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Abstract 
 

Directories have become an important component of 
the enterprise security and identity management 
middleware. This paper describes a novel filter based 
replication model for Lightweight Directory Access 
Protocol (LDAP) directories. Instead of replicating entire 
subtrees from a Directory Information Tree (DIT), only 
entries matching a filter specification are replicated. 
Efficient algorithms for selecting such filters, keeping 
them synchronized with the master copy and for using 
them to answer directory queries have been proposed. 
Advantages of the filter based replication framework over 
existing subtree based mechanisms have been 
demonstrated for a real enterprise directory using real 
workloads. 
 
1. Introduction 
 

Directories are specialized databases optimized for 
read access. They are traditionally associated with storing 
information about people and accessed using address 
books for fast lookup of email addresses, phone numbers 
etc. However, directories have a very flexible information 
model which allows them to represent real world entities 
like people, network resources (e.g. printers, servers), 
devices, machines, services, applications and policies in a 
single instance. With information about all these entities 
and their relationships accessible from a single location, 
directories cease to be merely repositories of information 
and provide a basis for application integration and policy 
based network management in an enterprise. However, 
this also means that an overloaded directory could be a 
potential bottleneck in an enterprise infrastructure. 

Directory replication has been particularly effective in 
improving scalability. Most enterprises typically deploy a 
centralized load balanced array of replicas to scale their 
directories. However, full replication at remote sites to 
improve performance for remote users has not been very 
successful, particularly for large directories. Firstly, there 
is a significant setup, maintenance and administration cost 
associated with the heavyweight replicas. Secondly, even 
though directories are read more often than updated, the 
bandwidth costs of keeping a full replica in sync with the 
master copy is usually prohibitive. Thirdly, while 

directory servers are optimized for read access, full 
remote replicas will typically have a high update/read 
ratio. Thus partial replication of directories is desirable.  

Lightweight Directory Access Protocol (LDAP) [1,2], 
the standard way of accessing directories conforming to 
the X.500 information model over TCP/IP, does support 
partitioning of directories across multiple servers. Each 
server can hold one or more proper subtree of entries. 
However, performance of distributed operations in LDAP 
is severely degraded because of the distributed directory 
being exposed to the client. In Section 2.3, the LDAP 
distributed directory model is described and reasons for 
performance issues with the referral mechanism are 
explained. 

Partial replication of directories suffers from the same 
performance problems. The problem with distributed 
directories is worsened because typical applications are 
minimally directory enabled (Section 3.1.1) and perform 
searches on the entire DIT rather than individual subtrees.  

The goal of this paper is to improve upon existing 
replication models by providing a better hit ratio (fraction 
of queries answered by a replica without generating 
referrals) for the same replica size. A novel filter based 
approach for replication of directory content is proposed. 
The unit of replication is entries in a subtree matching an 
LDAP search filter (see Section 2.2 for a definition). It 
has been shown that an LDAP query is a much more 
flexible unit of replication and can be used to describe 
regions demonstrating locality of reference in access 
patterns. In addition to replicating queries which describe 
regions of semantic and spatial locality, recently 
performed user queries can be cached to take advantage of 
any temporal locality in the access pattern. 

Earlier work in database query caching [4-8] can not be 
directly applied to LDAP because of the inherent 
differences in data models and query languages of 
directories and relational databases [9,10]. Relevant work 
in LDAP query caching has been in the following areas: 
(a) determining whether an LDAP query is contained in 
another query (query containment), (b) using caching 
algorithms which make efficient caching, pre-fetching, 
decisions to maximize the fraction of queries answered 
from the cache. The complexity of (a) is the subject of 
[11]. The authors of [11] consider general query 
containment problem for LDAP and show it to be NP-



complete in the size of the query. The authors of [12] 
introduce the notion of generalized queries and propose 
algorithms for (b). They use a real directory but synthetic 
workloads and a single type of query for performance 
evaluation. 

This paper reduces complexity of the query 
containment problem by using the concept of LDAP 
templates (Section 3.4.2). The query generalization 
concept of [12] has been developed further and a simpler 
algorithm for selecting filters to be replicated has been 
used (Section 6.2). Performance of these algorithms is 
evaluated for multiple query types, using real workloads 
for an enterprise directory of a large organization. 

To keep the replicated content in sync with the master 
copy, a new filter synchronization protocol for LDAP has 
been proposed. The ReSync protocol supports both 
polling and notification modes for updating. The protocol 
minimizes synchronization traffic and provides 
convergence guarantees.  

