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Abstract

The process of computing the physical locations of nodes
in a wireless sensor network is known as localization. Self-
localization is critical for large-scale sensor networks be-
cause manual or assisted localization is often impractical
due to time requirements, economic constraints or inherent
limitations of deployment scenarios. We have developed a
service for reliably localizing wireless sensor networks in
environments conducive to ranging errors by using a cus-
tom hardware-software solution for acoustic ranging and
a family of self-localization algorithms. The ranging so-
lution improves on previous work, extending the practical
measurement range threefold (20–30m) while maintaining
a distance-invariant median measurement error of about
1% of maximum range (33cm). The localization scheme is
based on least squares scaling with soft constraints. Eval-
uation using ranging results obtained from sensor network
field experiments shows that the localization scheme is re-
silient against large-magnitude ranging errors and sparse
range measurements, both of which are common in large-
scale outdoor sensor network deployments.

1. Introduction

Localization is the process which assigns location infor-
mation to the nodes of a wireless sensor network (WSN).
This is a fundamental middleware service, since many WSN
applications assume the availability of sensor location infor-
mation. For example, knowledge of the positions of indi-
vidual sensor nodes is essential for intrusion detection and
target tracking applications. Similarly, geographic routing
relies on node locations to forward packets. In general, self-
localization is critical for deployment of large-scale sensor
networks, because manual surveying and entry of node co-

ordinates is often impractical, and equipping each node with
a specialized positioning device such as a GPS receiver is
usually too costly or does not provide sufficient accuracy.

While many algorithms have been proposed for self-
localization of sensor networks, most have only been stud-
ied under simulation with idealized conditions. Thus, in
order to provide a reliable self-localization service to use
in real environments conducive to ranging errors, we have
developed a custom hardware-software solution for acous-
tic ranging and a family of localization algorithms suited to
medium- to large-scale outdoor wireless sensor networks.
These services have been implemented and evaluated on the
MICA2 mote platform [4]. This report describes the fully-
functional ranging and localization services, including re-
sults from experimental evaluation on a medium-scale out-
door WSN (3300m2). Additional simulation studies based
on experimental parameters demonstrate performance un-
der a wider range of conditions.

The ranging service is based on the time-difference of
arrival (TDoA) method – distance is calculated based on
the difference in propagation times of radio and acoustic
signals. Because sound propagation is simple and pre-
dictable in an open environment, this technique allows us
to achieve good accuracy and significant range using inex-
pensive, readily available speakers and microphones. Since
the standard sounder-microphone pair on the MICA sensor
board yields a detection range of less than 3m on grass, we
have retrofitted the sensors with compact loud speakers. To
further extend the measurement range and improve relia-
bility, we have incorporated a number of signal processing,
statistical filtering and consistency checking techniques.

Based on the experimental characteristics of our rang-
ing service, we have designed a centralized localization al-
gorithm which tolerates sparse measurement data, as well
as a distributed variant which enables scalable deployment.
Our localization scheme is based on least squares scaling
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(LSS) [10], a multidimensional scaling (MDS) technique.
Unlike classical MDS, LSS does not require that distance
measurements between all pairs of nodes be available. We
have further extended LSS with soft constraints to exploit
deployment-specific requirements, such as minimum node
spacing. Experimental evaluation shows that the localiza-
tion schemes are robust and resilient not only against sparse
range measurements, but also against large-magnitude rang-
ing errors. Such resilience makes the schemes particularly
well-suited for large-scale, sparse sensor networks, such as
outdoor deployments.

2. Related Work

The Global Positioning System (GPS) is by far the most
popular standard for electronic outdoor localization [8].
However, GPS units are typically either too costly or im-
precise for wireless sensor nodes (±6.3m error with 95%
confidence when selective availability is turned off [2]). As
such, many hybrid methods employ a two-tiered approach
in which a set of anchor nodes is used to localize non-
anchor nodes. Anchors are assumed to know their own loca-
tions, while the remaining nodes estimate their distances to
anchors and perform multilateration to determine their own
locations. These systems primarily differ in how distances
to anchors are measured.

The Cricket location support system provides location-
ing services for indoor mobile nodes [15]. Pre-installed ac-
tive anchors broadcast their location information over an RF
channel together with an ultrasonic pulse. Passive receivers
use TDoA to estimate their distances to the anchors. The
GPS-less localization algorithm of [3] uses a fixed number
of anchors with overlapping coverage. Anchors periodically
broadcast radio signals, while mobile nodes use a simple
connectivity metric to infer proximity to a subset of these
anchors, and localize themselves to the centroid of this set.

