
Controlling Gossip Protocol Infection Pattern Using Adaptive Fanout

Satish Verma
Department of Computer Science
National University of Singapore

satishku@comp.nus.edu.sg

Wei Tsang Ooi
Department of Computer Science
National University of Singapore

ooiwt@comp.nus.edu.sg

Abstract

We propose and evaluate a model for controlling infec-
tion patterns defined over rounds or real time in a gossip-
based protocol using adaptive fanout. We model three ver-
sions of gossip-based protocols: the Synchronous Proto-
col, the PseudoSynchronous Protocol and the Asynchronous
Protocol. Our objective is to ensure that the members of a
group receive a desired message within a bounded latency
with very high probability. We argue that the most impor-
tant parameter that controls the latency of message deliv-
ery is the fanout used during gossiping, i.e., the number
of gossip targets chosen in a particular instance of gos-
sip. We formally analyze the three protocols and provide
expressions for fanout. We introduce the idea of using vari-
able fanouts in different rounds in the Synchronous Proto-
col. We define fanout as a function of time for the Asyn-
chronous Protocol such that an expected infection pattern is
observed with high probability. For a better understanding
of the theoretical model, we develop a PseudoSynchronous
Protocol to highlight the modelling done in order to derive
time dependent fanout. We show that our protocols gener-
ate Θ(n log n) messages, which is optimal for gossip proto-
cols. We aim to use the gossiping mechanism for large-scale
group communication with soft real time constraints. This
would alleviate the dependence on tree-based deterministic
protocols which usually lack scalability.

1. Introduction

Gossip-based algorithms offer a scalable, robust, fault-
tolerant and probabilistically reliable protocol design
paradigm for large systems. A variety of applications such
as reliable multicast [1], [3], [10], [6], membership man-
agement [4], consistency of database replicas [2], etc., use
randomized gossiping. In this paper, we present a model
for fine-grained control of the gossiping process by means
of the infection pattern using adaptive fanout. Fanout refers
to the number of gossip targets in any instance of gossip

and is the critical design parameter that affects the overall
latency of message dissemination. Thus, we set our task
on quantifying fanout to ensure that data can be dissemi-
nated to all members with high probability within a fixed
time, Tmax. Usually, the fanout used is a constant through-
out the protocol. In protocols described in [1] and [11],
the fanout is 1 while in [3] and [5], it is another constant.
In [3], it is shown that using a higher fanout can reduce
the rounds needed for gossip although too high a fanout in-
hibits performance due to excess message overhead. In [9],
the authors quantify the fanout needed for gossip to succeed
in delivering information to all nodes with high probability
in random graphs. They show that a fanout of the order of
(log n+c+o(1)) gives a success probability of e−e−c

. They
also describe inter-cluster and intra-cluster fanouts for their
hierarchical gossip. In [8], the authors describe spatial gos-
sip, which bounds propagation time by a poly-logarithmic
function in distance by choosing gossip targets with a prob-
ability which is an inverse polynomial function of distance.
Of interest here is a new performance bound in terms of
propagation time instead of number of rounds or message
overhead. In [7], it is discussed that a generic gossip pro-
tocol needs Θ(n log n) messages to spread a rumor. Our
goal is also to study the time and message overhead perfor-
mance of gossip protocols, to make it more predictable by
quantifying the fanout.

We experimented with designing variable round-based
fanout for a well-known Synchronous Round-Based Gossip
implementation. But we noticed that using fixed-interval
rounds is not time-efficient. To resolve the problem, we let
the nodes gossip as soon as they are infected rather than
letting them gossip at fixed intervals. The gossip spreads
faster in this Asynchronous Protocol. We develop fanout
as a function of time for this protocol. The round-based
and time-based fanouts are computed according to user re-
quirements, which are specified as an infection pattern over
rounds or real time. An infection pattern measures the num-
ber of nodes that are expected to be infected at the end of a
round or at a particular instance, depending on the protocol.
A node is infected when it receives a gossip message for

the first time. We believe that designing a protocol based
on user input will allow the user to control the rate of in-
fection and balance the message overhead over time. In the
Asynchronous case, we assume that we are given the delay
distribution of the network under consideration. We develop
the PseudoSynchronous Gossip Protocol to provide insight
into our mathematical model. We show that the number of
messages generated during the protocols is Θ(n log n), in
terms of overhead for gossip protocols as described in [7].

Here, we outline the rest of our paper. In Section 2, we
discuss the Synchronous Gossip Protocol. In Section 3, we
introduce the notion of real time in the process of gossiping.
In Sections 4 and 5, we discuss the PseudoSynchronous and
the Asynchronous Protocols respectively. We present our
experimental results in Section 6 and conclude in Section 7.

2 Synchronous Gossip Protocol

We begin the discussion on the Synchronous Gossip Pro-
tocol by stating our assumptions. We assume that the sys-
tem has only one sender and we describe the protocol for
just one message. The same message is gossiped again and
again in the system until the gossip dies and the message
is received by all nodes with high probability. We also as-
sume that nodes have a global membership view and gossip
targets are picked from this global view uniformly and ran-
domly. Another assumption is that the nodes gossip only
when they receive the message for the first time and discard
duplicates.

2.1 Synchronous Gossip Protocol Definitions

The Synchronous Gossip Protocol proceeds through
fixed-period rounds which are larger than the maximum la-
tency of transmission between any pair of nodes in the sys-
tem, which we quantify as Lmax. The rounds proceed as 1,
2, 3,..., Rmax. We consider the initial state when only the
sender has the message as round 0. Here, we emphasize that
rounds can also be looked upon as hops. Thus, a node in-
fected in round k is infected by a message that has travelled
exactly k hops. We say a node is infected when it receives
the gossip message for the first time. We now define the
parameters to model the protocol.

