
Rapid Development and Flexible Deployment of Adaptive Wireless
Sensor Network Applications

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu
Washington University in St. Louis

Saint Louis, Missouri 63130
{liang, roman, lu}@cse.wustl.edu

Abstract

Wireless sensor networks (WSNs) are difficult to pro-
gram and usually run statically-installed software limiting
its flexibility. To address this, we developed Agilla, a new
middleware that increases network flexibility while simpli-
fying application development. An Agilla network is de-
ployed with no pre-installed application. Instead, users
inject mobile agents that spread across nodes performing
application-specific tasks. Each agent is autonomous, al-
lowing multiple applications to share a network. Pro-
gramming is simplified by allowing programmers to create
agents using a high-level language. Linda-like tuple spaces
are used for inter-agent communication and context discov-
ery. This preserves each agent’s autonomy while providing
a rich infrastructure for building complex applications, and
marks the first time mobile agents and tuple spaces are used
in a unified framework for WSNs. Our efforts resulted in an
implementation for MICA2 motes and the development of
several applications. The implementation consumes a mere
41.6KB of code and 3.59KB of data memory. An agent can
migrate 5 hops in less than 1.1 seconds with 92% reliabil-
ity. In this paper, we present Agilla and provide a detailed
evaluation of its implementation, an empirical study of its
overhead, and a case study demonstrating its use.

1 Introduction

Wireless sensor networks (WSNs) have been under de-
velopment for many years and are about to gain widespread
use as technology improves, prices drop, and new applica-
tions are developed. They will proliferate because they can
penetrate application areas for which traditional networks
are inadequate. Instead of using a few sensing stations con-
nected by wires or one-hop wireless links, WSNs consist of
a multitude of tiny sensors attached to battery-powered mi-
croprocessors that opportunistically form a multi-hop wire-

less ad hoc network. The miniature size and number of
these sensors enable micro-sensing at unprecedented reso-
lutions and scales. Several examples of WSN deployments
include habitat monitoring, microclimate research, surveil-
lance, medical care, and structural monitoring [11]. How-
ever in order for WSNs to go mainstream, they must be
cheaper, easier to use, and more flexible.

The existing software for WSNs is not flexible enough
to meet the demands of many applications. Most WSNs
are limited in that the application must be installed prior
to deployment, and, once deployed, they can only be mar-
ginally tweaked to adapt to changing circumstances. Also,
there are many situations where the application itself must
change. For example, suppose a sensor network is deployed
in a forest for detecting fires. When a fire is detected and the
fire fighters arrive, they may want to reprogram the network
with a search and rescue application. While it may be possi-
ble to integrate the two and install both, this is not scalable.

One way of increasing network flexibility is to allow in-
network reprogramming. Two technologies that allow this
are Maté [20], and SensorWare [6]. Both have disadvan-
tages. In Maté, applications are divided into capsules that
are flooded throughout the network. Each node stores the
most recent version of each capsule and runs the appli-
cation by interpreting the instructions within them. Maté
does not allow a user to control where an application is in-
stalled. This limits the network to run a single application
at a time. SensorWare allows users to dynamically inject
mobile scripts into the network. This enables multiple ap-
plications to run concurrently, but the scripts only support
weak mobility and have fixed points of entry. Also, the sys-
tem was implemented for the relatively resource rich iPAQ
3670 platform.

To address the problems listed above, we have devel-
oped a new middleware called Agilla. Instead of relying
on traditional fixed-location programs, Agilla adopts a mo-
bile agent-based paradigm where programs are composed
of agents that can migrate across nodes. Mobile agents are
dynamic, localized, and intelligent. Each agent is, in ef-

fect, a virtual machine with dedicated instruction and data
memory. As an agent executes, special instructions allow it
to interact with the environment and move from one node
to another. Multiple agents can coexist on a single node.
Linda-like tuple spaces [14] are used to ensure each agent
is autonomous while still able to communicate. They offer a
shared memory model where the datum is a tuple that is ac-
cessed via pattern matching. This allows one agent to insert
a tuple containing a sensor reading and another to later re-
trieve it without the two knowing each other, thus achieving
a high level of decoupling.

Agilla provides many inherent benefits. In-network re-
programming is achieved since new agents can be injected
and old agents can die. Multiple applications can coexist
since agents belonging to different applications can coex-
ist. An agent world-view can ease application development
by diverting focus from complex distributed algorithms to
individual agent behavior. For example, instead of worry-
ing about how nodes must coordinate to track an intruder,
a mobile agent programmer can think of an agent following
the intruder by repeatedly migrating to the node that best
detects it. Finally, by allowing post-deployment reprogram-
ming, Agilla transforms WSNs into general-purpose com-
puting platforms that are open for the public to use.

Mobile agents have been used for many years on the In-
ternet and their benefits are known. Some middleware sys-
tems that provide agents include Agent Tcl [15], Ara [24],
Java Aglets [23], Mole [5], Sumatra [3], TACOMA [17],
PEERWARE [10], and MARS [9]. They have been suc-
cessfully used in data mining [19], e-commerce [21], and
network management applications [4]. Mobile agents have
been shown to benefit other types of networks as well.
LIME [22] was the first successful attempt at using mobile
agents and tuple spaces in wireless ad hoc networks. It al-
lowed agents to access a global tuple space containing the
aggregate data of all nodes within range. It provided a high
level of atomicity but required a predictable network. Since
many agents have specific interests, EgoSpaces [18] was
created to allow agents to focus only on relevant data. Both
LIME and EgoSpaces required relatively powerful nodes
and stable network connectivity. Since some networks do
not meet this criteria, Limone [12] was created as a light-
weight version of LIME. It eliminated all assumptions about
the network, but provided weaker guarantees. This paper
explores whether the use of mobile agents and tuple spaces
in WSNs is technically feasible and beneficial to a WSN ap-
plication developer. To our knowledge, nothing like this has
been attempted to date.