The Ad-hoc Positioning System (APS) is a family of dis-
tributed localization algorithms based on trilateration [13].
The basic idea is to perform multi-hop propagation of dis-
tances to anchors throughout the network, so that every
node can trilaterate its position. Four different distance
metrics were developed, ranging from minimum hop count
and sum of hop lengths – for isotropic, uniform density
networks – to local geometric constructions, which require
higher anchor density to control error propagation. Another
variant of APS relies on sensor nodes able to measure the
angle-of-arrival of a signal from an anchor [14].

Another localization method uses anchors which broad-
cast pre-encoded location information along with the trans-
mission power level [1]. Sensor nodes use a simple power
attenuation model to infer distance based on the differ-
ence between transmission power level and received signal
strength. However, the small, uncalibrated antennas and ra-

dios of inexpensive wireless sensor nodes makes it difficult
to achieve acceptable precision with this technique.

Convex optimization has been proposed as the basis for a
constraint-based localization scheme [5]. In this algorithm,
measured data such as RF communication range or angular
information from optical devices are used to constrain the
feasible node positions. Semidefinite programming (SDP)
is then used to find a solution to the localization problem.

The 4-cliques of the measurement graph which consti-
tute robust quadrilaterals, invulnerable to discontinuous
flexes and flips, have been used for unique localization [12].
Robust quads with an overlap of at least 3 nodes are incre-
mentally merged. Unfortunately, this algorithm localizes
very few nodes in the case of sparse, noisy measurements,
as found in large outdoor environments, because very few
robust quads are found in the data. As such, an approximate
solution which localizes more nodes is preferable.

Multidimensional Scaling (MDS) has been proposed as
the basis for a centralized robust localization algorithm
given a set of distance measurements [18]. One problem
with this centralized approach is that it requires distances
between all pairs of nodes. As a remedy, distributed ap-
proaches have been proposed. One approach is to apply a
local MDS-MAP for each node along with its hop count-
limited neighborhood [19]. Neighborhoods are then incre-
mentally merged into a global coordinate system. As an al-
ternative to classical MDS, the local map may be computed
by directly minimizing the discrepancies between measure-
ments and distances in the estimated map [9].

3. Long Distance Acoustic Ranging

Wireless sensor nodes featuring a sounder and a micro-
phone can use acoustic actuation and sensing to measure
inter-node distances. We have chosen the acoustic medium
for ranging purposes for three reasons. First, acoustic signal
propagation tends to be isotropic on open terrain and to have
predictable signal attenuation. Second, acoustic ranging
yields reasonable accuracy even at significant measurement
ranges. Finally, acoustic sensors (i.e., microphones) and ac-
tuators (i.e., sounders) are inexpensive and commonly avail-
able on WSN platforms, e.g., MICA2 motes with MTS310
sensor boards [4, 7].

3.1. Hardware Extension

In outdoor settings, where signal-absorbing obstacles are
common, and particularly in grassy, uneven and wooded
areas, signal attenuation is one of the main challenges for
long-distance ranging. Thus sensor nodes must generate
sufficiently powerful acoustic signals if we are to achieve
reliable ranging measurements at longer distances.
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To increase the maximum measurement range of the
MICA2 platform, we have augmented the MTS310 sensor
board with an inexpensive ($5), off-the-shelf piezo-electric
buzzer unit [16]. This unit provides output power of 105dB,
compared to 88dB for the original buzzer. The higher out-
put power improves the signal-to-noise ratio (SNR) in high-
attenuation environments, allowing nodes to detect acoustic
signals at much longer distances. The increased measure-
ment range is critical for large-scale outdoor deployments
of sensor networks, where high sensor density is often too
costly or impractical to realize.

3.2. TDoA Ranging

Our ranging service is based on the time difference of
arrival (TDoA) between radio and acoustic signals, which
utilizes the fact that these signals propagate at known but
significantly different speeds: approximately 340m/s for
sound and almost instantaneously at short distances for ra-
dio waves. The TDoA method measures the arrival time
difference between radio and acoustic signals originating at
the same point to estimate the distances between nodes.

A bare-bones TDoA ranging service operates as follows.
Sender and receiver nodes synchronize their clocks, and the
sender broadcasts a radio message followed by an acoustic
signal (chirp). Each receiving node then detects the chirp
and computes the difference in arrival times of the signals,
and consequently the distance.