Definition h-message: A message that has travelled ex-
actly h hops is called an h-message.

Definition Us
r : The number of nodes that are not infected

in the system at the end of round r. Initially, we have Us
0 =

N − 1 and we expect Us
Rmax

= 0 with high probability.

Definition Is
r : The number of nodes infected during a

round r. Is
0 = 1, when only the source has the message.

Definition Ss
r : The number of nodes that are infected in

the system at the end of a round r.

Definition F s
r : The fanout value, i.e., a node that is in-

fected by an r-message will propagate the message to F s
r+1

neighbors. Thus, we have fanout as a function of rounds.

2.2 Analysis of Synchronous Gossip Protocol

In this section, we analyze the Synchronous Gossip Pro-
tocol. We aim to ensure that nodes receive a message
within time Tmax with high probability. The period of a
round, Tperiod is greater than Lmax. Thus, the number of
rounds permissible is � Tmax

Tperiod
�. In the Synchronous Proto-

col, rounds can also be viewed as hops. Thus, hops vary as
1, 2,..., Hmax where Hmax = Rmax.

The next step in our protocol is to come up with a suit-
able Ss

r over the Rmax rounds which we refer to as the
infection pattern. We associate values according to some
rule, e.g., linear or exponential, with the constraint that
Ss

Rmax
equals N . Once we have fixed Ss

r , we determine
the corresponding fanout values. Based on an analysis of
the Synchronous Protocol similar to the one presented in [1]
and [3], we can express Us

r via a recurrence relation given
by:

Us
r+1 = Us

r × (1− F s
r+1

N − 1
)Is

r for 0 ≤ r < Rmax− 1 (1)

Equation 1 can be approximated to:

Us
r+1 = Us

r × exp(
−F s

r+1 × Is
r

N − 1
) for 0 ≤ r < Rmax − 1

(2)
Equation 2 gives an expression for fanout as follows:

F s
r+1 =

N − 1
Is
r

× ln(
Us

r

Us
r+1

) for 0 ≤ r < Rmax − 1 (3)

We also note that there is a simple relationship between
Us

r and Is
r which can be expressed as:

Is
r = Us

r−1 − Us
r for 1 ≤ r ≤ Rmax (4)

Since we already know infection pattern Ss
r as a func-

tion of rounds, we can compute Us
r and Is

r , and using these
and Equations 3 and 4, we can estimate the round-based
fanout values. The fanout values that are obtained will en-
sure the infection pattern requirements with high probabil-
ity. Now, we show that the message overhead in the protocol
is Θ(n log n).

Lemma 2.1 The number of messages generated in the Syn-
chronous Protocol is Θ(n log n), where n is the number of
uninfected nodes in the system at the beginning.

Proof From the definition of F s
r , we know that a node

infected by an r-message generates F s
r+1 new gossip

messages. The expected number of nodes newly infected
by r-messages is Is

r . So, the expected number of new
messages in round (r + 1) is Is

r × F s
r+1. From Equation 3,

we know that Is
r × F s

r+1 is equal to (N − 1) × ln(Us
r

Us
r+1

).
Summing over all the rounds, we get:

Total Number of Messages = (N − 1) ×∑r=Rmax−1
r=0 ln(Us

r

Us
r+1

).

Thus, Total Number of Messages is (N−1)×ln(N−1),
where N is the total number of nodes including the sender.

Next, we look at the Synchronous Protocol from a hop-
based point of view.

2.3 Hop Based Analysis of Synchronous Protocol

In this section, we look at the protocol in terms of hops
instead of rounds.

Definition HopContribution for a hop h: The number of
nodes that are be infected by messages that have travelled
exactly h hops. It is the same as Is

h.

Definition P s
h : The probability that a node gets a message

for the first time in the h-th round, i.e, gets infected by an
h-message.

We define the term Ms
i as follows in terms of fanout F s

i

and Is
i−1 as follows:

Ms
i = (1− F s

i

N − 1
)Is

i−1 for 1 ≤ i ≤ Hmax (5)

The probability that a node gets infected by a 1-message
is given by P s

1 = 1 −Ms
1 . Here, Is

0 = 1. Similarly, the
probability that a node gets infected by a k-message is P s

k

= Ms
1 ×Ms

2 × ... ×Ms
k−1 × (1 −Ms

k). Thus, in general,
we have the following for 1 ≤ k ≤ Hmax:

P s
k = Ms

1 ×Ms
2 × ...×Ms

k−1 × (1−Ms
k) (6)

We can use Equation 6 to compute the expected Hop-
Contribution for a particular hop value as described in the
following lemma.

Lemma 2.2 The expected number of nodes that get infected
by r-messages Is

r is P s
r × (N − 1).

Proof We have observed that Us
r+1 = Us

r × (1− F s
r+1

N−1)Is
r ,

which can also be expressed as Us
r+1 = Us

r ×Ms
r+1.

Thus, Us
r+1 = Us

0 ×Ms
1 ×Ms

2 × ...×Ms
r+1.

Also, Is
r+1 = Us

r − Us
r+1 = Us

0 ×Ms
1 ×Ms

2 × ... ×
Ms

r × (1−Ms
r+1).

Hence, Is
r+1 = Us

0 × P s
r+1 = (N − 1)× P s

r+1.

The above expression is equivalent to the earlier anal-
ysis which resulted in Equations 1 and 4, but it presents
the result in terms of P s

h . Thus, we see that we can con-
trol infection over rounds by using our round-based fanouts.
Next, we describe the notion of real time for the PseudoSyn-
chronous and Asynchronous Protocols.

3 Notion of Real Time in PseudoSyn-
chronous and Asynchronous Protocols

Before we discuss how we interpret time, we define the
two protocols we wish to discuss.