WSNs are notoriously difficult to work with primarily
due to their extremely limited resources. Each node consists
of a relatively slow processor, little memory, and an unreli-
able low-bandwidth radio with limited range. WSNs often
have long deployment intervals during which it is likely for

the demands of the user, or the users themselves, to change.
Applications must be flexible to adapt to a changing context,
network topology, and user needs. Agilla helps applications
achieve this.

This paper makes four contributions. First, it explores
the benefits of using mobile agents and tuple spaces as a
foundation for developing new WSN applications. Second,
it examines the technical challenges associated with design-
ing Agilla and tailoring it to fit the salient properties of
WSNs. Third, it demonstrates the feasibility of using mo-
bile agents and tuple spaces in existing WSNs through the
development of middleware. Finally, it evaluates the perfor-
mance of Agilla in terms of easing application development
and overhead. These contributions provide valuable engi-
neering lessons for future efforts related to software devel-
opments in the area of WSNs.

The remainder of the paper is organized as follows. Sec-
tion 2 presents Agilla’s model and explains how it was tai-
lored to the unique properties of WSNs. Section 3 dis-
cusses the various engineering tradeoffs that had to be made
to cope with limited resources and an unreliable network.
Section 4 presents the experimental results on Agilla’s effi-
ciency and reliability. Section 5 contains a case study that
illustrates how Agilla makes programming a sophisticated
fire detection application simpler. The paper ends with con-
clusions in Section 6.

2 Model

This section first presents a motivating example and then
describes Agilla’s model in light of this application.

2.1 Motivating Example

In the remote arid forests of central Arizona, lighting ig-
nites a fire that quickly spreads with the prevailing winds.
The remoteness of the region would allow the fire to burn
undetected for hours, virtually ensuring that it will soon
rage out of control. Fortunately, the USDA Forest Service
had recognized this area as highly incendiary and deployed
a WSN for detecting fire. As the fire grows, nearby sen-
sors quickly detect it and spawn tracking agents that swarm
around the fire collecting information about the exact lo-
cation of the flames. The tracking agents form a dynamic
perimeter jumping away from the fire as it draws too near,
and cloning themselves onto neighbors to encompass the
growing fire. Simultaneously, they notify a base station
that forwards the warning via the Internet to the nearest fire
fighters a hundred miles away. By the time they arrive, the
entire region is engulfed burning with such intensity so as
to be seen and felt from miles away.

The fire fighters act quickly and make it their first priority
to evacuate the area. They inject search-and-rescue agents

Node (1,1)

Tuple SpaceNeighborsNeighbors

Node (2,1)

NeighborsNeighbors

migrate

remote
access

Tuple Space

Figure 1. The Agilla model

into the network that spread and repeatedly clone them-
selves scouring the region looking for lost hikers trapped
by the flames. Some of these agents find a group of chil-
dren and coordinate with the other agents to form a path of
greatest safety that the rescuers, carrying PDAs to access the
path information, use to reach the children and bring them
to safety. Once everyone is safe, the fire fighters query the
tracking agents for the precise location and dynamics of the
fire. From this data, they are able to predict the fire’s be-
havior and strategically control its movements preventing
it from approaching populated areas where property can be
damaged and people injured.

Once the fire has died, the tracking agents also die
leaving only small fire detection agents that periodically
searches for fire. The minuscule resource consumed by
these agents allow other applications to run, which biol-
ogists do by injecting state-of-the-art habitat monitoring
agents for learning about the life cycle of coyotes.

2.2 The Agilla Model

The Agilla model is shown in Figure 1. Each node sup-
ports multiple agents and maintains a tuple space and neigh-
bor list. The tuple space is local and is shared by the agents
residing on the node. Special instructions allow agents to
remotely access another node’s tuple space. The neighbor
list contains the address of all one-hop nodes. Agents can
migrate carrying their code and state, but do not carry their
own tuple spaces.

An Agilla application consists of numerous autonomous
agents, possibly of different types, scattered throughout a
network. For example, in the motivating example, there are
fire detection agents, tracking agents, and search-and-rescue
agents. Given all these agents, there must be some coordi-
nation mechanism that allows them to communicate. Agilla
provides this through tuple spaces. Agilla tuple spaces offer
a shared memory model where the datum is a tuple. Tuples
adhere to a strict format and are accessed by pattern match-
ing via templates. A tuple is an ordered set of fields where

each field has a type and value. Types may include integers,
strings, locations, and sensor readings. Tuples are accessed
using templates that are also ordered sets of fields. Tem-
plates are unique in that their fields may contains wild cards
that match by type. To extract a tuple from a tuple space,
the agent needs to provide a template that matches the tuple.
A template matches a tuple if they have the same number of
fields, and each field in the tuple matches the corresponding
field in the template.

Tuple spaces provide a high level of decoupling that en-
sures each agent remains autonomous and provides a conve-
nient way for an agent to discover its context. For example,
since each node may have different sensors, Agilla places
special tuples into each node’s tuple space indicating what
type of sensors are available. If a node has a thermome-
ter, Agilla would insert a “temperature tuple” into its tuple
space. These tuples are pre-defined, allowing an agent to
discover what type of sensors are available. Other context
information stored in the tuple space include the location
and the number of co-located agents and their identities.
Tradeoffs had to be made regarding what information to
store in the tuple space versus providing special accessor
instructions, and is discussed further in Section 3.