Acoustic ranging in the context of resource-constrained
WSN platforms, however, is significantly more complex
than this outline. The sensor nodes’ processing and storage
capacities are tightly limited, as are the capabilities of inex-
pensive sensors and actuators typically found on such plat-
forms. This in turn places significant limitations on the sig-
nal detection methods of the ranging service. We also have
to consider several sources of error encountered in TDoA
ranging, which in practice turn out to be very significant:
(1) Clock synchronization and timing effects, (2) Acoustic
sensing and actuation delays, (3) Unit-to-unit variation, (4)
Signal attenuation, (5) Environmental noise, (6) Multi-path
propagation effects, and (7) Unreliable sensing.

Some of these errors have very distinctive characteris-
tics, which we can take into account when making distance
estimates. E.g., we expect errors from sources 1, 2 and 3
follow a Gaussian distribution with a fairly small variance.
Errors due to 4 and 5 are likely to be geographically corre-
lated, whereas those from sources 6 and 7 may or may not
be, depending on the situation.

3.3. Approach

Taking into consideration the sources of error listed
above, we have created a ranging service resilient against

common types of errors. Range measurement accuracy
is improved by employing a sophisticated signal detection
mechanism and by performing statistical filtering and con-
sistency checking on the range estimates. We will now de-
scribe in some detail our approach to acoustic ranging.

Clock synchronization. The clocks of source and desti-
nation nodes must be tightly synchronized to account for the
delays incurred in transmission of the radio message. We
synchronize source and destination nodes on an ad hoc ba-
sis using the very same radio message used for TDoA rang-
ing. In other words, we do not need to establish clock syn-
chrony a priori. Our synchronization method utilizes the
MAC-layer time stamping from FTSP [11]. The maximum
clock rate difference between a pair of nodes is insignifi-
cant, resulting in maximum ranging error of about 0.15cm
distances up to 30m.

Signal detection. The MTS310 sensor board comes
equipped with a hardware phase-locked loop tone detector.
Its output is a binary value indicating whether or not a tone
in the 4.0–4.5kHz frequency band is present. We denote the
time of detection of a chirp at node j by tjdetect .

Our experiments indicate that the tone detector device
is not very reliable. In particular, we have observed that
the probability of erroneous detection is strongly affected
by environmental conditions at the time of measurement.
Fortunately, the probability of detecting a tone in a sequence
of measurements b(t), P [b(t) = 1], is much higher if a tone
is actually present than if only background noise is. We
model the output of this tone detector as a binary time series
b(t), where

P [b(t) = 1|signal] � P [b(t) = 1|no signal]

Based on this model, we improve the confidence of
acoustic signal detection by accumulating the binary out-
puts of the tone detector from multiple ranging attempts in
a single buffer. The starting positions of multiple signals be-
tween the two nodes are correlated; on the other hand, the
random background noise triggering the detector is not. We
apply threshold detection to make the decision: the sum of
the samples must exceed the threshold value to be recorded
as a true detection, and this must happen for a sufficient
number of nearby samples for a chirp to be recognized.

To make the detector more robust, we encode a pattern
in the acoustic signal. We use a sequence of identical chirps
interspersed with intervals of silence. When detecting the
signal, we look at both the chirp and the interval preceding
it, allowing us to identify false detections due to noise or
echoes that are not part of the pattern. To counteract the
effect of echoes, we include small random delays between
elements of the pattern. For identifying the tone itself, we
apply threshold detection as described above.
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In summary, we compute the detection time series
detect(t) as

detect(t) = δk


 n∑

i=0

δT


 m∑

j=0

bj(t − 1)







where m is the number of samples accumulated, T is the
threshold for signal detection, n is the total number of signal
detections, k is the threshold for pattern identification, and
δθ(x) = 1 if x > θ and 0 otherwise. The beginning of the
acoustic signal is determined as the minimum value of t that
satisfies detect(t) = 1.

Computing the distance. Finally, we compute the dis-
tance dij between source i and destination j as follows. De-
noting the non-deterministic message transmission delays
at both sender and receiver as δxmit , we must introduce an
additional constant time interval between the transmission
of the radio message and the corresponding acoustic signal
that is greater than δxmit . We denote this combined delay
δconst . The time difference of arrival can then be expressed
as tjdetect − tjsend − δconst , where tjsend is the time at which
node i sent the radio message according to node j’s clock.
Since tjsend = tjrecv − δxmit , we compute the distance using
information locally available at node j as

dij = Vs ·
(
tjdetect − (tjrecv − δxmit) − δconst

)

where Vs is the estimate of the speed of sound.

