Dynamic Compression Format Selection [13]  
for transporting Java class files, Network Conscious 
Text Compression system [15]  for text data and 
Wiseman et al. [19]  for a more general dataset.  Our 
work complements this line of research, since we focus 
on the trade-offs and system parameter settings for 
each compression algorithm. 

Some adaptive compression systems adopt 
strategies similar to one of ours.  For example, 
Adaptive Compression Environment (ACE) [18]  
adopts a strategy similar to Simple Switching.  ACE 
uses Network Weather Service to predict CPU and 
network availability and identify when compression 
will provide better throughput.  Similarly, Hu et al [9]  
use Remos, a network performance middleware 
service, to provide information about current resource 
usage for switching.  In contrast, our systems are self-
contained (with an internal probing mechanism).  
Another example is Adaptive Online Data 
Compression (AdOC) [10], which uses a multi-
threaded approach, one to compress data and one to 
send data, to maximize effective throughput.  In 
contrast, our fine-grained adaptation approaches 
achieve full utilization of bandwidth and CPU. 

More powerful adaptive compression techniques 
can be applied if applications (e.g., multimedia 
streaming) can use lossy compression algorithms that 
typically achieve much higher compression ratio.  For 
example, On-Demand Dynamic Distillation method [6] 
uses a proxy-based approach to tailoring content for 
clients, which is useful when rich text, images and 
video are transmitted to hardware constrained clients.  
Other papers (e.g., Badrinath et al [2] and Knutsson et 
al [12]) describe some of the adaptation systems used 
in mobile networks, such as how server-directed 
transcoding can be used to overcome client limitations.  
These application-specific approaches are also 
orthogonal and complementary to our research. 
Although much of the previous adaptive compression 
work focuses on increasing effective throughput, there 
have been research projects that address more than one 
dimension, for example, improving both throughput 
and energy consumption in mobile environments.  
Aleh et al [1] study the effect of compression in 
lowering costs in packet switching networks.  Since 
transmission costs in wireless networks are generally 
higher than computation costs, it could be 
advantageous to compress and send data as shown by 
Barr et al [3] and Poellabauer et al [16].  While our 
work is complementary to energy conservation, the 
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pursuit of multi-dimensional optimization is similar to 
both lines of research. 
 
8. Conclusion 
 

In this paper, we describe an experimental 
evaluation of Fine-Grain (FG) Mixing of compressed 
and uncompressed packets for adaptive compression in 
networks with dynamically variable bandwidths.  The 
main goal of FG Mixing is to fully utilize all available 
system resources fairly, in this case CPU and network 
bandwidth.  We use all available CPU to compress as 
much data as possible. We then use all available 
network bandwidth by initially sending the compressed 
data and then using the remaining bandwidth to 
transmit as many uncompressed packets as possible. 

In our evaluation of FG Mixing, which is 
implemented in the middleware level, we found that 
apparently innocuous design and implementation 
decisions may end up with significant impact on 
system performance. Despite these differences, we 
found the trapezoid performance characterization to be 
consistent across different compression algorithms 
(GZIP, LZO and BZIP2) Similar consistency was 
found over a range of workloads in terms of 
compression ratio. We also found the trapezoidal 
nature repeated in Gigabit networks with the trapezoid 
having short legs and long bases. 

In summary, with careful tuning and 
synchronization of system parameters, FG Mixing can 
achieve significant gains in effective throughput in 
variable bandwidth network environments. 
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