Agilla tuple spaces provide operations out, in, rd,
inp, and rdp. They are atomic and operate over the lo-
cal tuple space. out inserts a tuple. in and rd are block-
ing operations that remove and copy a tuple from the tuple
space, respectively. If a match does not exist, the executing
agent blocks until a match appears. inp and rdp are the
same as in and rd except they do not block.

Like many other systems [8, 12, 18, 22], Agilla adds re-
actions to its tuple spaces. Reactions allow an agent to tell
Agilla that it is interested in tuples that match a particular
template. When the matching tuple is placed into the tu-
ple space, the agent is notified, allowing it to immediately
respond. Without reactions, an agent would either have to
block or poll waiting for the tuple to appear, both of which
are inefficient. Agilla reactions are strictly local, an agent
can only react to tuples in the local tuple space.

A tuple space ensures that each agent runs autonomously
by allowing them to communicate in a decoupled fashion.
For example, suppose there is a fire detection and habitat
monitoring agent residing on the same node when fire is de-
tected. The fire detection agent inserts a fire tuple into the
local tuple space to indicate the presence of fire and acti-
vates a tracking agent before dying. The habitat monitoring
agent reacts to this tuple, and voluntarily kills itself to free
additional resources. Notice how the fire detection agent
does not need to know who received the fire tuple, the send-
ing and reception can occur at different times, and reception
can occur even if the sender is no longer present. This spa-
tial and temporal decoupling ensures each agent operates
autonomously.

Agilla agents also need to coordinate with agents re-
siding on remote nodes. For example, in the motivating
example, the tracking agents need to coordinate to ensure
the perimeter is not breached. Agilla allows agents to co-
ordinate across nodes by introducing special remote tuple
space operations. These include rout, rinp, and rrdp.
They are synonymous with out, inp, and rdp except
they take an additional location parameter that specifies on
which node to perform the operation. Only probing opera-
tions are provided to prevent an agent from blocking forever
due to message loss. In the example above, the tracking
agents would periodically perform rrdp operations to en-
sure neighboring tracking agents are still alive.

Note that Agilla does not support tuple spaces that span
across nodes. Instead, it supports local tuple spaces where
each node maintains a distinct and separate tuple space. The
dedicated remote tuple space instructions described above
rely on unicast communication with the specific node host-
ing the tuple space. Hence, a remote tuple space operation
entails the transmission of only two messages, a request and
a reply, and is scalable to networks of any size.

Agilla assumes each node knows its physical location.
This is reasonable since sensor data is often meaningless un-
less the location at which it was obtained is known. Nodes
may acquire their location through GPS or any number of
localization techniques [7]. Agilla provides one-hop neigh-
bor discovery using beacons. The one-hop neighbor infor-
mation is stored in an acquaintance list and is continuously
updated by Agilla. Agents can access this list using special
instructions numnbr and getnbr. Geographic routing al-
lows an agent to access the tuple space on any node.

The idea behind Agilla is to initially deploy a network
without any application installed. Agents that implement
application behavior can later be injected, effectively re-
programming the network. An agent’s life cycle begins
when it is either injected into the network by the user, or
cloned from another agent already in the network. An agent
contains its own instruction memory, data memory, pro-
gram counter, operand stack, and heap. Agilla executes
each agent as an autonomous virtual machine and supports
multiple agents on a node. Each agent employs a stack-
architecture. Along with all the usual instructions that en-
able general-purpose computing and inter-agent communi-
cation, an agent can execute special instructions that move
or clone it from one node to another. They include smove,
wmove, sclone, and wclone. When an agent moves, it
carries its state and code and resumes executing on the new
node. When it clones, it copies its state and code to an-
other node and resumes executing on both. The first letter
of the migration instruction specifies whether the operation
is weak or strong. In a weak operation, only the code is
transferred. The program counter, heap, and stack are re-
set and the agent resumes running from the beginning. In

1: BEGIN pushn fir
2: pusht LOCATION
3: pushc 2
4: pushc FIRE
5: regrxn // register fire alert reaction
6: wait // wait for reaction to fire
7: FIRE pop
8: sclone // strong clone to the node that

detected the fire
9: ... // fire tracking code

Figure 2. The FIRETRACKER agent

a strong operation, everything is transferred and the agent
resumes executing where it left off. An agent can move or
clone itself to any node regardless of the number of hops
away. The multi-hop migration is handled by the under-
lying middleware and is transparent to the user. When an
agent completes its task it dies, allowing Agilla to free its
resources and use them for other agents. An agent dies by
executing the halt instruction.

WSNs rely heavily on spatial information. For exam-
ple, a collection of temperature readings is not useful if it is
not known from where the readings were obtained. For this
reason, Agilla identifies nodes based on their location rather
than their network address. A node’s location is its address.
Thus, instead of performing a rout operation on node 1,
an agent performs it on a node at (x,y). Agilla addresses
all nodes by their location. To account for slight errors in
location, Agilla allows an error ε when specifying the ad-
dress. By using location as addresses, Agilla primitives can
be easily generalized to enable operations on a region. For
example, a fire detection node can clone itself on all nodes
in a geographic area, or alternatively it can clone itself to at
least one node in the region.