3.1 PseudoSynchronous and Asynchronous Gos-
sip Protocols

Definition PseudoSynchronous Gossip Protocol: Nodes
gossip as soon as they are infected by a gossip message for
the first time. By the property of the network, if a node re-
ceives an h1-message at time t1 and an h2-message at time
t2, then h1 < h2 if and only if t1 < t2. This is the hop-time
ordering property of the network.

Definition Asynchronous Gossip Protocol: Nodes gossip
as soon as they are infected for the first time. There is no no-
tion of synchronous rounds here. Messages that have trav-
elled different number of hops exist concurrently in the sys-
tem. This is referred to as hops running concurrently. How-
ever, the hop-time ordering of the PseudoSynchronous case
is no longer true. Thus, if a node receives an h1-message
at time t1, and an h2-message at time t2, it is possible that
h1 < h2 but t1 > t2. Whenever this happens, hop-shift has
occurred.

3.2 Hop Progress as a Function of Time

In the Synchronous case, not all nodes that get infected
in a particular round get the message at the same time. The
time of infection within a round depends on the delay distri-
bution between pairs of nodes which is bounded by Lmax.
But within a round, all nodes getting infected become so
due to messages which have travelled the same number

of hops. However, in the PseudoSynchronous and Asyn-
chronous Protocols, at any instance, different nodes may get
infected by messages which have travelled different number
of hops. Therefore, different hops contribute to infections
concurrently. Despite this, it is clear that the first hop surely
ends before time Lmax, the second hop surely ends before
time 2 × Lmax, and so on. The Hmax hop ends in time
≤ Hmax × Lmax. Thus, a particular hop causes infections
from the beginning of the gossip protocol to the end of that
particular hop. In our analysis, we use Gamma distribution
to model delay. However, any realistic distribution can be
used instead. For Gamma distribution, if the delay pdf for
1 hop is Gamma(r, λ), then the delay pdf for k hops is
Gamma(k × r, λ). In a real network, we interpret this as a
k-message taking time anywhere between 0 and k × Lmax

before it infects. Now, we can visualize the progress of hops
as a function of time for the PseudoSynchronous Protocol.

4 PseudoSynchronous Gossip Protocol

In this protocol, nodes gossip as soon as they get in-
fected, but the hop-time ordering property is preserved. We
first define the parameters to model node states as a function
of time.

Definition Ip
h(t1, t2) : The number of nodes infected by

h-messages between time t1 and t2.

Definition Ip(t1, t2) : The number of nodes infected be-
tween time t1 and t2.

Definition Up
t : The number of uninfected nodes at any

time t. Up
0 = N − 1, and we expect with high probability

that Up
Tmax

= 0.

Definition Sp
t : The number of infected nodes at any time t.

Sp
0 = 1 and we expect with high probability that Sp

Tmax
=

N.

Definition F p
h : The fanout value in the PseudoSyn-

chronous Protocol, i.e., a node that is infected by an h-
message will propagate the message to F p

h+1 nodes in its
membership view.

Now, we state a result which relates the fanout values
in the Synchronous and PseudoSynchronous cases. We use
the same number of hops as in the Synchronous case here.
Since we have Rmax hops, we claim that the gossip will die
out within time Rmax × Lmax. We denote this time by∞.

Theorem 4.1 If F p
h = F s

h , then Ip
h(0,∞) = Is

h , for 1 ≤
h ≤ Hmax

Proof We make use of the hop-time ordering property of
the PseudoSynchronous Protocol to prove our assertion. We
assume that F s

h = F p
h for all h. In the Synchronous Pro-

tocol, we know the estimate for the number of nodes that
get infected in a particular round Is

r . However, in the Syn-
chronous case, this also represents the number of nodes in-
fected by r-messages, i.e., messages that have travelled ex-
actly r hops. This is due to the fact that in the r-th round,
all messages are travelling their r-th hop. In the PseudoSyn-
chronous case, messages that have travelled different num-
ber of hops exist together. Consider a particular hop h such
that 1 ≤ h ≤ Hmax. We argue that the number of nodes
infected by h-messages is the same as Is

h in expectation.

Due to hop-time ordering, it is not possible for a node
which is expected to be infected by an h-message to be ac-
tually infected by a message that has travelled more than h
hops. Because, we assume that if a node gets two copies
Mh and Mh′ which travel two different number of hops, h
and h′ > h, then Mh takes less time due to hop-time order-
ing property. Hence we discard Mh′ . Again, if the message
has been received as Mh′′ such that h′′ < h < h′, then it
means that both Mh and Mh′ are dropped, since it has al-
ready been infected by a message which has travelled fewer
hops so we need not consider it in the h-th HopContribution
analysis.

To show that the HopContribution in the PseudoSyn-
chronous case is indeed the same, we use induction. Con-
sider the HopContribution for hop 1. Initially, only the
sender has the message. Consider the messages that travel
only one hop. The number of gossip messages that travel
one hop is F p

1 , which is the same as F s
1 . The probability

that an uninfected node is infected is F p
1

N−1 . The expected
number of newly infected nodes is F p

1 due to 1-messages.
It is not possible that these nodes receive a message that has
travelled a larger number of hops in less time. Thus, the
number of nodes infected by 1-messages is the same as in
the Synchronous case which is obtained by Equation 1 and
Equation 4 or F s

1 the round 1. Thus, our assertion is true
for hop 1. We assume that if F p

h = F s
h for 1 ≤ h ≤ k, then

Ip
h(0,∞) = Is

h for 1 ≤ h ≤ k. We assume that F p
k+1 =

F s
k+1. We want to show that Ip

k+1(0,∞) = Is
k+1.