The rest of this paper is organized as follows: Section 2 
provides an overview of the LDAP v3 [1,2] standard. 
Section 3 describes and compares, existing and proposed 
replication models. Section 4 describes the query 
containment problem and the proposed solution. Section 5 
discusses the filter synchronization problem and describes 
the proposed protocol.  Section 6 describes algorithms 
used for filter generalization and filter selection. Section 7 
presents a case study based on a real enterprise directory. 
Section 8 concludes the work. 
 
2. LDAP Overview 
 
2.1. Information and naming model 
 

LDAP assumes the existence of one or more directory 
servers jointly providing access to a Directory 
Information Tree (DIT), which is composed of entries. An 
entry is defined as a set of attribute value pairs with the 
required objectclass attribute determining its 
mandatory and optional attributes. Each entry has a 
distinguished name (DN) belonging to a hierarchical 
namespace. The root of the DIT has a “null” DN. Figure 1 
shows an example directory tree and with an 
inetOrgPerson [13] entry. Each node is named with its 
relative DN (RDN). The DN of an entry is constructed by 
prefixing its RDN to its parent’s DN.   
 
2.2. Functional model 

 
The functional model [1] adopted by LDAP is one of 

clients performing protocol operations against servers.  
LDAP defines three types of operations: query operations, 
like search, compare, update operations like add, modify, 
delete, modify DN (entry move) and connect/disconnect 

operations like bind, unbind, abandon. The most common 
operation is search, which provides a flexible means of 
accessing information from the directory. The LDAP 
search operation, also referred as a query consists of the 
following parameters which represent the semantic 
information associated with a query: (i) base: A DN that 
defines the starting point of the search in the DIT, (ii) 
scope: {BASE, SINGLE LEVEL, SUBTREE}, specifies how 
deep within the DIT to search from the base, (iii) filter: A 
boolean combination of predicates using the standard 
operators: AND (&), OR (|) and NOT (!), specifying the 
search criteria, (iv) attributes: Set of required attributes 
from entries matching the filter. The special value “*” 
corresponds to selecting all user attributes. Every entry in 
the directory belongs to at least one (object) class, thus the 
filter (objectclass=*) matches all entries in the 
directory.   

LDAP filters are represented using the parentheses 
prefix notation of RFC 2254 [3], e.g.: 
(&(sn=Doe)(givenName=John)). Filters without any 
NOT operators are called positive filters. Predicates of the 
form (name operator value) where operator � {=, �, � } 
are considered. name is an attribute name and value is 
termed as assertion value.  Examples of predicates are: 
(sn=Doe), (age�30), (sn=smith*) where “Doe”, 
“30” and “smith*” are assertion values representing 
equality, range and substring assertions, respectively. 

LDAP controls can be attached to operations to alter 
their behavior. An example is the control for requesting, 
server side sorting of search results [14]. 

 
Figure 1: Example DIT and entry. 

 
2.3. Distributed directory model 
 

LDAP supports partitioning a directory into multiple 
servers with each server holding one or more naming 
contexts. A naming context is a subtree of the DIT rooted 
at an entry, known as its suffix and terminated by leaf 
entries or special referral objects. Referral objects point 
to other subordinate naming contexts. A naming context is 

 

  dn: cn=John Doe,   
         ou=research,c=us,o=xyz 
  cn: John Doe 
  cn: John M Doe 
  objectclass: inetOrgPerson 
  telephoneNumber: 2618-2618 
  mail: john@us.xyz.com 
  serialNumber: 0456 
  departmentNumber: 80 
 

cn=John Smith 

cn=Carl Miller 

cn=Fred Jones 
ou=research 

 
o=xyz 

“ ” 

c=us 



defined as an n+1 tuple, where n is the number of referral 
objects. Formally C = (S, R1,R2…Rn) where S denotes the 
suffix DN and R1,..Rn denote DNs of  referral objects.  

 Distributed operation processing in LDAP and the 
problems associated with the referral mechanism are 
illustrated by an example. Figure 2 shows three servers 
collectively serving the o=xyz namespace. hostA contains 
a single naming context with suffix as o=xyz and referrals 
for hostB and hostC which hold subordinate naming 
contexts. The client requests a subtree search with base as 
o=xyz from hostB.  