To solidify Agilla’s model, Figure 2 shows the FIRE-
TRACKER agent mentioned in the motivating example. Re-
call that FIRETRACKER agents swarm around the fire form-
ing a dynamic perimeter, a complex process that consumes
lots of resources. To minimize overhead, the application
uses lightweight FIREDETECTOR agents during idle peri-
ods, and spawn heavier-weight FIRETRACKER agents only
when needed. Figure 2 demonstrates how a FIRETRACKER

agent is notified. When a FIRETRACKER agent is injected
into a node, it registers a reaction sensitive to FireAlert
tuples and waits for the reaction to fire. This is done by
lines 1-6. When a FIREDETECTOR agent detects fire, it per-
forms a rout(FireAlert) on the node hosting the FIRE-
TRACKER agent, which reacts to the tuple by executing the
code starting from line 7. Notice that on line 8, the agent
clones itself at the node that detected the fire. Once there,
it will continue to clone and spread out to form a dynamic
barrier around the flames.

Figure 3. Our experimental test bed with 25
motes and a laptop as the base station

3 Engineering Effort

This section discusses the engineering effort behind Ag-
illa. It starts with an overview of the sensor network’s hard-
ware and operating system. It then presents the architecture
of Agilla’s middleware followed by that of the agent. It ends
with a discussion of the agent’s instruction set.

3.1 Implementation Platform

Agilla has been implemented and tested on MICA2
motes [1], as shown in Figure 3. These motes have an 8
MHz Atmel ATmega128L 8-bit microprocessor connected
to a Chipcon CC1000 radio transceiver. The radio com-
municates at up to 38 Kbps over a range of 100m, though
the actual amounts vary substantially based on the environ-
ment [25]. They have 128KB of instruction and 4KB of
data memory. MICA2 motes are representative of a typi-
cal device used in WSNs. Developing applications for them
is challenging primarily due to the limited amount of data
memory and a highly unreliable low-bandwidth radio.

The WSN communicates with a relatively powerful base
station with access to the Internet. Our platform uses a lap-
top. It has a MIB510 interface board that forms a bridge
between the WSN and Internet. The laptop runs a Java ap-
plication that allows a user to interact with the WSN by
injecting agents and performing remote tuple space oper-
ations. It also starts an RMI server that allows anyone on
the Internet to remotely access the sensor network.

MICA2 motes run a simple but highly concurrent op-
erating system called TinyOS [16]. TinyOS applications
are divided into components that are arranged in a hierar-
chy. A main challenge with using TinyOS is the lack of
dynamic memory management. All variables must be de-
clared statically. While this simplifies compile-time analy-
sis, it also makes the meager 4KB of data memory more pre-
cious. As pointed out in [20], TinyOS has a high learning
curve, which is compounded by the limited resources and
unreliable radio. In addition, the hard-wiring of TinyOS
components makes it difficult to develop flexible applica-
tions. To change a program’s behavior, the new behavior

TinyOS

Agilla

Mobile
Agents

Sensor
Components

Geographic
Routing

Reaction
Registry

Agent Manager

Instruction
Manager

Acquaintance
List

Network
Stack

Agilla Engine

Agent Sender Agent Receiver

Remote
Tuplespace
Operation
Manager

Tuplespace
Manager

Context
Manager

Tuplespace

Figure 4. Agilla’s middleware architecture

must either be pre-coded, or the mote needs to be retrieved
and reprogrammed. Having a middleware that provides a
higher-level programming abstraction that hides these com-
plexities allow programmers to quickly implement, test, and
deploy their applications.

3.2 Agilla Architecture

Agilla’s architecture, shown in Figure 4, is divided into
three layers, the highest containing the agents that are dis-
cussed further in Section 3.3. The middle layer contains
the core Agilla middleware components, while the bottom
is TinyOS. Agilla’s core middleware consists of an agent,
context, instruction, and tuple space manager and an engine
that orchestrates them.

Agent Manager. The agent manager maintains each
agent’s context. It is responsible for allocating memory for
an agent when it arrives and de-allocating it when it leaves
or dies. It is also responsible for determining when an agent
is ready to run, and notifies the Agilla engine when this
occurs. By default the agent manager can handle up to 4
agents. This is easily changed and is primarily limited by
processor speed and the amount of memory available.

Context Manager. The context manager determines its
location as well as that of its neighbors. It uses beacons to
discover neighbors and stores the neighbor locations in an
acquaintance list that is accessible to an agent via special in-
structions (e.g., numnbrs, getnbr, and randnbr). We
use dedicated instructions rather than the tuple space be-
cause they are frequently used. Allowing an agent to know
its location and that of its neighbors is vital. In the moti-
vating example, FIREDETECTOR agents need to tell FIRE-
TRACKER agents where they are. FIRETRACKER agents
will then need to know the location of their neighbors to
dynamically adjust the perimeter.

Instruction Manager. Since TinyOS does not provide
dynamic memory allocation, Agilla implements one that is

tailored to the severe resource limitations of MICA2 motes.
When an agent arrives, it specifies the amount of instruction
memory it requires, and the instruction manager allocates
the minimum number of 22 byte blocks necessary to store
the agent’s code. We found that 22 byte blocks are a good
compromise between internal fragmentation and undue for-
ward pointer overhead. When agents are running, the in-
struction manager retrieves the next instruction to execute.
When an agent migrates, it packages up the agent’s code
into the minimal number of messages. By default, the in-
struction manager is allocated 440 bytes (20 blocks). With a
few exceptions, an instruction is one byte meaning an agent
can have up to 440 instructions.