Statistical filtering and consistency checks. Even with
this signal detection algorithm, individual range estimates
may still be erroneous, whether due to a low detection
threshold, hardware malfunction, or some other cause. We
make multiple distance measurements for a pair of nodes
and filter the results to yield a more accurate estimate of
the distance. Depending on the number of measurements
available, we take the median or mode value of the mea-
surements, which limits the effect of outliers. The mode
operation is more resistant to the effects of uncorrelated
large-magnitude errors than the median, but it requires a
larger number of measurements to be applicable. Statistical
filtering techniques are quite effective at discounting uncor-
related errors caused by random, non-periodic events.

Our ranging service also employs inter-node consistency
checks to identify measurements containing errors that may
be correlated on a single node (e.g., errors due to faulty
hardware or persistent wide-band noise). Bidirectional
range estimates between a pair of nodes are discarded if
they are inconsistent, and if three nodes have measurements
between them, we can use the triangle inequality to identify
the inconsistency. A caveat is that these checks cannot iden-
tify with certainty which of the measurements is incorrect.

3.4. Experimental Evaluation

We evaluated the performance of the ranging service on
a network of 46 MICA2 motes with the modified MTS310
sensor boards. Experiments were performed in a relatively
flat, grassy area near an airport, with occasionally loud air-
craft engine noise present. The sensors cover a 3300 square
meter area, where grass height varies between 10 and 15cm.
As for the localization experiments described later in the pa-
per, the sensors were arranged in a 7 × 7 offset grid pattern
with 9.14m and 10.22m grid spacing between the nearest
neighbors. However, neither the grid pattern nor the spacing
constraints are considered when filtering the ranging exper-
iments described here.

We calibrated the ranging service in the target environ-
ment for best performance and determined the appropriate
threshold values. A high detection threshold is advanta-
geous in noisy environments to limit false positives; on the
other hand, a low threshold is more appropriate in high at-
tenuation environments as it reduces false negatives. For
our experiments, the sum of the binary tone detection out-
puts from 10 chirps must exceed the threshold value of 2
for at least 6 of 32 consecutive samples. Such low thresh-
olds lead to correct detections of weak signals, but they also
make the ranging service more vulnerable to false positives.
For example, in the time series 021030301503704... a sig-
nal would be detected starting at position 5.

The distance measurements in the experiments were af-
fected by several factors, including varied environmental
conditions in the deployment area (e.g., grass height, noise)
and performance variations between different microphone-
speaker pairs. For this reason, we believe the data to be
representative of the behavior of the ranging service in a
variety of realistic deployments.

Analysis: accuracy. Figure 1 shows the error distribution
for the distance measurements across all nodes after filter-
ing and consistency checks. We can identify several distinct
features of the error distribution from the figure. There is an
approximately zero-mean, Gaussian component of the error
with a small variance. This component is most likely due to
timing effects, hardware delays and unit-to-unit variation.
The fact that the error distribution is virtually zero-mean
suggests increasing the number of samples and taking the
median or mode is an effective technique for improving ac-
curacy.

Another type of error is present in the measurements.
These errors cluster to the right of the mean, caused by over-
estimation due to late signal detections. The most likely ex-
planation for these errors is that environmental effects (e.g.,
taller than average grass absorbing the signal more) causes
more “misses” in the detection of the early part of the sig-
nal. Since these errors are correlated with node positions,
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Figure 1. Ranging error histogram.

internal consistency checking will not be effective even if
the number of measurements is increased.

In the unfiltered results, we also see a small number of
large-magnitude errors, over 1m and as much as 11m. The
causes of the large-magnitude errors can be attributed to
non-recurring ambient noise or faulty hardware. It is not
likely that such errors are correlated across pairs of nodes,
and the vast majority of these errors are eliminated with
bidirectional consistency checks.