First, a distributed name resolution is performed for the 
target o=xyz. Since hostB does not contain the target, it 
refers the client to hostA (default referral). The client 
contacts hostA which contains the target object. hostA 
returns three matching entries and referrals for hostB and 
hostC for naming contexts contained by them. Finally the 
client sends searches (with modified bases) to hostB and 
hostC which return the remaining entries. It requires four 
round trips between client and the servers to evaluate one 
request. This example illustrates why the referrals based 
LDAP operation completion mechanism is extremely 
slow.  

 

 
Figure 2: Distributed Operation Processing 

 
3. Directory Replication Models 
 

LDAP itself does not standardize replication, allowing 
different vendors to support their proprietary protocols 
and mechanisms. However, there are certain features 
common to all models. Each entry in the DIT must have at 
least one master server. Replication is typically based on 
an implicit or explicit agreement between the consumer 
(replica) and the supplier (master). The agreement 
identifies what is to be replicated (replication unit) and 
when the updates should be sent (mode of update). E.g. 

consumer could be notified immediately after an update 
takes place (on change) or the master could wait for the 
next update window in a periodic update scheme. In either 
case the consumer might be allowed to poll the master for 
changes since it was last updated. The agreement might be 
explicitly negotiated using a proprietary protocol, or 
implicitly reached between the administrators of the two 
systems. In this paper the following two replication 
models are discussed and compared. They differ in how 
the replication unit is defined.  
 
Subtree Based Replication 

Since directories are partitioned by naming contexts 
(Section 2.3), which are essentially subtrees of entries, it 
seems natural to define the unit of replication in a similar 
way. A subtree based replica contains one or more 
subtrees of entries. Most directory vendors implement a 
subtree based replication model. For each replication unit, 
the replica stores meta information which includes the 
context suffix and referrals (if any).  The meta information 
is used to determine whether a query can be answered, or 
a referral needs to be generated. 
 
Filter Based Replication 

This is the replication model proposed in this paper.  
The replication unit is semantically equivalent to an 
LDAP query (Section 2.2). A replica stores entries 
satisfying one or more LDAP queries. For each replicated 
query, meta information comprising of the corresponding 
search specification is stored. The meta information is 
used to determine if an incoming query is semantically 
contained in any stored query.  Otherwise a referral is 
generated.   

Note that a query specification can be reduced to a 
subtree specification with base as the root of the subtree, 
scope as SUBTREE, and filter as (objectclass=*).  

It should be noted that these models are for replicating 
directory content and not for partitioning. In both the 
models, directory is partitioned between a set of master 
servers, each containing one or more naming contexts 
(essentially subtrees) as described in Section 2.3.  

Sections 3.1-3.4 provide a comparison of subtree based 
and filter based models.   
 
3.1. Hit-ratio comparison 

 
Hit-ratio for a replica is defined as the fraction of client 

requests which can be completely answered (without 
generating referrals) by the replica. The following factors 
are responsible for a lower hit-ratio in subtree based 
replicas: 

 
3.1.1. Minimally directory enabled applications. Many 
directory enabled applications work with a simplified 

hostC 

Subtree search B:<base> 
Referral R: ldap:// 
Entry PDUs   

c=in, o=xyz 

ou=research, 
c=us, o=xyz 

o=xyz 

   client B: o=xyz 

R1: ldap://hostA 
 

R1: ldap://hostB 
R2: ldap://hostC 
 

B: ou=research,  
c=us, o=xyz 

B: o=xyz 

B: c=in,o=xyz 

hostB 

hostA 



model of the directory. The simplified model typically 
consists of relational database like tables corresponding to 
important object classes in the directory. Without 
knowledge of the hierarchical namespace most 
applications generate queries with base as the root of the 
DIT. These queries can not possibly be answered by 
subtree based partial replicas. This results in a lower hit-
ratio for such replicas. Filter based partial replicas can 
replicate null based queries. 
 
3.1.2. Semantic versus spatial locality. Any partial 
replication model will be useful only if there is some 
semantic locality of reference in the access pattern. 
Semantic locality in directories is not restricted to spatial 
locality. Consider two semantically close filters generated 
from:(&(objectclass=inetOrgPerson)(departme

ntNumber=<value>)) with values 2406 and 2407. If 
the departments are located in different country subtrees, 
the result sets satisfying the two filters are not spatially 
close to each other and might not be held by the same 
replica. A filter based replica, however is not restricted to 
hold queries from a single subtree and could contain the 
filter(&(objectclass=inetOrgPerson)(departmen
tNumber=240*)) which answers both these queries.  
 