The alternative to using a byte code manager is to allo-
cate a fixed amount of memory to each agent. The disad-
vantage of this is waste if an agent does not use all of its
allotted memory, and it also limits the maximum size of an
agent’s program.

Tuple Space Manager. The tuple space manager imple-
ments all of the non-blocking tuple space operations (e.g.,
out, inp and rdp) and reactions, and manages the con-
tents of the local tuple space and reaction registry. The
blocking operations are implemented within the agent, as
described in Section 3.3. The tuple space manager dynam-
ically allocates memory for each tuple. By default, it is al-
located 600 bytes and a tuple may contain up to 25 bytes
worth of fields. This ensures a tuple can fit within the 27
byte payload of a single TinyOS message. To prevent in-
ternal fragmentation and the need for forward pointers, the
600-bytes are allocated linearly. When a tuple is removed,
all following tuples are shifted forward. While this may re-
sult in more memory swapping, it is simple. We leave a
more in-depth investigation of efficient tuple space imple-
mentations as future work.

The tuple space manager remembers the reactions reg-
istered by each agent by storing them within the reaction
registry. Whenever a tuple is inserted, it checks the registry
for a match. If the new tuple matches a reaction’s template,
the tuple space manager notifies the agent manager, which
updates the agent’s program counter to execute the reac-
tion’s code. During a migration, the tuple space manager
packages up all reactions registered by an agent so they can
be transferred along with the agent. When an agent arrives,
it automatically restores all of the agent’s reactions. By de-
fault the reaction registry is allocated 400 bytes, allowing it
to remember up to 10 reactions.

Agilla Engine. The Agilla engine serves as the virtual
machine kernel that controls the concurrent execution of
all agents on a node. It implements a simple round-robin
scheduling policy where each agent can execute a fixed
number of instructions before switching context. The de-
fault number of instructions is 4, which is the same as in
Maté. Naturally, if an agent executes a long-running in-

Type Size (Bytes) Content
State 20 program counter, code size, condition

code, stack pointer
Code 28 one instruction block
Heap 32 four variables and their addresses
Stack 30 four variables

Reaction 36 one reaction

Figure 5. Messages used during migration

struction like sleep, sense, or wait, the engine imme-
diately switches context.

The Agilla engine also handles the arrival and departure
of agents. This is particularly difficult due to the highly
unreliable nature of MICA2’s radio. It is compounded by
the fact that an agent cannot be sent in a single message.
When an agent migrates, Agilla divides it into numerous
types of messages as shown in Figure 5. At a minimum,
a migration requires two messages: one state and one code.
Many agents require more since they have data in their stack
and heap, and have registered reactions. If a single mes-
sage is lost, the migration operation will fail. To help min-
imize this problem, agents are migrated one hop at a time,
and each message is acknowledged. We tried using end-to-
end communication where messages are not acknowledged
till they reach the final destination, but found that the high
packet-loss probability over multiple links made this unac-
ceptably prone to failure. If a one-hop acknowledgement is
not received within 0.1 seconds, the message is retransmit-
ted. This repeats up for four times. If the operation stalls for
over 0.25 seconds, the receiver aborts. If the sender detects
a failure, it resumes the agent running on the local machine
with the condition code set to zero. While this may result in
duplicate agents, the alternative is to simply kill the agent.
We decided that having duplicate agents in the network is
preferable. Consider the motivating example; it is better to
have duplicate warnings that there is a fire rather than no
warnings at all.

Remote tuple space operations are also handled by the
Agilla Engine. To perform a remote tuple space operation,
a request containing the instruction and template is sent to
the destination node. When the destination receives it, it
performs the operation on its local tuple space and sends
back the result. Unlike agent migration operations, we used
end-to-end communication for remote tuple space opera-
tions and do not use acknowledgements. This is because
they are usually done on nearby nodes, a request can fit in
one message, and the operational semantics are not broken
if a message is lost. To reduce the effects of message loss,
the initiator timeouts after 2 seconds and re-transmits the
request at most twice.

Pointer
Heap16-Bit

Registers
ID

PC

Condition

Stack

0

1

11

0

1

150

40-bit
8-bit

Figure 6. The mobile agent architecture

3.3 Agent Architecture

The agent architecture is shown in Figure 6. It consists
of a stack, heap, and various registers. Mobile agents use
a stack architecture because it allows most instructions to
be a single byte (a few consume 3 bytes for pushing 16-
bit variables onto the stack). The heap is a random-access
storage area that allows an agent to store up to 12 variables.
It is accessed by the getvar and setvar instructions.

The agent also contains three 16-bit registers: one con-
taining the agent’s ID, another with the program counter
(PC), and the last with the condition code. The agent ID is
unique to each agent and is maintained across move opera-
tions. A cloned agent is assigned a new ID. The PC is the
address of the next instruction. It is modified by the jump
instructions and is used by the code manager to fetch the
next instruction. When a reaction fires, the reaction man-
ager changes the PC to point to the first instruction of the re-
action’s code. To allow an agent to resume executing where
it was when the reaction fired, the original PC is stored on
the stack. Finally, the condition code is a 16-bit register that
records execution status. For example, the instruction ceq
sets the condition to be 1 if the top two variables in the stack
are equal.

3.4 Agent Instruction Set Architecture (ISA)

Agilla’s ISA is based on that of Maté. However, there
are many differences that are necessary for supporting agent
mobility and tuple spaces. Some instructions unique to Ag-
illa are shown in Figure 7. A full listing is available at [2].
Agilla’s ISA can be divided into three categories: general
purpose, tuple space, and migration instructions.

