
Robust Task Allocation for Dynamic Distributed Real-time Systems Subject to
Multiple Environmental Parameters

Dazhang Gu, Frank Drews, Lonnie Welch
Center for Intelligent, Distributed, and Dependable Systems

School of Electrical Engineering and Computer Science
Ohio University, Athens, Ohio 45701 U.S.A.

dgu@bobcat.ent.ohiou.edu {drews,welch}@ohio.edu

Abstract

Some distributed real-time systems interact with external
environments that change dynamically, and it is necessary
to take the external variables into account when performing
task allocation. We developed an approximation algorithm
for task allocation, and it finds allocations that are maxi-
mally robust against dynamic changes in multiple external
variables. Such an algorithm will help to reduce expensive
reallocations triggered by changes in unpredictable envi-
ronments. The algorithm has a polynomial running time,
and its robustness optimality is given by an approximation
ratio, which equals 2.41 asymptotically, when workloads
are large and workload independent utilization of tasks is
insignificant.

1. Introduction

Execution times of dynamic distributed real-time sys-
tems (DDRTSs) can be affected by many unpredictable ex-
ternal variables (EVs) that originate in their environments
[8]. The time complexities of algorithms generally depend
on the sizes of their inputs, and the algorithms in real-time
tasks are no exception. The unpredictable environmental
parameters can result in varying execution times of system
tasks that cannot be known in advance [17]. Thus it has
been said that traditional periodic task scheduling and al-
location based on worst case execution time is not applica-
ble for many applications [19, 9, 20, 14]. In this paper, we
develop a strategy for feasible task allocations that explic-
itly considers robustness of the allocations against dynamic
changes in external variables.

The notion of tasks, which have workload-dependent ex-
ecution times, originated from the study of the generic air
defense system [21] depicted in Figure 1. The detect task
identifies threats to a defended entity. The task runs peri-

Task 1:

detect

Operator

sensors filter/sense evaluate/

decide

act actuator

Task 2:

engage/launch

Task 3:

guide missile

Figure 1. A motivating example [21]

odically and performs the functions of filtering and evaluat-
ing radar tracks. When a threat is detected, the detect task
triggers the engage task, which fires a missile at the threat.
After a missile is in flight, the guide missile task keeps the
missile on the correct course. The guide missile task exe-
cutes periodically; uses sensor data to track the threat; re-
calculates the flight path for the missile; and issues guidance
commands to the missile.

All three of these tasks have resource needs that are
environment-dependent. The execution time of the detect
task is primarily workload-dependent. Since the task evalu-
ates each radar track to determine if it is a potential threat,
its execution time is a function of the number of radar tracks
in the environment. The workload of the engage task is
also variable since it is activated by events which occur at
rates that are determined by the external environment. Sim-
ilarly, the work performed by the guide missile depends
on the number of missiles in flight. Unlike traditional ap-
proaches to real-time computing, which characterize the

resource needs of a task by a worst case execution time
(WCET) [13], we characterize the resource needs of these
tasks by execution profile functions. These functions com-
pute the resource need as a function of workload [18] by
curve-fitting [22].

We note that concurrency is often used in order to meet
the real-time constraints of the tasks. Thus, during opera-
tion, there may be many replicas of the three tasks in the
air defense system. When the number of radar tracks grows
too large for a single replica of the detect task to process all
tracks within the required time bound, one or more replicas
are created and the radar tracks are partitioned among them.
Additionally, pipeline concurrency is obtained by replicat-
ing the subtasks of the detect task. In a similar manner, the
guide missile task is replicated as necessary to meet dead-
lines, and its subtasks are distributed. Replication is also
used for the engage task when heavy workloads are antic-
ipated. Thus, an important problem to solve for this sys-
tem is how to allocate the tasks and subtasks in a manner
that allows real-time constraints to be met and that mini-
mizes the need for reallocations (which create overhead in
the system). Also, we want to know the maximum numbers
of missiles and radar tracks that can be sustained by a given
hardware configuration.

Researchers have started to investigate this class of prob-
lems. Determining the maximal allowable increase in load
for a feasible allocation was studied in [7]. Latency require-
ment was from end to end, and both computation and com-
munication latency were considered. However, some real-
time scheduling issues were not considered such as release
time and subdeadline assignments [4, 15]. The variances of
all execution times were characterized by linear functions
of one system parameter α. The parameter was maximized
using mixed integer programming after applying a simplify-
ing heuristic. The performance was validated through sim-
ulations. The definition of a general robustness metric for
multiple environmental parameters was introduced [3]. The
metric was defined as a radius for a maximal allowable per-
turbation along any direction of the parameter space with-
out violating system performance boundaries. Actual opti-
mization algorithm was not the topic of the paper, although
convex optimization was mentioned.

We previously studied a task allocation problem with a
single workload variable for dynamic systems [10]. The
goal was to find the maximal allowable workload (MAW)
for a system of independent real-time tasks allocated to
processors scheduled rate monotonically (RM). Tasks’ ex-
ecution times had workload dependent portions that were
non-decreasing. An allocation algorithm was developed
based on binary search and greedy first fit. During the
allocation, the rate monotonic schedulable utilization for
single processor was used to test feasibility. Heuristic al-
gorithms were introduced to experimentally compare with

performance of the approach which were simulated anneal-
ing, hill-climbing and random search. The set of algo-
rithms was later expanded to include tabu search, genetic
algorithm, dynamic programming, and optimal branch-and-
bound [1]. The results indicated that the first-fit based algo-
rithm performs well in finding the MAW compared to the
heuristic or exhaustive algorithms, while it offers great cost-
efficiency in time and space complexity. However, the work
was restricted to a single environmental variable. The log-
ical extension to multiple environmental variables will be
addressed in this paper.