Since our assertion is true for hop values 1, 2, ..., k, the
expected number of newly infected nodes for hops 1, 2, ...k
are Is

1 , Is
2 , ..., Is

k . In the (k+1)-th hop, the number of nodes
that will gossip with fanout F p

k+1 is Is
k . Also, it is not possi-

ble that (k + 1)-messages infect any of Is
1 , Is

2 , ..., Is
k in less

time. Thus, the effective number of nodes that are suscepti-
ble to infection by these messages is N − Is

1 − Is
2 − ...Is

k ,
which is the same as Us

k . Also, the probability that an un-

infected node gets infected by a (k + 1)-message is
F s

k+1
N−1 ,

which is the same as in the Synchronous case. At the end
of (k + 1)-th hop, the number of newly infected nodes be-

comes Ip
k+1 = Us

k−Us
k×(1− F s

k+1
N−1)Is

k , which is the same as
the Synchronous case if we combine Equation 2 and Equa-
tion 4. Thus, we see that our assertion is true for (k + 1)-th
hop too, which completes the proof.

4.1 HopContribution Equation for PseudoSyn-
chronous Protocol

We now modify the HopContribution equation from
Lemma 2.2 to introduce the notion of time. We want to
express the probability that a node gets infected by an h-
message for the first time within time t. This time t is
bounded by the value h× Lmax. When we use the Gamma
distribution, Lmax is infinity as Gamma has an infinite tail.
However, we can fix a threshold beyond which we can claim
that the hop has ended with very high probability. If this
threshold’s value is Lmax, then the hop has definitely ended.
We define here a term Mp

h in terms of fanout for the Pseu-
doSynchronous Protocol, F p

h , and Ip
h−1(0,∞), which is the

number of nodes which have been infected by (h − 1)-
messages at time∞:

Mp
h = (1− F p

h

N − 1
)Ip

h−1(0,∞) for 1 ≤ h ≤ Hmax (7)

Next, we use Gamma delay distribution and Equation 7
to define P p

h,t, which is the probability that a node gets a
message for the first time after h hops within time t. This is
similar to P s

h but includes the notion of time. Thus, P p
1,t =

(1 −Mp
1) × Gamma(r, λ, t). Here, 0 ≤ t ≤ Lmax. In

general, for 0 ≤ t ≤ h× Lmax, P p
h,t is given by:

P p
h,t = Mp

1×Mp
2×..×Mp

h−1×(1−Mp
h)×Gamma(h×r, λ, t)

(8)
Equation 8 can be used to compute the expected number

of nodes that get infected by h-messages at any time t and
at time∞, as explained in the following results:

Lemma 4.2 At time∞, Ip
h(0,∞) = P p

h,∞ × (N − 1).

Proof We assume that we are using fanout F p
h for the

PseudoSynchronous Protocol. This gives us a correspond-
ing Ip

h(0,∞) for each of the hops. We have seen from
Theorem 4.1 that a corresponding fanout exists in the Syn-
chronous case, which we call F s

h , such that Is
h = Ip

h(0,∞).
We have also seen from Lemma 2.2 that Is

h = (N−1)×P s
h .

From Equation 6, we know that Is
h = Ms

1 ×Ms
2 × ...×

Ms
h−1 ×Ms

h × (N − 1). We know from Equation 5 and
Equation 7 that Mp

h = Ms
h if F p

h = F s
h and Is

h = Ip
h(0,∞)

both hold at the same time. If that is the case, then we can
express Ip

h(0,∞) = Mp
1×Mp

2×...×Mp
h−1×Mp

h×(N−1)
using the equivalence relation between the two protocols
from Theorem 4.1. Thus, Ip

h(0,∞) = P p
h,∞×(N−1).

Corollary 4.3 At any time t, Ip
h(0, t) = P p

h,t × (N − 1).

Proof The result follows from Lemma 4.2 and Equation 8.
It gives an estimate of the number of nodes infected by h-
messages at a time t.

Corollary 4.4 During a time interval [t1, t2], Ip
h(t1, t2) =

(P p
h,t2
− P p

h,t1
)× (N − 1).

Proof The result follows directly from Corollary 4.3.

Corollary 4.5 During any time interval [t1, t2],
Ip(t1, t2) =

∑Hmax

h=1 Ip
h(t1, t2).

Proof The result follows from Corollary 4.4 by adding up
individual Ip

h(t1, t2) over all the possible h.

4.2 Obtaining Fanout Equations for PseudoSyn-
chronous Protocol from User Input

In this section, we describe a technique to compute
fanout as a function of hops for the PseudoSynchronous
case. We assume that we are given the Sp

t at certain in-
stances by the user. The user inputs h set of pairs (tk, Sp

tk
)

which means Sp
tk

nodes are infected at time tk for 1 ≤ k ≤
h. Then, we get a set of h equations in P p

k,tk
for 1 ≤ k ≤ h

as shown below:

Sp
tk

=
h∑

i=1

P p
i,tk
× (N − 1) for 1 ≤ k ≤ h. (9)

Notice that P p
i,tk

= Mp
1 × Mp

2 × ... × (1 − Mp
i) ×

Gamma(i × r, λ, tk). We get h such equations for k =
1, 2,..., h. Gamma or any other cdf can be easily eval-
uated. We get h values for P p

1,∞,P p
2,∞,...,P p

h,∞. Since
P p

1,∞ = (1 −Mp
1), we can compute Mp

1 , which gives us
F p

1 as Ip
0 = 1. Using F s

1 set as F p
1 , we compute Us

1 us-
ing Equation 1 and Is

1 which is the same as Ip
1 (0,∞), using

the equivalence in Theorem 4.1. Then, using P p
2,∞, we can

compute Mp
2 , F p

2 , Us
2 and Ip

2 (0,∞). Thus, we can compute
the fanout values and corresponding parameters for h hops.
If we need more hops than the number of points specified by
the user, we interpolate and add points to generate that many
equations without changing the user requirements. Once
we have decided the value of h, we need exactly that many
equations to compute each of the P p

h,t. Note that given the
constraints, the equations can not be solved for all combina-
tions of user inputs. The inputs must have a well-behaved
pattern for use in obtaining PseudoSynchronous Protocol
parameters. The issue of acceptable user inputs needs to
be investigated further. We present the pseudo-code for our
steps in Algorithm PSEUDOSYNC.