General purpose instructions. Agilla’s general pur-
pose instructions are nearly identical to that of Maté. They
include, among many others, add, halt, putled, or,
rand, sense, eq, pop, and pushc. New instructions
used by Agilla are sleep, rjump, rjumpc, aid, and
pushcl. These enable an agent to achieve sophisticated
behavior without using multiple components, which is nec-
essary in Maté. For example, an Agilla agent can perform
some application-specific actions, sleep, and jump back to
repeat. Maté can only achieve this in its timer capsule.

Tuple space instructions. Tuple space operations allow
an agent to interact with the tuple space on each host. These
operations require a tuple (or template) be placed onto the
stack as a parameter. This is done by pushing each field
followed by the number of fields. For example, in Figure 2,
lines 1-3 pushes a template with two fields onto the stack.

Dedicated instructions out, in, rd, inp, and rdp are
provided for accessing the local tuple space. The blocking
in and rd operations are implemented by having the agent
repeatedly trying to inp or rdp a tuple. If the probe fails,
the agent’s context is stored in a wait queue until a tuple is
inserted. When this occurs, the agents in this queue are no-
tified and can re-check for a match. The remote tuple space
operations rout, rinp, and rrdp are non-blocking to ac-
count for message loss and disconnection. If the operation
is successful, the resulting tuple is placed onto the stack and
the condition is set to 1. The tuple space instructions also
include regrxn and deregrxn. They allow an agent to
register and deregister a reaction, respectively. Both instruc-
tions require a template and value be pushed onto the stack,
where the value is the address of the first instruction of the
reaction’s code.

Migration instructions. The migration instructions al-
low an agent to move or clone from one node to another,
possibly multiple hops away. Agilla provides four migra-
tion instructions: smove, wmove, sclone, and wclone.
They were discussed in Section 2.2.

4 Performance Evaluation

This section evaluates Agilla. It first examines the relia-
bility of remote tuple space and agent migration operations,
and then investigates the overhead of Agilla’s instructions.
Our MICA2 network is arranged in a 5x5 grid as shown in
Figure 3. Each node is assigned an (x,y) coordinate based
on its grid position, where the node in the lower-left corner
has a location of (1,1). To simulate multi-hop routing, we
modified TinyOS’s network stack to filter out all messages
except those from immediate neighbors based on the grid
topology. For geographic routing, we implemented a sim-
ple best-effort greedy-forwarding algorithm that forwards
messages to the neighbor closest to the destination.

WSNs are notorious for having highly unreliable wire-
less links. This is problematic since agents migrate using
multiple messages and the operation will fail if just one
message is lost. Agilla uses acknowledgements and timers
to retransmit if it suspects message loss. To avoid excessive
overhead, this is only done during migration and not dur-
ing remote tuple space operations. To test the reliability, the
agents shown in Figure 8 are injected into node (0,0). The
smove agent moves to a remote node and back while the
rout agent places a tuple in a remote node’s tuple space.
Each agent is run 100 times for 1-5 hops. The latency of

Instruction Opcode Parameters Return Values Description
loc 0x01 n/a [location] Pushes host’s location onto the stack
wait 0x0b n/a n/a Stops agent execution, allows it to wait for a reaction
smove 0x1a [location] n/a Strong move
wclone 0x1d [location] n/a Weak clone
getnbr 0x20 [value] [location] Get a neighbor’s address
out 0x33 [tuple] n/a Insert a tuple into the local tuple space
inp 0x34 [template] [tuple]? Non-blocking find and remove tuple from tuple space
rd 0x37 [template] [tuple] Blocking find tuple in tuple space

rout 0x39 [location], [tuple] n/a Insert a tuple into a remote tuple space
rinp 0x3a [location], [template] [tuple]? Non-blocking find and remove tuple from remote tuple space
regrxn 0x3e [template], [value] n/a Register a reaction on the local tuple space

Figure 7. Noteworthy Agilla instructions

// The smove agent
1: pushloc 5 1
2 smove // strong move to mote at (5,1)
3: pushloc 0 0
4: smove // strong move to mote at (0,0)
5: halt

// The rout agent
1: pushc 1
2 pushc 1 // tuple <value:1> on stack
3: pushloc 5 1
4: rout // do rout on mote (5,1)
5: halt

Figure 8. The agents that test smove (top) and
rout (bottom)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5

P
er

ce
nt

 S
uc

ce
ss

Number of Hops

smove
rout

Figure 9. The reliability of smove vs. rout

each successful execution, and the number of failures are
recorded (smove results are halved to account for the dou-
ble migration). The results, shown in Figures 9 and 10, in-
dicate that both operations perform well across short dis-
tances. However, as the distance increases, the probability
of a message being lost also increases, which is reflected
in a decrease in reliability. The results show that smove is
more reliable than rout, but has higher latency. Since suc-
cessful migration is vital, we feel the additional overhead of
the agent migration protocol is justified. There is clearly a
tradeoff between latency and reliability.