This research addresses the task allocation problem that
seeks allocations with the maximal robustness measure
against multiple external variables. The maximization will
allow large changes in environment parameters to be ab-
sorbed while the same allocation remains feasible. Signif-
icance of the robustness lies in that no new allocation has
to be recomputed, and no reallocation needs to be enacted.
Either action can be very time consuming. High latency
may result from a poorly allocated system, when changes in
external variables frequently trigger reallocations, and the
overhead may cause task deadline misses and serious con-
sequences. The algorithm developed in this research will
be used for task allocation decisions in the Resource Man-
agement Service of QARMA, the Quality-based Adaptive
Resource Management Architecture [6]. Figure 2 shows
the architecture, which consists of three major components:
the System Repository Service, the Resource Management
Service, and the Enactor Service. The System Repository
stores both static and dynamic information that describe the
software systems and resources in the computing environ-
ment. The Resource Management Service (dash boxed) is
responsible for using information in a system repository to
decide what actions should be performed to ensure that per-
formance requirements are satisfied and overall optimized.
The Enactor Service receives instructions from the resource
management service about actions to perform and enacts
them. Actions may include adjustment of quality of service
settings and allocation of tasks. The algorithm, as part of
the Resource Management Service, will provide robustness
in such actions. We will start off the development with a
system model and the problem definition.

System model: We assume a set of n periodic tasks T =
{T1, T2, ..., Tn} and a set of m identical processors P =
{P1, P2, ..., Pm}. Each processor is assumed to use a rate
monotonic scheduler. Each task Ti is characterized by a pe-
riod Ti.p, and its deadline is assumed to be equal to its pe-
riod. We assume l external variables �w = (w1, w2, ..., wl).
For each task Ti the profile function Ti.e(�w) is given as a
function of these external variables. The system utilization
U(�w) =

∑n
i=1

Ti.e(�w)
Ti.p

, is also expressed as a function of
the external variables, and U(0) is the utilization of system
that is independent of external variables.

Files
Configuration

Tool
Specification

Software Performance
Detector

Host Detector

QARMA Resource
Management Service

Service
System Repository QARMA

Software Performance
Monitor

Host Monitor
Enactor Service

User Applications
Computing Environment &

Resource and

Environment
Resource &
Software
Instrumetnation

user management
commands

Figure 2. QARMA architecture

Problem definition: Define an allocation robustness met-
ric M = M(�w) (M ∈ �) so that the maximization of
M effectively maximizes the allowable ranges (robustness)
[0, wmax

k] for every external variable. Determine an alloca-
tion T → P for which M(�w) is maximized, subject to the
feasibility constraints imposed by rate monotonic schedul-
ing on each processor,

∀j : 1 ≤ j ≤ m,
∑

i:Ti→Pj

Ti.e(�w)
Ti.p

≤ nj(2
1

nj − 1),

where nj is the number of tasks allocated to proces-
sor Pj . Return the feasible allocation corresponding to
the Mmax(�w), and the corresponding maximal allowable
ranges for external variables [0, wmax

k] (1 ≤ k ≤ l).
The problem calls for the maximization of a robustness

measure against multiple external variables while the al-
location stays feasible on every processor. This involves
two issues: the choice of a meaningful robustness metric to
maximize, and the development of an algorithm that finds
the allocation with maximal robustness metric. It’s also nec-
essary to know the quality of maximal robustness it finds.
We noticed that it is not a regular constrained optimization
problem, because the constraints are not given explicitly
but are functions of allocations. Exhaustively enumerat-
ing them is exponential and inefficient. These issues will
be addressed in the paper. Rate monotonic scheduling was
used because we have built the analysis upon the utilization
bound developed by Oh and Baker [16].

The paper is organized as follows. Section 2 deals with
finding robust allocations in the case of one environmental
variable. An approximation ratio is developed for the ro-
bustness found by a first fit based allocation algorithm. The
result will build the foundation for subsequent extensions
to multiple environmental parameters. Section 3 addresses
the problem of how to define a robustness metric in the case
of multidimensional variables. Section 4 proposes a poly-
nomial time algorithm for the multi-dimensional case, and
an approximation ratio is derived. Section 5 experimentally
compares our heuristic with branch and bound and random
search. Finally, section 6 concludes this paper and discusses

future research.

2. Robust allocation in one-dimensional case

In the previous work on single external workload vari-
able (MAW) [10], a first-fit based allocation algorithm was
developed to find the allocation with maximal robustness.
By imposing two well-behaved restrictions on execution
time profile functions, Juedes further developed a condi-
tional two component approximation bound and an asymp-
totic approximation ratio for this algorithm [11]. In this sec-
tion, we will extend the definition of well-behaved profile
functions and present an improved bound on the one dimen-
sional robustness when this first-fit based algorithm is used.
The bound will later be used when dealing with the mul-
tiple dimensional case. Because the analysis relies on Oh
and Baker’s utilization bound [16], processors are assumed
homogenous and use rate monotonic scheduler.

2.1. Well-behaved profile functions

We begin with some mathematical preparations on pro-
file functions. Domains of running time profile functions
Ti.r(w) are first expanded from Z

+ to R
+, since the pro-

file function forms (polynomial, logarithmic, exponential...)
generally have mathematical definition on R

+. For in-
stance, e(n) = nlogn of a sorting task is indeed well de-
fined for n ∈ R and n ∈ (0,∞). Usually their domains are
restricted to integers due to practical consideration (e.g.

√
2

items make no sense). However, working with the full do-
main of a function enables us to conveniently exploit intrin-
sic function properties like local derivatives, which is useful
to speculate global function behaviors. We assume the pro-
file functions are differentiable to the second order. This
won’t be a problem for normal profile function forms like
polynomial, logarithmic, exponential... If a function profile
is given in some non-continuous manner, it is always possi-
ble to bound or interpolate it with polynomials [12]. Next
we make an assumption on profile function that will be use-
ful to speculate a global bound later.

Definition 2.1 A task’s profile function Ti.e(w) is well-
behaved if: d

dwTi.e(w) ≥ 0 and d2

dw2 Ti.e(w) ≥ 0 (w ∈
[0, wmax]).