Algorithm PSEUDOSYNC((t1, S
p
t1), ..., (th, Sp

th
))

1. for k ← 1 to h
2. do Sp

tk
←∑h

i=1 P p
i,tk
× (N − 1) ;

3. compute Gamma(i× r, λ, tk) for 1 ≤ i ≤ h;
4. compute individual P p

k,∞ by solving the h equations;
5. for k ← 1 to h
6. compute Mp

k using P p
k,∞ using Equation 8;

7. compute F p
k using Mp

k using Equation 7;
8. compute Us

k with F s
k = F p

k using Equa-
tion 1 and Theorem 4.1;

9. compute Ip
k(0,∞) using Equation 1, Equation

4 and Theorem 4.1 ;
10. return

Lemma 4.6 The fanouts F p
h can be computed from knowl-

edge of the infection pattern Sp
t at certain instances as de-

scribed in Algorithm PSEUDOSYNC.

Thus, if the user specifies an expected Sp
t at times

t1, t2, ..., th, we can derive the h fanout values by evalu-
ating expressions similar to Equation 9. Note that any suit-
able delay distribution curve instead of Gamma distribution
can be used as we only need to compute the cumulative fre-
quency distribution values at those time intervals. If the
user specifies fewer values, we can include additional points
by interpolation of the curve Sp

t such that it obeys user re-
quirements. In the next section, we extend the ideas from
the PseudoSynchronous Protocol to derive the time-based
fanout for the Asynchronous Protocol.

5 Asynchronous Gossip Protocol

We consider the Asynchronous Protocol where hop-shift
occurs and look at what hop-shift does. Assume that we
have computed the fanout values in the way described in
the previous section for the PseudoSynchronous Protocol.
According to the definitions in the PseudoSynchronous Pro-
tocol, we here define Ua

t , Ia
h(t1, t2), Ia(t1, t2) and Sa

t .
Consider a time interval [t1, t2]. During this interval,

nodes get infected due to the various hops that are running
concurrently. The HopContribution equations for the Pseu-
doSynchronous Protocol give the expected number of nodes
infected by each hop in the PseudoSynchronous case. Once
infected, the nodes continue gossiping with a fixed fanout,
depending on which h-message they were infected by. In
the Asynchronous case, however, due to hop-shift, nodes
might get infected by a different h-message with a larger
h value in less time unlike in the PseudoSynchronous case
and thus use a different fanout value. This would disturb
the infection pattern as the number of messages that are in-
troduced in the system during this time interval would be
different from that in the PseudoSynchronous Protocol. We
want to ensure that the progress of the Asynchronous Proto-
col closely follows that of the PseudoSynchronous Protocol.

For this, we want to develop a new notion of fanout which
is time dependent. We call this F a(t1, t2).

Definition F a(t1, t2) : The fanout value used in the Asyn-
chronous Protocol, i.e., a node that is infected by a message
between t1 and t2 will propagate the message to F a(t1, t2)
nodes in its view.

5.1 Time Dependent Fanout for Asynchronous
Protocol

Our motivation to define a time dependent fanout is to
ensure that the number of messages floated in the system
during any time interval is the same as in the PseudoSyn-
chronous case, and thus, the expected number of nodes
that are infected at any time is the same as in the Pseu-
doSynchronous Protocol. Hence, if the system state in
terms of infected nodes and uninfected nodes is the same
in both the protocols at the beginning of a time interval t1,
then we expect probabilistically the system state to be the
same at the end of that time interval t2 for any time in-
terval [t1, t2]. During a time interval [t1, t2], the number
of nodes that are infected in the PseudoSynchronous Pro-
tocol due to messages with a particular h-message value
is given by Ip

h(t1, t2). These nodes use fanout values
F p

h+1. We observe that in the PseudoSynchronous case,
nodes which are infected by Hmax-message do not gos-
sip further. The source send F p

1 messages at time 0 to
start the protocol which we discount in both the protocols.
Thus, the number of messages generated between [t1, t2]
in the PseudoSynchronous case is given by the expression
Messagesp(t1, t2):

Messagesp(t1, t2) =
Hmax−1∑

h=1

Ip
h(t1, t2)× F p

h+1 (10)

Similarly, the number of messages generated during
[t1, t2] in the Asynchronous case is given by the expression
Messagesa(t1, t2):

Messagesa(t1, t2) = Ia(t1, t2)× F a(t1, t2) (11)

To ensure that the number of new messages in the two
protocols is same in any interval, we propose the following
definition for fanout by equating Equations 10 and 11,

F a(t1, t2) =

∑Hmax−1
h=1 F p

h+1 × Ip
h(t1, t2)

Ia(t1, t2)
(12)

Lemma 5.1 In a time interval [t1, t2], if Ua
t1 = Up

t1 , and
F a(t1, t2) is as defined in Equation 12 for the Asynchronous
Protocol, then Ua

t2 = Up
t2 in expectation.

Proof We assume that Ua
t1 = Up

t1 . We have also observed
that the number of new gossip messages that are generated
during the time interval is the same as in the PseudoSyn-
chronous case if we use F a(t1, t2) from Equation 12 as
fanout. Assuming that the gossip targets are picked uni-
formly and randomly from the entire system , each unin-
fected node has the same probability of infection in both
the protocols.