To determine whether rout and smove are representa-
tive of the other remote tuple space and agent migration in-

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5

La
te

nc
y

(m
s)

Number of Hops

smove
rout

Figure 10. The latency of smove vs. rout

0

50

100

150

200

250

300

rout rinp rrdp smove wmove sclone wclone

Opcode

L
at

en
cy

 (
m

s)

Figure 11. The latency of remote operations.

structions, we found the one-hop execution time of all these
instructions by timing each 100 times and finding the aver-
age. The results, shown in Figure 11, indicate that rout
and smove are representative, and that agent migration in-
structions have significantly higher overhead than remote
tuple space operations. Note that migration operations have
higher variance. This makes sense since they employ re-
transmit timers in the event of message loss. The results also
suggest that the quickest an agent can migrate is once every
0.3 seconds. Assuming the radio range is around 50m, this
means an agent can migrate across a network at 600km/h or
373mph, which is sufficient for tracking many interesting
events like fire.

We now benchmark local operations unique to Agilla.
Like Maté, Agilla executes each instruction as a separate
task. To determine the execution times of these instruc-
tions, we disabled the radio and timed how long it took to
execute each 1000 times, then repeated it 100 times. We cal-
culated the average execution time of each instruction and
the results, shown in Figure 12, indicate that there are three
general classes of local operations. The first class has the

0

50

100

150

200

250

300

350

400

450

500

lo
c

ai
d

nu
m

nb
rs

ra
nd

nb
r

ge
tn

br

pu
sh

rt

pu
sh

t

pu
sh

n

pu
sh

cl

pu
sh

lo
c

re
gr

xn

de
re

gr
xn ou

t

in
p

(e
m

pt
y
TS

)

rd
p

(e
m

pt
y
TS

) in rd

tc
ou

nt

L
a

te
n

c
y

 (
u

s
)

Figure 12. The latency of local operations.

least execution time and include the loc, aid, numnbrs,
and various push instructions. These instructions simply
push a value onto the stack and do not perform any calcula-
tion. They take about 75µs. The second class of instructions
take longer because they either perform additional mem-
ory accesses (e.g., pushn, pushcl, pushloc, regrxn,
and deregrxn), or perform simple computations (e.g.,
randnbr). These instructions take around 150µs to ex-
ecute. The last group of instructions cost the most and con-
sist of tuple space operations. However, they still execute
fairly quickly averaging 292µs. Note that the blocking tuple
space operations take slightly longer than the non-blocking
ones. This makes sense since blocking operations need to
undergo the additional overhead of checking whether the
non-blocking equivalent failed and blocking until a result
is found. Also note that in takes longer than rd, which
makes sense since it requires modifying the state of the tu-
ple space.

Agilla can perform one-hop remote tuple space opera-
tions in about 55ms, and migration operations in 225ms.
The execution time scales linearly with the number of hops,
and the additional overhead for migration operations is
justified by their resilience to message loss across multi-
ple hops. Local operations take between 60-440µs. This
demonstrates the feasibility and efficiency of using mobile
agents and tuple spaces in a representative WSN. We did
not directly compare Agilla’s instructions with other sensor
network middleware like Maté because many of Agilla’s in-
structions are higher level and do not have a corresponding
instruction with which to compare to. However, the latency
of simpler Agilla instructions like loc and aid that exe-
cute within 100µs are comparable to those of Maté.

5 Usability Case Study

This section provides a case study on Agilla’s ability to
simplify application development. Returning to the mo-
tivating example given in Section 2.1, we see that Agilla
enables the development of complex applications by using
agents as the basic unit of execution and modularity, and
tuple spaces as a means of communication. We have devel-
oped a prototype that consists of two types of agents: 1) a

... // bootstrapping code omitted
1: BEGIN pushc TEMPERATURE
2: sense // measure the temperature
3: pushcl 200 // push 200 onto stack
4: clt // set condition=1 if temperature > 200
5: rjumpc FIRE // jump to FIRE if condition=1
6: pushcl 4800
7: sleep // sleep for 10 minutes
8: rjump BEGIN
9: FIRE pushn fir // push string “fir”
10: loc // push current location
11: pushc 2 // stack has fire alert tuple
12: pushloc 0 0
13: rout // rout fire alert tuple on node at (0,0)
14: halt

Figure 13. The FIREDETECTOR agent

FIREDETECTOR agent whose sole responsibility is to de-
tect fire and 2) a FIRETRACKER agent that actually creates
the dynamic border around the fire. We use two types of
agents to minimize resource utilization. FIREDETECTOR

agents consume few resources and are spread throughout
the network during idle periods. Its code is shown in Fig-
ure 13. The initial bootstrapping code for cloning the agent
throughout the network is omitted. In lines 1-8, the agent
takes a temperature reading every 10 seconds. It assumes
there is a fire if the sensor returns a value greater than 200.
When fire is detected, lines 9-14 notifies the closest FIRE-
TRACKER agent via an rout, which springs to life cloning
itself and forming a perimeter around the flames, as shown
in Figure 2. The FIRETRACKER agent is more complex and
its code is not shown in its entirety due to lack of space, but
is available at [2]. Details of our experience with develop-
ing the FIRETRACKER agent is presented in [13].

We now qualitatively compare the flexibility of Agilla
and Maté. Comparing the two middleware systems is diffi-
cult because of Maté’s relative lack of flexibility. For exam-
ple, it might be possible to compare Agilla’s FIREDETEC-
TOR agents with a similar program written in Maté since
they both need to be installed throughout the network. But
once fire is detected, instead of notifying a nearby FIRE-
TRACKER agent, a program written in Maté will either have
to include the tracking function with the detection code, or
the base station will have to be notified so it can re-program
the entire network. Both are less efficient as they entail dis-
tributing code throughout the entire network. It is also less
flexible since only one application is enabled to run on the
network at a time.