The “well-behaved” functions are nondecreasing and
convex within the range of allowable workload. For exam-
ple, the function e(w) = 0.1w+10 can be considered well-
behaved, so can wlogw. Although logw cannot. However,
we may bound it with a linear function to render it well-
behaved. The consequence is we would ignore the further
saving of execution time offer by a logarithmic function be-
yond the linear function, and, thus, would not appreciate the

potential improvement in maximal workload if logarithmic
function were indeed used. But since we seek a worst case
bound on the maximal workload, the bound will still hold
under the improvement. From now on we assume profile
functions are well-behaved.

We may formally introduce a well-behaved function
space W , and a function f(x) ∈ W if it is well-behaved
by above definition. Subsequently, we may define well-
behaved operators that conserve the space. With these op-
erators, we may easily construct/destruct unknown well-
behaved functions from/to known well-behaved functions.

Definition 2.2 An operator 	 is a well-behaved operator
if: for h = 	(f, g, ...) with f, g, ... ∈ W , there is h ∈ W .

Theorem 2.1 Addition + and multiplication × are well-
behaved operators, and the unary operator multiplication
by constant is also a well-behaved operator.

The proofs are fairly straightforward by applying deriv-
ative chain rules, and they will be omitted to save space.
As a result of the theorem, we may conveniently find sys-
tem utilization function U(w) is also well-behaved because:
U(w) =

∑n
i=1 Ti.e(w)/Ti.p and ∀i, Ti.e(w) ∈ W .

2.2. Robustness bound of a first fit based algorithm

Equipped with well-behavedness in task execution time
profiles, we continue to examine the quality of robust al-
location produced by a first fit based algorithm under one
workload variable.

Briefly, the first fit based algorithm [10] combined a bi-
nary search with a first fit allocation to find the allocation
with maximal robustness. It used a robustness metric that
was defined as the maximal workload value allowed by an
allocation (MAW). The algorithm performed binary search
along the workload value while first fitting tasks with execu-
tion times fixed at that workload onto processors; the search
terminated when the workload value could not be increased
any further. The resultant feasible workload was the MAW
and the allocation by first fit was the most robust allocation.

If this allocation algorithm is used and tasks have well-
behaved profile functions, we found that it has an absolute
approximation ratio and then an asymptotic performance
ratio for large instances. For our maximization problem,
the former is the tightest bound on RA(I) = OPT (I)

A(I) for all
instances I , and the latter is the bound for large instances
[5]. Let OPT (I) be the optimal MAW workload that ex-
ists in the allocation problem I , and FF (I) be the MAW
produced by this first fit based algorithm; let r1

FF be the ab-
solute approximation ratio for 1 dimension and r1∗

FF be the
asymptotic ratio, there is:

Theorem 2.2 r1
FF < 2−2δ√

2−1−δ
, where δ = U(0)

m . Asymptot-

ically when OPT (I) → ∞, r1∗
FF ≤ 1−δ√

2−1−δ
.

PROOF. The proof made use of the knowledge of well-
behavedness in system utilization function U(w) to specu-
late its behavior without knowing its exact form. Since the
well-behavedness in U(w) supplies local differential prop-
erties over a range, a good mathematical tool to exploit this
is the Taylor expansion. U(w) can be accurately expanded
as a Taylor series when the integral remainder is used. Tay-
lor expansion with the integral remainder has this general
form:

f(x) =
n∑

k=0

1
k!

f (k)(x − c)k + Rn(x), where

Rn(x) =
1
n!

∫ x

c

f (n+1)(t)(x − t)ndt.

(1)

It will be used in the proof next.

Let w0 be the real value for which U(w0) =∑n
i=1

Ti.e(w0)
Ti.p

= (
√

2 − 1)m. We may assume w0 ≥ 1
since otherwise only zero workload (
w0�) can satisfy this
utilization for feasible allocation, which becomes the prob-
lem of fixed execution time task allocation, and there is
no value to consider the feasible range for allowed work-
load. Now for all w ≤ w0, there is U(w) ≤ U(w0) since
the system utilization function is well-behaved and nonde-
creasing. Therefore, by Oh and Baker [16], all workload
value w ≤
w0� has a feasible allocation by first fit. Thus
FF (I) ≥
w0�.

If we use the Taylor expansion to expand the system uti-
lization U(w) to first order about w = 0 and evaluate at w0,
we have

U(w0) = U(0) + U ′(0)w0 +
∫ w0

0

U ′′(t)(w0 − t)dt.

Similarly, if evaluated at point cw0 where c ≥ 1 and c ∈ R,

U(cw0) = U(0) + U ′(0)cw0 +
∫ cw0

0

U ′′(t)(cw0 − t)dt.

Then:
U(cw0) − U(0)

cw0
− U(w0) − U(0)

w0
=

1
cw0

∫ cw0

0

U ′′(t)(cw0 − t)dt − 1
w0

∫ w0

0

U ′′(t)(w0 − t)dt

= . . .

=
c − 1
cw0

∫ w0

0

U ′′(t)t dt +
1

cw0

∫ cw0

w0

U ′′(t)(cw0 − t)dt

The first term c−1
cw0

∫ w0

0
U ′′(t)t dt ≥ 0 because c ≥ 1

and U ′′(t) ≥ 0 (well-behaved) and t ≥ 0 for t ∈ [0, w0];
the second term 1

cw0

∫ cw0

w0
U ′′(t)(cw0 − t)dt ≥ 0 because

U ′′(t) ≥ 0 and cw0 ≥ t for t ∈ [0, cw0]. As a result,
U(cw0)−U(0)

cw0
− U(w0)−U(0)

w0
≥ 0, thus:

U(cw0) ≥ c[U(w0) − U(0)] + U(0)

= c[(
√

2 − 1)m − U(0)] + U(0). (2)

If we choose c = m−U(0)

(
√

2−1)m−U(0)
, then U(cw0) ≥ m. Be-

cause it is impossible to utilize processors more than full,
and U(w) is non-decreasing, we have:

OPT (I) ≤ cw0 =
m − U(0)

(
√

2 − 1)m − U(0)
w0 (3)

Since FF (I) ≥
w0�, there is:

OPT (I)
FF (I)

≤ OPT (I)

w0� ≤ m − U(0)

(
√

2 − 1)m − U(0)
· w0

w0�

<
m − U(0)

(
√

2 − 1)m − U(0)
· 2 =

2 − 2δ√
2 − 1 − δ

. (4)

We have expressed the workload independent system uti-
lization U(0) as δm, and used the fact that w0

�w0� < 2
since w0 ≥ 1. Thus the absolute approximation ratio
r1
FF < 2−2δ√

2−1−δ
.