To better see the effects of filtering on ranging measure-
ments, we plot the ideal, raw, and filtered measurements
versus the actual distances (Figure 2). The figure indicates
that large-magnitude errors occur more frequently when
measuring over a longer distance. Two factors contribute
to this effect: (1) Since signal power drops significantly at
longer distances and the background noise is independent
of the distance, the lower SNR increases the probability of
false detection. (2) It takes longer for a sound signal to reach
a more distant node, leaving a bigger window of time for the
node to make a false detection. Assuming a constant prob-
ability of getting a noise-induced false positive, a more dis-
tant node experiences a higher error rate. Fortunately, our
filtering mechanism is quite effective at dealing with this
problem, eliminating all errors greater than 1.5m.

Analysis: maximum range. To determine the maximum
detection range, we have tested the ranging service with a
low detection threshold in quiet environments. While the
maximum range varies with the features of the environment
between each node pair, in our experiments it is 22m on 10–
15cm tall grass and over 35m on pavement, on average. In-
terestingly, higher threshold values needed to make accurate
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Figure 2. Measurement vs. distance on grass.

measurements in noisy environments do not significantly
reduce the maximum range (15–20m on grass and 30m on
pavement). We should note that some speaker-microphone
pairs had ranges consistently shorter or longer than the typ-
ical values above, likely due to unit-to-unit power and sen-
sitivity variations of the sensor boards.

While environmental conditions usually dictate the max-
imum detection range in practice, the theoretical maximum
range of the service is closely related to the buffer space
available in the underlying WSN platform. At distances up
to 30m, our ranging service takes up less than 800 bytes of
RAM, which leaves plenty of memory available for other
applications to run concurrently with the ranging service.
This is a significant improvement over the ranging method
described in [17], which consumes all available RAM of
the MICA2 mote to achieve a theoretical maximum range
of less than 16m. To the best of our knowledge, it is also
the first fully-functional ranging service for wireless sensor
networks offering long range and good precision with a rel-
atively small memory footprint.

4. Resilient WSN Localization with Central-
ized LSS

In this and the following section we discuss a suite of
localization schemes and their experimental evaluation. We
develop a localization scheme based on least squares scal-
ing (LSS) [10] with soft constraints.What favors LSS over
classical MDS for sensor node localization is that LSSdoes
not require distance measurements between all node pairs.
Even with some missing measurements, it still yields ac-
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ceptable results. Moreover, we may use different weights
for measurements depending on their confidence levels and
easily incorporate constraints such as minimum node sepa-
ration into the minimization process to further improve re-
sults.

We first describe a centralized version and demonstrate
its resilience against measurement errors and omissions. We
then extend it to a distributed version asscalable alternative
for use in large-scale deployments (Section 5). In figures
which show localization results, squares and crosses repre-
sent non-anchor nodes’ actual and computed locations, re-
spectively. Each localized non-anchor node has its square
and cross connected with a line. Lone squares are non-
anchor nodes that were not localized.

4.1. Algorithm

Multidimensional scaling is “any procedure which starts
with the ‘distance’ between a set of points and finds a con-
figuration of points, preferably, in a small number of dimen-
sions, usually 2 or 3” [10]. Here, a configuration refers to a
set of coordinate values. When distances between nodes are
available, MDS [19, 18, 10] finds their relative coordinates.
In localization using classical MDS, the input distance ma-
trix is transformed to a quadratic matrix of coordinates via
double averaging. Then, the singular value decomposition
(SVD) is applied to the quadratic matrix to calculate its
principal components. The first two principal components
are the configuration sought. One critical requirement is
that distances between all pairs of nodes be known a priori.

An alternative technique is LSS [10], which seeks a con-
figuration C = {(xi, yi) : i = 1, . . . , n} from a set of
distances Dfull = {dij : i, j = 1, . . . , n} by minimizing the
unweighted error function Eu:

Eu =
∑

dij∈Dfull

(d̂ij − dij)2,

where d̂ij =
√

(xi − xj)2 + (yi − yj)2, and dij is the mea-
sured distance between points (xi, yi) and (xj , yj). An im-
portant property of LSS is that it still works using only a
subset of Dfull. This property allows LSS-based localiza-
tion to tolerate sparse measurement data.

The error function is the sum of squares of differences
between estimated distances and corresponding measured
distances. As a result, errors in distance measurement are
squared, too. Therefore, weighting distance measurements
according to their confidence helps limit the effect of mea-
surement errors on localization results. Statistical entities
(e.g., standard deviation) can make a good choice for such
weights. We extend the error function Eu to accommodate
different weights by defining Ew:

Ew =
∑

dij∈D

wij · (d̂ij − dij)2

where D ⊆ Dfull is a set of distance measurements from a
ranging service.