Here, we prove our assertion. Initially, Up
0 = Ua

0 =
N − 1. Thus, t1 is 0. Considering a time t2, we show that
Ua

t2 = Up
t2 in expectation. Since the number of possible

gossip targets is the same in the two cases, we can express
the probability that a gossip message infects one of them as
1

Ua
0

, which is the same as 1
N−1 . Since targets are randomly

but uniformly picked from this entire set, the expected num-
ber of new infections will be proportional to this probabil-
ity and the number of gossip messages generated during the
time interval. Since at the beginning Up

0 = Ua
0 , the proba-

bility of infection is the same. The number of new gossip
messages generated is also the same due to our choice of
fanout. As a result, the number of nodes which are expected
to be infected at the end of this interval is also the same.

When the next interval begins at time t2, we have Ua
t2 =

Up
t2 in expectation. Hence the probability of infection by a

gossip message will be the same, i.e., 1
Ua

t2
. Since the num-

ber of new messages generated will be the same in the next
interval, we can expect that the number of nodes that are
newly infected in the interval to be the same in the two pro-
tocols. Continuing in this manner, we observe that if the
number of uninfected nodes is the same in the two proto-
cols at the beginning of an interval of time and the number
of new messages generated is also the same, we can expect
the number of uninfected nodes to be the same at the end of
the interval too.

Note that all the values we discuss in this proof are ex-
pected values and differ from run to run. However, on an
average based on probabilistic analysis, we can claim that
using time dependent fanout will induce the Asynchronous
Protocol to behave closely to the PseudoSynchronous Pro-
tocol.

Next, we focus on the term Ia(t1, t2) and express it in
terms of Ip

h(t1, t2). With that, we express Equation 12 in
terms of PseudoSynchronous parameters.

5.2 Hop Contribution Values in Asynchronous
Protocol

We have already pointed out that the HopContribution
equations for the PseudoSynchronous case do not work ac-
curately for the Asynchronous Protocol due to hop-shift.
Still, we are able to find a relationship between Ia(t1, t2)
and Ip(t1, t2). We claim that, even though the individual

HopContribution equations do not work accurately due to
hop-shift, the sum of the equations represents the number
of nodes infected during a particular time interval, i.e.:

Theorem 5.2 If F a(t1, t2) is used as defined in Equa-
tion 12, then we have:

Ia(t1, t2) =
Hmax∑

h=0

Ip
h(t1, t2) (13)

Corollary 5.3 Equation 13 is true for the Asynchronous
case but it is not necessary that Ia

h(t1, t2) = Ip
h(t1, t2).

Proof We use the fanout as defined in F a(t1, t2), and given
in Equation 12. We identify two cases: when hop-shift
occurs and when it does not. Assume that hop-shift does
not occur, then the protocol changes to PseudoSynchronous
and Theorem 5.2 follows. In this case, we also have
Ia
h(t1, t2) = Ip

h(t1, t2).

Now, assume that hop-shift occurs. We assume that at
the beginning of the interval, Ua

t1 = Up
t1 . Thus, we im-

pose the condition that the number of uninfected nodes is
the same in the two protocols at time t1. In this case, during
the interval [t1, t2], if a node is expected to be infected by an
h-message according to Equation 8 and Corollary 4.4, then
either it has been infected by an h-message or if hop-shift
has occurred, then it has been infected by an h′-message
where h′ > h. Either way, it has been infected. The equa-
tion in Corollary 4.4 is not strictly obeyed any more due
to hop-shift but Corollary 4.5 still holds true due to the
previous argument that hop-shift means infection, though
from a message that has travelled a larger number of hops.
Hence, we can claim that in the interval [t1, t2], the num-
ber of nodes infected remains the same as predicted by the
HopContribution equations in the PseudoSynchronous case.
This completes the proof.

Thus, the fanout equation can be rewritten by combining
Equation 12 and Theorem 5.2 as:

F a(t1, t2) =

∑Hmax−1
h=1 F p

h+1 × Ip
h(t1, t2)

∑Hmax

h=0 Ip
h(t1, t2)

(14)

Thus, the time dependent fanout to be used in the Asyn-
chronous Gossip Protocol can be expressed in terms of pa-
rameters of the PseudoSynchronous Protocol as presented
in Equation 14. We summarize our algorithm using the fol-
lowing pseudo-code COMPUTEFANOUT with fixed time in-
tervals of duration δ:

Algorithm COMPUTEFANOUT(Pseudo− SyncParams, δ)

1. repeat
2. do t1 ← 0 , t2 ← δ;
3. do new messages ← ∑Hmax−1

h=1 Ip
h(t1, t2) ×

F p
h+1 using Equation 10

4. do new nodes← Ip(t1, t2) using Corollary 4.5
5. do fanout(t1, t2) ←new messages/new nodes

using Equation 14
6. do t1 ← δ , t2 ← 2× δ;
7. until new messages == 0
8. return

Lemma 5.4 The message overheads in both the Pseu-
doSynchronous and Asynchronous Protocols are the same
as in the Synchronous Protocol, namely, Θ(n log n).

Proof The expected number of messages in the Pseu-
doSynchronous and the Asynchronous Protocols are the
same due to the fact that we have designed the fanout by
equating the messages. We have also seen the equivalence
between the Synchronous and the PseudoSynchronous Pro-
tocols in Theorem 4.1, which implies that one can be
mapped into the other by equating the fanouts and cor-
responding Ip

h(0,∞) and Is
h. Thus, for every Pseu-

doSynchronous Protocol, there exists a corresponding Syn-
chronous Protocol which has a fixed message overhead of
(N − 1) × ln (N − 1). Thus, we can conclude that the
message complexity of the three protocols are exactly the
same.