Asymptotically when OPT (I) → ∞, the bound be-
comes tighter. From equation 3, there is w0 ≥ OPT (I)/c.
When OPT (I) → ∞, w0 → ∞. This leads to w0

�w0� = 1.
Plugging it into equation 4, we have:

OPT (I)
FF (I)

≤ 1 − δ√
2 − 1 − δ

, (5)

and thus the asymptotic approximation ratio r1∗
FF ≤

1−δ√
2−1−δ

.
Notice that there also exists a special case where

FF (I) = OPT (I). This occurs when there is a task Ti

for which Ti.e(wp)/Ti.p = 1 and U(wp) ≤ 0.414m; in
this case wp = OPI(I). Since first fit can always find an
allocation when system utilization is less than Oh and Baker
bound, it will have feasible allocation for wp: FF (I) = wp.
Thus FF (I) = OPT (I). �

3. A robustness metric for multiple dimensions

When a system depends on multiple external variables,
the magnitude of a single workload is inadequate to capture
overall robustness for all variables, and a more comprehen-
sive robustness metric needs to be defined. Since a set of ex-
trinsic attributes may be regarded as a vector, norm seems
a potential metric for robustness. However, caution must
be taken about how the metric mixes components, which
should reflect the interest in this problem. The l2 norm did
not seem appropriate because it implies that the same ro-
bustness value may potentially be achieved by any point of
external variables lying on a sphere of radius ‖x‖2, even
if the point has all components equalling to 0 but just one:
xk = ‖x‖2. This is not desirable since external variables
may not be tradable with each other in value and the loss of
all but one may not be beneficial. For example, (a) the abil-
ity to handle 15 missile tracks alone cannot substitute (b)

the ability to handle 5 missile tracks and 5 torpedo tracks,
even though scenario (a) may appear to offer more robust-
ness than (b) with such norm 15 >

√
52 + 52 = 7.07. This

can guide the optimization algorithm to prefer the former
and cause undesirable results. Another consideration in the
choice of metric is relative importance among the compo-
nents. It is natural that some external variable dimension
may be regarded more important than others. Military sta-
tistics may indicate that for a combat type A, incoming mis-
siles are twice as likely as torpedoes. Then handling more
missile tracks becomes more important than torpedo tracks.
Therefore, the metric construction also needs to take this
into consideration, such as by the use of weighted compo-
nents.

We chose our metric similar to l∞. However, instead
of picking the maximal component, we pick the minimal.
To address the relative importance factor, weights are also
attached. If we label it M :

M(�w) ≡ min
1≤i≤l

(ki|wi|) = min
1≤i≤l

(kiwi), (6)

assuming ki > 0, and wi ≥ 0.
This choice is not uncommon [7, 15, 2]. It maximizes

the minimal value range in every external variable while
weighted by importance. Thus a system optimized by this
metric can absorb maximum change in any external vari-
able. If we look back on scenarios (a) and (b), now (a)
would have a metric of 0 while (b) have a metric of 5 (equal
weights), thus (b) would now be preferred.

To better understand the properties of this metric, its
equi-value contour lines are plotted for M(�w) = 1, 2 in two
dimensions in Figure 3. The metric value increases as the
lines go out, and they are shaped as right angles parallel to
the coordinate frame. In addition, ’origins’ of all these con-
tours reside on the line: y = k1

k2
x, which can be generalized

in multi-dimensional space to:

kiwi = t, (7)

where t is the parameter in the parametric format of the line.
In Figure 3, a point �w0 = (x0, y0) = (1/k1, 1/k2) was

shown on this line. It has: k1x0 = k2y0 = 1 and thus a
metric: M(�w) = min(1, 1) = 1. Generally, if w is on
the line, M(�w) = min1≤i≤l(kiwi) = t, thus parameter t
turns out to be the metric itself, and the line may also be
characterized by:

wi =
M(�w)

ki
(1 ≤ i ≤ l). (8)

For convenience of reference, we label it the ray of origins.
Geometrically, any point on the line determines the whole
M(�w) = c contour line.

External variable y M(x,y)=1 M(x,y)=2

External variable x

y0=1/k2

x0=1/k1
o

y=k1/k2 x

Figure 3. Contour lines of robustness metric
in two dimensions

3.1. Search space for the maximal robustness metric

Now we further examine the robustness metric when it is
considered in conjunction with properties of system tasks,
since that is where the metric will be used. This understand-
ing will help us design an efficient search for the maximal
robustness value under multiple dimensions. Generally, an
algorithm’s running time does not decrease as its input size
grows larger, thus we previously made the assumption that
execution time functions are non-decreasing in one work-
load dimension [10]. When a profile function depends on
multiple environmental variables, it is reasonable to assume
the function also to be non-decreasing in each dimension
while keeping others fixed, or mathematically

∂Ti.e(�w)
∂wj

≥ 0 (1 ≤ j ≤ l, 1 ≤ i ≤ n). (9)

For instance, a bin-packing approximation algorithm may
run in O(mn), where m and n is number of bins and blocks.
Then the function is non-decreasing in either dimension.
This yields an important property:

Lemma 3.1 If tasks of a DDRTS have execution time pro-
file functions that are non-decreasing in all EV dimensions,
then for every allocation of the DDRTS, there can exist only
one tangent point between the boundary line (or surface) of
its feasible area for EVs, f(�w) = c1, and the robustness
metric’s contour line (or surface), M(�w) = c2. The tan-
gent point occurs at the metric contour’s origin.