In many sensor deployments, a minimum distance be-
tween nodes can be known in advance: unless nodes are
deployed via a purely random process, it is unlikely that
two nodes will be placed very close together. Furthermore,
our penalty-based constraint enforcement approach allows
some nodes to violate the minimum separation condition,
with locally distorted results. LSS allows us to incorporate
this minimum spacing constraint into localization as a soft
constraint [6]. Using the soft constraint, we penalize pairs
of nodes which do not have distance measurements from
the ranging service and whose assigned coordinates violate
the minimum spacing constraint, so that any output solution
would become more consistent. This can be visualized as
straightening a plane which is incorrectly folded. Note that
the set of penalized pairs dynamically changes as minimiza-
tion progresses. With the soft constraint, the error function
which we seek to minimize becomes:

E = Ew +
∑

dij �∈D

wD ·
(
min (d̂ij , dmin) − dmin

)2

where dmin is the minimum node spacing and wD is the
weight for the soft constraint. Note that wij = 0 for pairs
of nodes which do not have distance measurements in D.

We use gradient descent to find a configuration that min-
imizes the error term. We can also use other methods such
as simulated annealing. We update coordinates of the nodes
at each time step using the rules

[xt+1,yt+1] = [xt,yt] − α · ∇E|[xt,yt] ,

where ∇E=
[

∂E
∂x1

, . . . , ∂E
∂xn

, ∂E
∂y1

, . . . , ∂E
∂yn

]
is the gradient

of E and α is a step size that is either a small constant or a
value that minimizes E along the line in the gradient direc-
tion at step t. Without the soft constraint,

∂E

∂xi

∣∣∣∣
[xt,yt]

=
∂Eu

∂xi

∣∣∣∣
[xt,yt]

= wij ·
∑

dij∈D

(d̂t
ij − dij) · (xt

i − xt
j)

d̂t
ij

,

where d̂t
ij =

√
(xt

i − xt
j)2 + (yt

i − yt
j)2. With the soft con-

straint, if dij is not defined and d̂t
ij < dmin,

∂E

∂xi

∣∣∣∣
[xt,yt]

=
∂Eu

∂xi

∣∣∣∣
[xt,yt]

+ wD ·
∑

dij �∈D

(d̂t
ij − dmin) · (xt

i − xt
j)

d̂t
ij

.

∂E
∂yi

∣∣∣
[xt,yt]

can be derived similarly.
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Figure 3. Sensor layout and measurements
used for LSS localization experiments. dm:
measured, dr: real distance.

To avoid local minima, the gradient descent starts each
round of minimization with a seed position obtained by per-
turbing the best result so far. This is analogous to the ran-
dom movement of the simulated annealing algorithm [20].
This process is repeated until a reasonable minimum is
reached or some maximum computation time limit expires.

4.2. Experimental Evaluation

To evaluate the resilience of centralized LSS localiza-
tion, we performed an experiment with 45 MICA2 motes
equipped with standard sensor boards and our custom loud-
speakers in a 60m × 55m grassy area, using the grid layout
of Figure 3. The minimum inter-node spacing was 9.14m.
To allow a margin of error, we used an 8.5m soft constraint,
with wij = 1 and wD = 10. As we increased wD, the rate of
convergence similarly increased.

Figure 4 compares actual and estimated node positions.
The computed coordinate system was translated and rotated
to line up with the actual node coordinates. Most errors are
found in the bottom left quadrant; the overall average local-
ization error is 2.47m. Without the largest 5 errors, the aver-
age improves to 1.5m. As seen in Figure 3, lack of measured
distances allows the two nodes in the (0∼10,10∼20) area to
be swapped. Adding a simulated measurement of 10.2 be-
tween nodes (9.14, 18.28) and (18.28, 13.71) corrected the
position estimates. The lower three nodes are rotated be-
cause of large underestimation (i.e., < 1m) of the distance
between nodes (9.14,0) and (18.28,9.14) and large overesti-
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Figure 4. Centralized LSS localization with a
minimum spacing constraint.
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mation of the distance between (18.28,4.57) and (27.42,0).
Lack of measurements between the second and third col-
umn creates a hole, attracting the estimated coordinates of
the nodes in the upper left and lower right quadrants, while
the concentration of overestimated distances in the middle
pushes the coordinates in the upper right quadrant outward.
Note also that the minimum constraint prevents nodes in the
(50∼60,0∼40) area from being flipped inwards.