6 Experimental Results and Discussion

In this section, we present our experimental results.
We conducted the simulation using NS-2. The topologies
were generated using GT-ITM. Our analytical model for the
Asynchronous Protocol assumes a Gamma distribution for
the delay distribution. However, for our experiments we
computed a delay distribution for the actual NS-2 topology
under consideration by calculating the actual shortest path
delay using static routing for all the node-pairs. This rep-
resents the delay distribution for 1 hop. We computed the
delay distribution for the higher hops by convolution oper-
ation on the delay curve.

For the Synchronous Protocol, we generated a transit-
stub topology of 600 nodes. We considered a case with
five rounds and a possible infection of 5, 20, 80, 320 and
174 nodes in rounds 1, 2, 3, 4 and 5 respectively. Using
Equation 2, we computed the fanout values for each round.
These values can be fractional. Thus, if the value is 4.4,
then sometimes we use the value 4 and sometimes the value
5, such that over a set of possible runs, the expected fanout
was 4.4. Table 1 summarizes the infection pattern and the
corresponding fanout values, compares the average simu-
lation results with the analytical values, and presents the
standard deviation over a set of 20 experiments.

Table 1. Synchronous Gossip Protocol with
Five Rounds

r Us
r Is

r F s
r Ss

r,anal Ss
r,sim StdDev

0 599 1 n.a. 1 1 0
1 594 5 5 6 6 0
2 574 20 4.0891 26 26.0 0.55
3 494 80 4.4785 106 105.5 3.76
4 174 320 7.76 426 425.95 9.60
5 0.5 174 10.86 600 599.5 1.86

As we see from Table 1, the use of variable fanouts in
various rounds allows the user to control the infection pat-
tern, determine the number of rounds he wants to allow, and
accordingly, compute the fanouts. We observed that the in-
dividual runs deviated from the analytical values but the av-
erage over a set of runs converged to the theoretical values.
Table 1 also summarizes the the standard deviation of the
observed simulation results. Overall, the expected values
do conform faithfully to the theoretical model. We have also
seen that the message overhead is a constant independent of
fanout values as seen in Lemma 2.1.

For the Asynchronous Protocol, we let the user specify
the number of infected nodes he desires at particular in-
stances as ordered pairs (t, St). Using this information, we
fix the number of hops we want to allow by using the same
number of hops as the number of points specified by the
user or interpolate accordingly to suit the timing require-
ments. Using this information and the delay distribution
function for various hops, we compute the time dependent
fanout using Lemma 4.6 and Equation 14.

For our experiments, we used a 600 node topology gen-
erated using GT-ITM in NS-2. We computed the delay dis-
tribution for various hops as described before. We con-
sidered an example where the user provided an arbitrary
infection pattern samples at five time intervals: (5,100),
(7.2,200), (10,350), (11,400), (14,510). Using this infor-
mation and the delay cdfs, we computed the corresponding
Us

h, Ip
h(0,∞) and F p

h for the five possible hop values using
Lemma 4.6. Figure 1 shows the delay probability distribu-
tion curves for the five hops based on NS-2 topology delays.
Table 2 summarizes the values of the PseudoSynchronous
Protocol parameters. Note that the protocol begins at time
0 when the source gossips to F p

1 nodes, and from there on,
the nodes follow the fanout f(t). This is evident in Equa-
tion 14 where the number of messages is computed using
fanout values from hops 2 to Hmax while the number of
infected nodes is computed over all hops. Whether we in-
clude the constant number of messages generated at time 0
is not important as we compute fanout based on incremental
values, hence, the constant term gets subtracted. Once we

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250 300

p
ro

b
a
b
il
it
y
 p

Time in 100s of ms

Delay PDFs for different hops

delay pdf for 1 hop
delay pdf for 2 hops
delay pdf for 3 hops
delay pdf for 4 hops
delay pdf for 5 hops

Figure 1. Delay Distribution for 5 hops for a
600-node topology

have computed the parameters for the PseudoSynchronous
Protocol as shown in Table 2, we migrate to the Asyn-
chronous Protocol. Using Equation 10 and Corollary 4.5,
we can compute the number of messages and the number
of infected nodes at any instance in the PseudoSynchronous
Protocol. Using these two set of values, we finally com-
pute the time dependent fanout. We compute the fanout in
the following way: We choose 10 time-intervals to compute
10 fanout values, one for each interval. From the analytical
model, we see that all of the messages are generated by 17
seconds. By this time, the first four hops have generated
all their messages and the 5-th hop infections do not gos-
sip anymore. Hence, we divide 17 seconds into 10 intervals
of 1.7 seconds each and compute the fanout as the num-
ber of new messages generated in an interval divided by the
number of newly infected nodes in the same interval as de-
scribed in Algorithm COMPUTEFANOUT. How to choose
the interval and whether all the intervals should be of equal
length is an interesting question which we wish to investi-
gate in our future research. We believe that we should try
to keep the fanout values and interval sizes small so that the
theoretical model is faithfully obeyed without much devia-
tion. Table 3 summarizes the steps in computing the fanout
f(t) for the ten time intervals in our example.