PROOF. Without loss of generality, we give the proof only
for the two-dimensional case. Let the feasibility boundary
of an allocation be described by f(w1, w2) = c1, or equiv-
alently w2 = g(w1).

We first show that for every allocation, everywhere on
the feasibility boundary line there is dw2

dw1
≤ 0. Assume

that ∃ somewhere dw2
dw1

> 0. Let there be w2 = g(w1) and
w′

2 = g(w′
1). Then it is possible that when w′

1 = w1 + ∆

(for any ∆ > 0), w′
2 > w2. It follows that since the al-

location is feasible at (w′
1, w

′
2), it should also be feasible at

(w1, w
′
2), because w1 < w′

1 decreases execution times of all
tasks according to Equation 9, and tasks allocated on every
processor stays schedulable. However, since (w1, w2) is on
the feasibility boundary, (w1, w

′
2) should not be feasible be-

cause w′
2 > w2. Thus we have reached a contradiction and

the assumption was false. There is dw2
dw1

≤ 0 everywhere on
the feasibility boundary line.

This means that at any point on the feasibility boundary
line of each allocation, the angle is greater than π

2 , and a
tangent contact with the metric’s right angle contour at its
origin will prevent any further crossing of the two lines. �

An illustration is depicted in Figure 4(a). An illustra-
tion of an ill-behaved feasibility boundary without the non-
decreasing condition is demonstrated in a counterexample
in Figure 4(b). As can be seen in (a), the tangent point
corresponds to the origin of the metric contour and is eas-
ily found, while in the ill-behaved case, the tangent points
have to be searched in general or solved for in special func-
tions. Each allocation of a non-decreasing DDRTS contains
one such special point; these points all reside on the same
”ray of origins” line. Next we will see that one of them
corresponds to the maximum robustness metric value, and
the containing allocation is the robust allocation we wish to
find.

External variable x

External variable y

External variable x

External variable y

(a) Nondecreasing (b) ill behaved

Figure 4. Interaction between feasible bound-
ary and robustness metric contour line

Theorem 3.1 If a DDRTS has tasks with non-decreasing
execution time profile functions, then its maximum achiev-
able robustness metric value, Mmax, can be found by in-
crementally searching along the ”ray of origins” line of
the metric, wi = 1

ki
t (1 ≤ i ≤ l), until the metric value

fails to correspond to any feasible allocation. The resulting
maximum allowable values for environmental variables are
wmax

i = Mmax

ki
(1 ≤ i ≤ l).

PROOF. For each allocation, the tangent point(s) be-
tween the feasibility boundary and the metric contour math-
ematically mean that the metric value is the maximum at
the point(s). Because such a point is unique now and re-
sides on the ”ray of origins” line (by the lemma above), to

find the overall maximum of this value among all alloca-
tions, we may search the line incrementally starting from
t = M(�w) = 0. The search proceeds while at each value a
feasible allocation can be found (with task execution times
fixed by the value). If no feasible allocation can be found
for M(�w) + 1, then Mmax = M(�w). This is because if
M(�w)+2 or more were to produce a feasible allocation (say
A) again, then M(�w)+1 must have a feasible allocation (at
least the same A) due to the non-decreasing condition (9) (a
contradiction). Therefore it must be Mmax = M(�w), and
the resulting maximum allowable values for environmental
variables are wmax

i = Mmax

ki
(1 ≤ i ≤ l) since the point

resides on the ”ray of origins.” �
The observation serves as the basis to develop a first-fit

based approximation algorithm in multiple environmental
variable dimensions next.

4. Multi-dimensional robust allocation and an
optimality bound

In the previous section, it was shown that searching for
the chosen maximal robustness metric only involves a spe-
cial line, and it is equivalent to exhaustively searching the
whole l dimensional space. The result is valuable to signif-
icantly reduce the algorithm’s time complexity.

The algorithm to find the maximally robust allocation in
multiple external variable dimension and its optimality is
the topic of this section. It was demonstrated in one dimen-
sion that a binary search coupled with first-fit allocation effi-
ciently produces good maximal allowable workload [10, 1].
Observing the linear, one-dimensional nature of the robust-
ness metric search, we decided to derive from the first-fit
based algorithm that has been tested. A linear search along
the ray of origins will now serve as a driver that provides a
set of constant external variable values to fix tasks’ execu-
tion times, and a first-fit allocation algorithm then tests for
a feasible allocation of tasks when given these constant ex-
ecution times. If the allocation algorithm returns a feasible
allocation, the search proceeds to the next set of external
variable values; if the allocation algorithm reports no feasi-
ble allocation can be found, the search terminates. Thus the
external variable values with the maximal robustness metric
as well as corresponding allocation will be found. Quality
of the algorithm will be proved analytically by an approxi-
mation ratio, and experimentally in the next section.

This algorithm of linear search coupled with an arbitrary
allocation algorithm plug-in is listed in Algorithm 1; Algo-
rithm 2 then lists the algorithm plug-in we chose: the greedy
first-fit by Oh and Baker [16]. The plug-in will later al-
low us to compare performance of the allocation algorithm
of first-fit with others such as branch-and-bound or random
search. The rest of the section focuses on finding out the
quality of the maximal robustness metric produced by this

algorithm, as we did earlier for the one-dimensional case.
The extension likewise starts from the definition of well-
behaved functions in higher dimensions.