To examine the significance of the soft constraint, we
conducted the same localization experiment without it. The
estimated positions did not converge anywhere near the ac-
tual positions after several hours of minimization.

Figure 5 shows how soft constraints improve error min-
imization. The error function has more terms with the soft
constraint than without, which are all squared, hence posi-
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tive. Thus, although the error function without constraint
terms has a smaller global minimum, the soft constraint
greatly reduces the time to reach a global minimum.

5. Distributed LSS Localization

The centralized LSS localization algorithm is resilient
against sparse distance measurements and large measure-
ment errors. Unfortunately, it does not scale well as net-
works grow in size. As more nodes are added, the number
of terms in the error function increases, as does the number
of local minima. In this section, we extend the centralized
algorithm to a more scalable distributed version by perform-
ing localization at each node on its n-hop neighborhood.

5.1. Algorithm

For the distributed LSS localization algorithm, we as-
sume there is a local broadcast mechanism so a node can
send data to its n-hop neighbors. The distributed localiza-
tion algorithm consists of three steps: neighborhood local-
ization, calculation of transforms between the local coor-
dinate systems of adjacent nodes, and alignment of local
coordinate systems to a global coordinate system.

Step 1. Neighborhood Localization Each node collects
distance measurements to and amongst its neighbors, i.e.,
those nodes within direct measurement range. Given the
measurements, each node uses the LSS localization algo-
rithm to find a configuration of itself and its neighbors in a
local relative coordinate system.

Step 2. Calculating Transforms and Pairwise Transfor-
mation The next step is to find a transform between the
local relative coordinate systems for each pair of neighbor-
ing nodes. Let (ui, vi) and (xi, yi) represent coordinates of
a point in a source and a target coordinate system, respec-
tively. A rigid transform between the two coordinate sys-
tems is a composition of translation, rotation, and reflection.
This can be written in a 3×3 matrix using the homogeneous
coordinate system as follows,

[xn, yn, 1] = [un, vn, 1] ·

 cos θ − sin θ 0

f sin θ f cos θ 0
tx ty 1


 ,

where (tx,ty) is a translation vector, θ is a rotation angle,
and f ∈ {1,−1} is a reflection factor. Calculating a trans-
form corresponds to finding tx, ty , θ and f .

We find the transform T between the coordinate systems
of two nodes a and b using their shared neighbors. Let C
be the set of shared neighbors of nodes a and b which have

coordinates in both local coordinate systems. A straight for-
ward method is to use minimization. We find two solutions
(θ, tx, ty, f) = argmin Ef for f=1, -1, where

Ef =
∑
n∈C

(xn − x̂n,f )2 + (yn − ŷn,f )2,

[x̂n,f , ŷn,f , 1] = [un, vn, 1] ·

 cos θ − sin θ 0

f sin θ f cos θ 0
tx ty 1


 .

We then take the solution with the smaller error as the trans-
form. Although this procedure returns fairly accurate re-
sults, it is too computationally intensive to implement on
resource-constrained WSN platforms such as the MICA2.

Thus we have developed an alternate method to find a
transform which is slightly less accurate, but computation-
ally tractable for many WSN platforms. The idea is to
view translation between two nodes’ coordinate systems as
translation between the centers of mass of C in the two
coordinate systems. Let the center of mass of C in the
source’s coordinate system, (µu, µv), be (

∑
n∈C un/|C|,∑

n∈C vn/|C|). C’s center of mass in the target’s coordi-
nate system can be defined similarly. Then the simplified
transformation is a sequence of three steps: translation by
(−µu,−µv), rotation by angle θ with possible reflection,
and translation by (µx, µy). The rotation angle θ is chosen
to minimize the expression

∑
n∈C

∣∣∣∣
[

cos θ − sin θ
sin θ cos θ

]
·
[

un − µu

vn − µv

]
−

[
xn − µx

yn − µy

]∣∣∣∣
2

Considering the condition that the derivative of the above
formula is zero, the rotation angle θ should satisfy the equa-
tion

[Cxu + Cyv, Cxv − Cyu] ·
[

sin θ
cos θ

]
= 0

where covariances Cxu, Cyv , Cxv and Cyu are defined as
Cαβ =

∑
n∈C (αn − µα) · (βn − µβ)/|C|. Note that both

θ and θ + π satisfy the equation; we choose the solutions
which minimizes the error E. Putting them together, the
transform Tf is:

Tf = T−µu,−µv
· Rf,θ · Tµx,µy

,

Tα,β =


 1 0 0

0 1 0
α β 1


 ,

Rf,θ =


 cos θ − sin θ 0

f sin θ f cos θ 0
0 0 1


 ,

where µu, µv , µx, µy and θ are computed values. We
choose whichever of T1 or T−1 yields smaller E.
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Figure 6. Distributed LSS, same measure-
ments as Figure 4.