Figure 2 depicts the time dependent fanout in our ex-
ample. Figure 3 depicts the average performance of the
Asynchronous Protocol over a set of 15 runs compared with
the analytical expected infection pattern computed from the
PseudoSynchronous model. The vertical impulses in Figure
3 show the user input. We see that the Asynchronous Proto-
col follows reasonably well the user’s requirements in terms
of infection pattern at the five points specified. We also de-
pict the maximum deviation from the average that occur in

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160

fa
n
o
u
t
f(

t)

Time in 100s of ms

Fanout f(t) versus time t

fanout

Figure 2. Fanout as a function of time

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s

Time in Seconds

Asynchronous Gossip Protocol

Simulation Infection Pattern
Analytical Infection Pattern

Max-Min Error in Simulation
User Input

Figure 3. Asynchronous Gossip Protocol Per-
formance

individual runs using yerrorbars. In our experiments, we
computed the standard deviation for the data samples at in-
tervals of one second, from 0−15 seconds, given by [0, 2.2,
4.0, 4.9, 5.9, 8.2, 10.0, 9.98, 12.1, 13.2, 12.3, 10.0, 9.2,
7.7, 8.3, 8.7]. Thus, we can see that, on average the sim-
ulation results closely follow the analytical model. Hence,
we are able to predict the performance of the gossip proto-
col with reasonable accuracy. We carried out experiments
for five other random user inputs and estimated the error be-
tween the actual time taken and the user input values. We
found the average error to be around 1.7 %, with the max-
imum error around 3 %. The protocol follows very closely
for most of the time and mostly deviates towards the end
when most nodes are infected and in periods following high
fanout values. We do believe that we should try to keep the

Table 2. Computation of PseudoSynchronous
Parameters Using User Input and Delay PDFs

Input h P p
h,∞ Mp

h Us
h Ip

h(0,∞) F p
h

5,100 1 0.086 0.91 547.78 51.21 51.21
7.2,200 2 0.162 0.82 450.75 97.04 2.276
10,350 3 0.254 0.66 298.42 152.33 2.54
11,400 4 0.249 0.50 144.39 149.03 2.715
14,510 5 0.166 0.33 49.72 99.43 4.406

Table 3. Computation of Fanout f(t)
[t1, t2] new messages new nodes Fanout f(t)
(0,1.7) 22.76 10.94 2.081

(1.7,3.4) 91.14 39.27 2.321
(3.4,5.1) 133.114 53.347 2.495
(5.1,6.8) 205.92 76.209 2.702
(6.8,8.5) 264.526 88.741 2.981

(8.5,10.2) 299.918 91.823 3.2662
(10.2,11.9) 248.470 79.454 3.127
(11.9,13.6) 126.082 58.681 2.148
(13.6,15.3) 35.248 33.781 1.043
(15.3,17) 4.406 13.920 0.317
(17,18.7) 0.0 3.424 0.0

fanout values within a time interval low. Since our protocol
depends on generating the same number of messages and
infections within a time interval as the PseudoSynchronous
case, using a larger fanout may lead to extra messages and
infections within the interval. This phenomenon may cause
unexpected deviations from what we expect in the follow-
ing intervals. Thus, we believe that if the time dependent
fanout is designed to have small values, the Asynchronous
Protocol will be faithful to the model on an average.

In summary, we believe that fanout is the critical design
parameter in designing gossip protocols with a goal of offer-
ing a more predictable performance. We have designed and
verified a round based fanout for the Synchronous Protocol
and a time based fanout for the Asynchronous Protocol, and
they follow our analytical model quite closely.

7 Concluding Remarks

We have described three gossip protocols. We see a sim-
ilarity between the Synchronous and PseudoSynchronous
Protocols in terms of fanout equations and HopContribu-
tion. This is due to the hop-time ordering property. There
is still difference in the two protocols in that the real-time
operation of hops in the PseudoSynchronous Protocol is
asynchronous. The lack of synchronized rounds makes
gossip faster in the PseudoSynchronous case. We have

seen that the Asynchronous Protocol is an extension of the
PseudoSynchronous Protocol, where the hop-time ordering
property is relaxed which is more realistic. We have ob-
tained a time dependent fanout for the Asynchronous case
by relating it with the PseudoSynchronous Protocol. We are
able to quantify fanout to control gossip infection closely
and allow the user to fine-tune this parameter to meet his
needs.

We have identified certain issues which need further in-
vestigation. The design of good user inputs needs to be con-
sidered. We have also noticed that the choice of time inter-
val for computing fanout needs further investigation. This
interval need not be fixed but can be chosen appropriately
to keep the fanout values small; this is important for the ac-
curacy of the Asynchronous Protocol. We aim to address
these issues in our future work.

References

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Trans. on Com-
puter Systems, vol. 17, May 1999.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintainance. In
Proc. 7th ACM PODC, Vancouver, Aug 1987.

[3] P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec,
and P. Kouznetsov. Lightweight probabilistic broadcast. In
Proc. of The Intl. Conf. on Dependable Systems and Net-
works (DSN), Goteborg, Sweden, July 2001.

[4] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. SCAMP:
P2p lightweight membership service for large-scale group
communication. In Third Intl Workshop of Networked Group
Communication, London, Nov 2001.

[5] K. Guo, M. Hayden, W. Vogels, R. van Renesse, and K. Bir-
man. Gsgc: An efficient gossip style garbage collection
scheme. In Tech. Report CS-TR-97-1656, Cornell Univ., Dec
1997.

[6] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient
epidemic-style protocols for reliable and scalable multicast.
In IEEE SRDS, Osaka, Japan, Oct 2002.

[7] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vocking.
Randomized rumor spreading. In IEEE Symp. on Founda-
tions of Computer Science, California, Nov 2000.

[8] D. Kempe, J. M. Kleinberg, and A. J. Demers. Spatial gos-
sip and resource location protocols. In ACM Symposium on
Theory of Computing, Crete, Greece, July 2001.

[9] A. Kermarrec, L. Massoulie, and A. Ganesh. Probabilistic
reliable dissemination in large-scale systems. IEEE Trans.
on Parallel and Distributed Systems, vol. 14, March 2003.

[10] J. Luo, P. Eugster, and J.-P. Hubaux. Route driven gossip:
Probabilistic reliable multicast in ad hoc networks. In Proc.
of INFOCOM, San Fransisco, USA, April 2003.

[11] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure-detection service. In Proc. IFIP Intl. Conf. on Dist.
Sytsems Platforms and Open Dist. Processing, Lake District,
England, Sept 1998.