6 Conclusion

Agilla promises to accelerate the rate at which our soci-
ety adopts WSNs and harnesses the benefits that these net-
works offer. It simplifies the way WSN applications are
developed and the way WSNs are perceived and used. In-
stead of working with rigid fixed-location code written in a

complex language, developers can write mobile agents in a
higher-level language, which can migrate across nodes per-
forming application-specific tasks. Instead of deploying a
propriety network with an application pre-installed, an Ag-
illa network is deployed without any program initially, but
can be continuously reprogrammed by injecting new agents.
By using tuple spaces, each agent remains autonomous al-
lowing multiple users with different applications to simul-
taneously share the same network. The sensor network be-
comes a general-purpose computing grid with a heightened
degree of context awareness. This paper takes the first step
of supporting a mobile agent-based programming paradigm
in WSNs. Our MICA2 implementation demonstrates the
feasibility of using mobile agents and a tuple space-based
coordination model in WSNs and serves as a foundation for
rapidly building flexible WSN applications.

Acknowledgment

This research was supported by the Office of Naval Re-
search under MURI research contract N00014-02-1-0715
and by the the NSF under ITR contract CCR-0325529. Any
opinions, findings, and conclusions expressed in this paper
are those of the authors and do not necessarily represent the
views of the research sponsors. We also thank the reviewers
for their valuable feedback.

References

[1] http://www.xbow.com.
[2] http://mobilab.wustl.edu/projects/agilla.
[3] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A

Language for Resource-aware Mobile Programs. In J. Vitek
and C. Tschudin, editors, Mobile Object Systems: Towards
the Programmable Internet, volume 1222, pages 111–130.
Springer-Verlag: Heidelberg, Germany, 1997.

[4] M. Baldi and G. P. Picco. Evaluating the Tradeoffs of Mobile
Code Design Paradigms in Network Management Applica-
tions. In R. Kemmerer, editor, Proceedings of the 20th Inter-
national Conference on Software Engineering, pages 146–
155. IEEE Computer Society Press, 1998.

[5] J. Baumann, H. K. Rothermel, M. Strasser, and W. Theil-
mann. Mole: A mobile agent system. Softw. Pract. Exper.,
32(6):575–603, 2002.

[6] A. Boulis, C.-C. Han, and M. Srivastava. Design and imple-
mentation of a framework for efficient and programmable
sensor networks. In Proc. of MobiSys, 2003.

[7] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost
outdoor localization for very small devices. Technical Re-
port 00-729, University of Southern California, April 2000.

[8] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive tuple
spaces for mobile agent coordination. Lecture Notes in Com-
puter Science, 1477:237–252, 1998.

[9] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agents. In-
ternet Computing, 4(4):26–35, 2000.

[10] G. Cugola and G. Picco. Peerware: Core middleware sup-
port for peer-to-peer and mobile systems. Technical report,
Politecnico di Milano, 2001.

[11] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor
networks. IEEE Computer, 37(8):41–49, 2004.

[12] C.-L. Fok, G.-C. Roman, and G. Hackmann. A Light-
weight Coordination Middleware for Mobile Computing.
In R. DeNicola, G. Ferrari, and G. Meredith, editors, Pro-
ceedings of the 6th Internation Conference on Coordina-
tion Models and Languages (Coordination 2004), number
2949 in Lecture Notes in Computer Science, pages 135–151.
Springer-Verlag, 2004.

[13] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent middle-
ware for sensor networks: An application case study. In Pro-
ceedings of the 4th International Conference on Information
Processing in Sensor Networks (IPSN’05), 2005.

[14] D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1):80–112, January 1985.

[15] R. Gray. Agent Tcl. Dr. Dobb’s Journal of Software Tools,
22(3):18–71, 1997.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. In Architectural Support for Programming Languages
and Operating Systems, pages 93–104, 2000.

[17] D. Johansen, R. van Renesse, and F. B. Schneider. An intro-
duction to the TACOMA distributed system—version 1.0.
Technical Report 95-23, University of Tromsø, Tromsø,
Norway, June 1995.

[18] C. Julien and G.-C. Roman. Egocentric Context-Aware Pro-
gramming in Ad hoc Mobile Environments. In Pro. of the
10th Int. Symp. on the Foundations of Software Engineering,
pages 21–30, Nov. 2002.

[19] D. B. Lange and M. Oshima. Seven good reasons for mobile
agents. Commun. ACM, 42(3):88–89, 1999.

[20] P. Levis and D. Culler. Maté: A tiny virtual machine for
sensor networks. In International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, San Jose, CA, USA, Oct. 2002.

[21] P. Maes, R. H. Guttman, and A. G. Moukas. Agents that buy
and sell. Communications of the ACM, 42(3):81–91, 1999.

[22] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A Mid-
dleware for Physical and Logical Mobility. In Proceedings
of the 21st International Conference on Distributed Com-
puting Systems, pages 524–533, April 2001.

[23] P.E.Clements, T. Papaioannou, and J. Edwards. Aglets: En-
abling the virtual enterprise. In Proc. of the Int. Conf. on
Managing Enterprises - Stakeholders, Engineering, Logis-
tics and Achievement, 1997.

[24] H. Peine and T. Stolpmann. The architecture of the Ara
platform for mobile agents. In R. Popescu-Zeletin and
K. Rothermel, editors, First International Workshop on Mo-
bile Agents MA’97, volume 1219 of Lecture Notes in Com-
puter Science, pages 50–61, Berlin, Germany, Apr. 1997.
Springer Verlag.

[25] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In Proc. of
the ACM SenSys, 2003.