Step 3. Alignment As the last step, all the coordinate sys-
tems in the network are successively aligned. After align-
ment, each node computes its position in the global coordi-
nate system. Starting from the root node, a node broadcasts
a vector representation of the origin of the global coordinate
system and two orthonormal axis vectors that span the local
coordinate system. When a node receives the three vectors
in the sender’s local coordinate system (i.e., o, x, and y),
it finds the corresponding transform T and computes their
representations in its local coordinate system (i.e., ô, x̂, and
ŷ). Finally, the node forwards the transformed vectors to
its neighbors. In the mean time, it computes its position in
the global coordinate system as ((p − ô) · x̂, (p − ô) · ŷ)
where p is the vector representation of its position in its lo-
cal coordinate system. Eventually, all nodes in the network
compute their positions in the root’s coordinate system.

This algorithm requires two local data exchanges per
node and one round of flooding. It is more scalable than the
centralized approach because minimization, the most time-
consuming component of LSS localization, is performed
concurrently on small neighborhoods.

5.2. Evaluation

Figure 6 shows experimental results for distributed LSS
localization using the same set of measurements as in Sec-
tion 4. The node at (27, 36) is the root node for the global
coordinates system. The figure shows that approximately
one half of the nodes have very large localization errors. We
examined the results and found that the bad transform of a
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Figure 7. Distributed LSS extended with 185
additional simulated distances.

pair of nodes caused large localization errors which were
amplified and propagated. We suspect the cause was lack
of distance measurements: only 101 distinct distance mea-
surements between pairs were available for the 45 nodes.
Assuming that maximum measurable distance is 22m there
are 286 possible distance measurements within the grid lay-
out of Figure 3. As such, we actually measured only 35%
of the feasibly measurable distances.

To verify the cause of poor performance, we repeated
the localization procedure by adding simulated data. The
measured data set contained distances between 101 distinct
pairs of nodes, all of which were less than 22m apart. We
added 185 simulated measurement so that all pairs of nodes
less than 22m apart were connected by either a real or sim-
ulated distance (i.e., we added 19% of the 990 possible
node pairs). Measurement errors were simulated in these
additional pairs by taking the real distance and adding a
perturbation drawn from the Gaussian distribution N(µ =
0; σ = 0.33m). Figure 7 shows the results. As expected,
we achieved fairly good localization results; all nodes were
localized, with an average localization error of 0.48m. For
a run with only 128 simulated distances (80% of all pairs
within 22m, and 13% of all possible pairs) the average lo-
calization error was 2.12m.

6. Conclusions

We have designed and implemented a fully functional
localization system for wireless sensor networks, in partic-
ular for the MICA2 mote platform. By increasing the out-
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put signal power with a louder speaker and applying ad-
vanced filtering and consistency checking techniques, we
have significantly extended the ranging service’s measure-
ment range in comparison to previous work, even in envi-
ronments conducive to measurement errors (up to 22m max-
imum, 11m reliable on grass and 30m maximum, 25m re-
liable on pavement). This represents a threefold improve-
ment over previous work, while maintaining a distance-
invariant median measurement error of about 1% of max-
imum range. The addition of a minimum node spacing soft
constraint to the LSS localization algorithm is successful in
overcoming the detrimental effects of sparse, noisy rang-
ing measurements. Demonstrating good performance in re-
alistic conditions, the system renders feasible deployment
of large-scale autonomous WSNs in outdoor environments
without prior surveying or manual configuration.

Several avenues of research remain to be explored. It
may be possible to further improve the quality of ranging
estimates, particularly through consistency checking, if ad-
ditional sensing modalities are available to use in conjunc-
tion with acoustics. We are currently conducting research to
improve localization performance and accuracy by exploit-
ing additional information, such as the deployment pattern
or node density [21]. Finally, the distributed localization al-
gorithm needs to be improved to the point where its results
approach the accuracy of the centralized algorithm before
we can reliably apply this methodology to self-localization
of very large sensor networks.
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