Algorithm 1 Linear search for maximal robustness metric
Input: 〈T, P 〉
Output: A set of external variable values found to have maximal robustness metric
and their associated allocation

metric = 0
while AllocationAlgorithm(T ({metric+1

ki
}), P)=“Feasible” do

metric = metric + 1
store FeasibleAllocation

end while
{wmax

i } = {metric
ki

}
return {wmax

i } and FeasibleAllocation

Algorithm 2 Greedy First Fit Allocation Algorithm of Oh
and Baker [16]

Input: 〈T ({wi}), P 〉
Output: “Feasible” or “Not Feasible,” and FeasibleAllocation : T −→ P

for each task i do
set j = 1; n = |P |;
while job i has not been allocated and j ≤ n do

set nj = |{Tk|alloc(Tk) = Pj}| + 1;

if

�
� �

alloc(Tk)=Pj

Tk.e({wi})
Tk.p

�
�+

Ti.e({wi})
Ti.p ≤ nj(2

1
nj −1) then

set alloc(Ti) = Pj ;
else

set j = j + 1;
end if

end while
if j > n then

return “Not Feasible”;
end if

end for
FeasibleAllocation = alloc
return “Feasible”

Definition 4.1 A task’s profile function Ti.e(�w) is well-
behaved in l dimensional external variable space if:

∂
∂wi

Ti.e(�w) ≥ 0 (1 ≤ i ≤ l), and ∂2

∂wi∂wj
Ti.e(�w) ≥

0 (1 ≤ i, j ≤ l).

Many practical functions satisfy the condition, e.g. O(n2 +
mn). Well-behaved function space and its operators can be
defined similar to the one-dimensional case.

Theorem 4.1 When l external variables exist, if the system
of tasks have well-behaved execution time profile functions
and are allocated by this algorithm, then its robustness as
measured by the metric has an absolute approximation ra-
tio rl

FF < 2−2δ√
2−1−δ

, where δ = U(0)
m , and an asymptotic

performance ratio rl∗
FF ≤ 1−δ√

2−1−δ
.

PROOF. We noticed that these well-behaved functions
are sufficiently non-decreasing, therefore the linear search
approach is applicable. We first express the ray of origins
in vector form: �l =

∑l
i=1

t
ki

�ei, where t ∈ R and t ≥
0. System utilization is a function of the external variables

vector, U(�w), so its change with respect to t along the ray
of origins is:

dU(�w) = ∇U(�w) · d�l =
l∑

i=1

(�ei
∂U(�w)
∂wi

) ·
l∑

j=1

(�ej
dt

kj
)

=
l∑

i=1

1
ki

∂U(�w)
∂wi

dt ⇒ dU(�w)
dt

=
l∑

i=1

1
ki

∂U(�w)
∂wi

≥ 0,

since U(�w) is well-behaved and ∂U(�w)
∂wi

≥ 0. In addition, its
double derivative is:

d2U(�w)
dt2

=
l∑

i=1

1
ki

d

dt
(
∂U(�w)
∂wi

)

=
l∑

i=1

1
ki

l∑
j=1

∂2U(�w)
∂wj∂wi

dwj

dt
=

l∑
i=1

l∑
j=1

1
ki

∂2U(�w)
∂wi∂wj

1
kj

≥ 0

since U(�w) is well-behaved and ∂2U(�w)
∂wi∂wj

≥ 0.
Now, in effect, parameter t is identical to the workload

variable in the one-dimensional approximation ratio since
t ∈ R, t ≥ 0, and system utilization function U(�w) =
U(t) is well-behaved in one dimension since U ′(t) ≥ 0
and U ′′(t) ≥ 0. Further, we note that it was previously
shown by Equation (8) that the parameter t is equivalent to
the robustness metric M(�w). Therefore, rl

FF < 2−2δ
0.414−δ

and asymptotically rl∗
FF ≤ 1−δ

0.414−δ . �

5. Experiments

In order to verify the analytical results, four experiments
were conducted. Experiment 1 compared the outcome
of the maximal robustness metric found with linear search
against that of exhaustive search. Its purpose was to verify
the claim in Section 3 that a special linear search is suffi-
cient and efficient under multiple external variable space.
Experiment 2 measured robustness metrics produced by
first-fit along with an optimal brand-and-bound approach.
Its purpose was to check whether Section 4’s approximation
ratio indeed holds. Experiment 3 compared running time
and robustness metric quality produced by first-fit against
the baselines of random search and branch-and-bound. The
purpose was to reveal whether first-fit is still a good choice
in multiple dimensions as it was in the single workload
case[10, 1]. Experiment 4 solved an example to demon-
strate application of this approach.

The experiments were done through simulations in
which various system parameters were controlled, and
these include: task period, deadline, processor number,
processor speed, number of external variables, number
of external variable dependent tasks, number of exter-
nal variable independent tasks, and the particular execu-

Dep
tasks

Indep.
tasks Procs

Max
robust.
metric
(LS)

Max
robust.
metric
(ES)

Equal
(Y/N)

LS
Time
(s)

ES
Time
(s)

LS
Faster
(Y/N)

8 2 3 42 42 Y 0 0.04 Y
13 2 4 32 32 Y 0 0.21 Y
18 2 5 30 30 Y 0.02 0.37 Y
23 2 6 27 27 Y 0.09 0.92 Y
28 2 7 28 28 Y 0.16 1.05 Y
33 2 8 30 30 Y 0.73 1.73 Y
18 2 5 91 91 Y 0.06 1.12 Y
23 2 6 86 86 Y 0.29 2.88 Y
21 4 6 36 36 Y 0.03 0.75 Y
19 6 6 31 31 Y 0.02 0.5 Y
17 8 6 34 34 Y 0.02 0.64 Y
15 10 6 39 39 Y 0.05 0.69 Y

Table 1 Max robustness metric found using Branch-and-Bound
allocation coupled with: (1) linear search (LS) and (2) exhaustive

search (ES) in external variable space

tion time profile function form of each task. The pro-
file functions were constructed on a set of function basis:
{w2

i log wi, w
2
i , wi log wi, wi|1 ≤ i ≤ l}. The number of

basis to use was chosen randomly according to a distribu-
tion supplied by user, and the projection on each base was
also generated randomly. By doing so, it was intended to
represent general problem instances with the randomly pro-
duced samples. All experiments were performed on a Pen-
tium 4 PC running Linux 2.4.22. Two other allocation algo-
rithms were chosen to compare with first-fit which are ran-
dom search and optimal branch-and-bound, because they
are good baselines to measure performance against. How-
ever for the algorithms’ speed considerations, we assumed
there were two external variables. The result of the first ex-
periment is next.

Experiment 1 This experiment was used to validate that
a special linear search is equivalent to exhaustively search-
ing the external variables space. The linear search as shown
in Algorithm 1 increased the magnitude of the robustness
metric which supplied external variable values to drive the
allocation algorithm; the exhaustive search, on the other
hand, enumerated the entire space of external variable val-
ues and recorded the point with maximal robustness met-
ric for which the allocation algorithm finds a feasible allo-
cation. To ensure no feasible allocation would be missed,
we chose optimal branch-and-bound as the allocation algo-
rithm. The results are listed in Table 1.

Data from twelve instances are given in the table. In
each instance, the number of external variables’ dependent
tasks, independent tasks, and processors were varied. We
expected to see that under various instances, algorithms us-
ing linear search produced the same max robustness metric
as the exhaustive search. This was verified from the 4th and
5th columns. In addition, it was shown from the 7th and
8th columns that the algorithm using linear search is signif-
icantly faster than exhaustive search.

Experiment 2 The second experiment was designed to
verify the robustness bound of first-fit that was derived in
Theorem 4.1. Six instances were given with 5 to 30 tasks to
be allocated to 5 processors. Tasks in each instance con-
tained 80% of external variable dependent tasks and the
remaining were tasks with fixed execution time. Branch-
and-bound algorithm was used to find the allocation with
optimal robustness metric value. The results are listed in
Table 2. The experiment showed that optimality of robust-

Bound
Correct?

#
Dep

Tasks
Indep
Tasks r FF

l=2
Metric
(FF)

Metric
(BB)

BB/F
F (BB/FF<r)

1 4 1 0.012 4.91 3104 3104 1.00 yes
2 8 2 0.024 5.01 2387 2387 1.00 yes
3 12 3 0.047 5.19 1697 1697 1.00 yes
4 16 4 0.058 5.29 854 868 1.02 yes
5 20 5 0.077 5.48 810 830 1.02 yes
6 24 6 0.092 5.64 722 728 1.01 yes

Table 2 Experimental verification of robustness metric bound of FF
algorithm

5 Processors
Robustness
Experiment

Robustness
Analysis

ness metric found by first fit did fall within the approxima-
tion ratio we computed analytically. Under many instances
we tested, its solution quality was found to be very close or
just equal to the optimal. A careful look at the data assures
this was not simply a result of the special case in Theorem
2.2. Therefore this suggested that the first-fit based algo-
rithm may have a much better average case behavior than
the worst-case bound.

Experiment 3 As mentioned at the beginning of section
4, we wanted to experimentally find out whether first-fit is
a reasonably good choice of allocation algorithm. Com-
parisons were made based on maximum robustness metric
found and algorithm running time with two baseline allo-
cation algorithms: optimal branch-and-bound, and random
search. To speed up the exhaustive process, branch-and-
bound was programmed to begin searching on top of first-
fit’s results. In order to improve result quality of random
search, 10000 iterations of trials were allowed, which mean-
while boosted its running time. Results of the experiment
are shown in Table 3. The data showed that robustness

Dep
Tasks

Indep.
Tasks Procs

Proc
speed
factor

Max
robust.
metric
(RN)

Max
robust.
metric
(FF)

Max
robust.
metric
(BB)

RN
Time
(sec)

FF
Time
(sec)

BB
Time
(sec)

8 2 3 100 14 14 14 23.77 0 0.01
12 3 4 100 14 14 14 34.99 0 0.01
16 4 5 100 14 14 15 44.06 0 0
20 5 6 100 14 14 14 55.18 0.01 0.02
24 6 7 100 12 12 12 66.37 0.01 0.07
16 4 7 3000 126 129 130 8.48 0.01 0.02
16 4 10 3000 134 149 152 8.67 0.01 1.66

ok good best poor best ok

Table 3 Comparisons of max robustness metric quality and alg running
time among FF, BB, and RN

Evaluation:

Detect Engage Guide Procs RN FF BB(OPT)
1 20 5 10 8 170 178 178
2 6 5 3 5 98 105 105
3 8 8 8 5 53 54 54

Table 4 Max robustness metric found with RN,FF,BB
algorithms under three scenarios

found by first-fit approximated branch-and-bound; when
processors were faster and more numerous, differences be-
tween first-fit and random search became more significant.
This could be due to the fact that more state combinations
were available and the probability that random search stum-
bled onto good solutions within a given number of trials was
reduced. On criterion of robustness quality, the grades for
random, first-fit, and branch-and-bound were ok, good, and
best, respectively. Running time wise, first-fit was the best
and the advantage against branch-and-bound grew larger
when instance grew larger. Running time of random search
was not on the same order as the other two. This was due to
the large number of trials required for good robustness qual-
ity. Using the two criteria, our evaluation was that first-fit is
an efficient allocation algorithm to choose for the multiple
external variable problem. It gives good solutions with fast
running time, which is valuable for online applications, and
scales better than the other algorithms examined.

Experiment 4 In the last experiment, we applied the ap-
proaches we developed to the modelling and analysis of a
Dynbench missile defense testbed [18]. There were three
type of tasks in the system: Detect, Engage and Guidance,
and their execution times were dependent on two external
variables: r and m, which were the number of radar tracks
and real threats. Their profiling functions were found to be:
Detect: e1(r,m) = 0.0869r2 + 15.4374r + 615 µs
Engage: e2(r,m) = 12897m + 45610 µs
Guide: e3(r,m) = 0.0869r2 + 15.4374r + 12903.909m +
46476 µs
The objective was to maximize the minimum of r and m
that can be handled by an allocation. Three scenarios were
tested for the system and three algorithms were used to find
the maximum robustness. Their results are shown next to
each other in Table 4. Similar to the previous experiment,
first-fit produced very good robustness, in this case the same
as the optimum achieved by branch-and-bound, while ran-
dom search with 10000 iterations did not perform as well.
The scenarios of this experiment further corroborated pre-
vious discoveries.

6. Conclusions

Robust task allocation strategy is desired by distributed
real-time systems affected by dynamically changing envi-
ronments. We have introduced a metric that measures ro-
bustness in an allocation and then developed a task alloca-

tion algorithm that finds the maximally robust allocation as
measured by the metric. Quality of the robustness was de-
rived analytically and was experimentally verified in four
experiments. The algorithm has a polynomial running time
which is ideal to be used online. In future work, we will
continue to improve the robustness results. The algorithm
will be tested in software systems on real hardware plat-
forms and be incorporated into resource management mid-
dleware.

References

[1] E. Aber, F. Drews, D. Gu, D. Juedes, A. Lenharth, D. Parrott,
L. Welch, H. Zhao, and D. Fleeman. Experimental compar-
ison of heuristic and optimal resource allocation algorithms
for maximizing allowable workload in dynamic, distributed
real-time systems. In 6th Brazilian Workshop on Real-Time
Systems, 2004.

[2] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J.
Siegel, A. A. Maciejewski, and V. Prasanna. Utilization-
based heuristics for statically mapping real-time applica-
tions onto the HiPer-D heterogeneous computing system.
In 11th IEEE Heterogeneous Computing Workshop (HCW
2002) in Proceedings of the 16th International Parallel and
Distributed Processing Symposium, 2002.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Defi-
nition of a robustness metric for resource allocation. In Pro-
ceedings International Parallel and Distributed Processing
Symposium, page 10, 2003.

[4] R. Bettati and J. W. Liu. End-to-end scheduling to meet
deadlines in distributed systems. In Proceedings of the 12th
International Conference on Distributed Computing Sys-
tems, pages 452–459, 1992.

[5] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and
J. Weglarz. Scheduling Computer and Manufacturing
Processes. Springer Heidelberg, New York, 2001.

[6] D. Fleeman, M. Gillen, A. Lenharth, M. Delany, L. Welch,
D. Juedes, and C. Liu. Quality-based adaptive resource
management architecture (qarma): A corba resource man-
agement service. In The 12th IPDPS Workshop on Parallel
and Distributed Real-Time Systems (WPDRTS 04), Santa Fe,
New Mexico, April 2004.

[7] S. Gertphol, Y. Yu, S. B. Gundala, and V. Prasanna. A met-
ric and mixed-integer-programming-based approach for re-
source allocation in dynamic real-time systems. In Proceed-
ings of the International Parallel and Distributed Processing
Symposium, 2002.

[8] D. Gu, F. Drews, and L. Welch. A characterization of task
allocation problems for dynamic distributed real-time sys-
tems. In 16th IASTED International Conference on Parallel
and Distributed Computing and Systems, Cambridge, MA,
2004.

[9] X. S. Hu, T. Zhou, and E. H.-M. Sha. Estimating probabilis-
tic timing performance for real-time embedded systems. In
IEEE Transactions on Very Large Scale Integration Systems,
volume 9, pages 833–844, 2001.

[10] D. Juedes, F. Drews, L. Welch, and D. Fleeman. Heuris-
tic resource allocation algorithms for maximizing allowable
workload in dynamic, distributed, real-time systems. In The
12th Workshop on Parallel and Distributed Real-Time Sys-
tems, 2004.

[11] D. Juedes, L. Welch, F. Drews, and D. Fleeman. Resource
allocation algorithms for maximizing allowable workload in
dynamic, distributed real-time systems. Technical report,
Center for Intelligent, Distributed, and Dependable Systems,
Ohio University, 2003.

[12] D. R. Kincaid and E. W. Cheney. Numerical Analysis:
Mathematicas of Scientific Computing. Brooks Cole, Pacific
Grove, CA, 3 edition, 2001.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal
of the Association for Computing Machinery, 20(1):46–61,
1973.

[14] S. Manolache, P. Eles, and Z. Peng. Optimization of soft
real-time systems with deadline miss ratio constraints. In
10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, 2004.

[15] M. D. Natale and J. A. Stankovic. Dynamic end-to-end
guarantees in distributed real time systems. In Proceedings.
Real-Time Systems Symposium, pages 216–227, 1994.

[16] D.-I. Oh and T. P. Baker. Utilization bounds for N -processor
rate monotonic scheduling with stable processor assign-
ment. Real Time Systems Journal, 15(1):183–193, 1998.

[17] B. Ravindran, L. R. Welch, and B. A. Shirazi. Resource
management middleware for dynamic, dependable real-time
systems. The Journal of Real-time Systems, 20(2):183–196,
2000.

[18] Z. Tan. Producing application cpu profiles in dynbench via
curve fitting. Technical report, Center for Intelligent, Dis-
tributed, and Dependable Systems, Ohio University, 2003.

[19] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J.-S. Liu. Probablistic performance guarantee for
real-time tasks with varying computation times. In IEEE
Real-Time Technology and Applications Symposium, 1995.

[20] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative
characterization of event streams in analysis of hard real-
time applications. In 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2004.

[21] L. R. Welch and B. A. Shirazi. A dynamic real-time bench-
mark for assessment of qos and resource management tech-
nology. In Proceedings of the IEEE Real-Time Technology
and Applications Symposium, pages 36–45, 1999.

[22] Y. Zhou, L. R. Welch, E.-N. Huh, C. Alexander, and
D. Lawrence. Execution time analysis for dynamic, periodic
processes. In The 9th Workshop on Parallel and Distributed
Real-Time Systems, 2001.