3.1.3. Partially answered queries. A subtree based 
replication context is not necessarily a complete subtree. 
A replica might point to servers holding subordinate 
contexts (e.g., see Figure 2). Thus even if the base of a 
query is inside a subtree of the replica, it is possible that 
the query does not contribute to hit-ratio since it generates 
referrals for subordinate servers. In filter based 
replication, once the base lies under the base of the 
replicated query, the query can be answered without 
generating referrals.  
 
3.2. Update traffic 
 

The replica must be updated to be consistent with the 
master copy. The mode of update might be through 
notifications, periodic batch updates or polling. All of 
these require modified entries in the replication context to 
be sent to the replica. Subtree based models store all 
entries from a subtree, generating larger update traffic 
volumes compared to the proposed filter based model 
which stores only selected entries from a subtree. For the 
same number of replicated entries the filter based model 
can thus span larger subtrees, thereby reducing the 
referrals generated from the replica.  

Filter based replication also allows the flexibility of 
adapting to the access pattern. Since replication units can 
be very small in size, it is feasible to dynamically fetch 
new filters and discard old ones. This can be used to 
provide trade-off between hit-ratio and update traffic.  

Finally, a filter based replica allows the flexibility of 
specifying different consistency levels for different types 
of objects. A subtree of entries could contain a variety of 
objects. A subtree based replication model will associate 
the most stringent requirement amongst these with the 
complete subtree, thus further increasing the update 
traffic.  
 
3.3. Partial replication of flat namespaces 
 

Some directories could have a very flat DN namespace. 
E.g. carrier directories used by large telcos can have all 
their subscribers (millions of entries) under a single 
container entry. Since subtree based replicas can not 
partially replicate the container’s children, large replicas 
need to be deployed. Filter based replication can be used 
to selectively replicate entries from a flat namespace. 

 
3.4. Query processing 
 

The increased hit-ratio for filter based replication 
comes at the cost of increased query processing.  Sections 
3.4.1 and 3.4.2 describe complexity of the cache 
answerability problem for the two replication models. 
 
3.4.1 Subtree based replication. To know if a query can 
be answered (fully or partially) a subtree based replica 
simply checks if the base object (b) of the incoming query 
lies inside any of the replication contexts held in it. Let a 
replica hold n replication contexts with the ith context 
defined as (see Section 2.3): Ci = (Si, R

i
1, R

i
2…. Ri

Ci). The 
algorithm for determining whether the query can be 
partially or fully answered by the replica is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where isSuffix (a, b) returns TRUE if the DN a is an 
ancestor of DN b and FALSE otherwise. 
 
3.4.2. Filter based Replication. A filter based replica 
needs to check for containment of an incoming query in 
all replicated queries. To reduce the complexity of the 
problem, we introduce the notion of LDAP templates. 

Algorithm isContained (b, C ) { 
    /* C = {C1, C2 …. Cn } */ 
  for each Ci in C 
    if (Si = b) 
      return TRUE 
    if (!isSuffix (Si, b) ) 
      continue 
    for Rj in { Ri

1, R
i
2…. Ri

Ci } 
         if (isSuffix (Rj, b)) 
        return FALSE 
    return TRUE 
  return FALSE 
} 



Typical directory applications have a finite number of 
prototypes (templates) for generating query filters. In this 
paper templates are represented using the LDAP filter 
representation of [3] except that the assertion value is 
replaced by the “_” character. Examples are 
(&(cn=_)(ou=research)), (uid=_), (&(sn=_) 

(givenName=_)), (sn=_*). The last template is used 
to generate substring queries for the surname attribute.  

In template based containment, queries belonging to 
only a specified set of templates are replicated and 
answered. Templates simplify the query containment 
problem in several ways. Firstly, number of query 
comparisons is reduced by eliminating containment 
checks against templates which can not potentially answer 
the query. E.g. a query of template (&(sn=_)(ou=_)) 
can not answer a query of template (sn=_). Secondly, for 
all the remaining cross template comparisons, conditions 
for containment can be computed apriori (Proposition 2 in 
Section 4.1). E.g. query (age=X) can be answered by 
query (age � Y) if (Y � X). Thirdly, answerability 
against queries of the same template requires simply 
comparing the corresponding assertion values. This is 
formalized in Proposition 3 of Section 4.1. Section 4 
discusses LDAP query and filter containment in detail.    

 
4. LDAP Query Containment 
 

A query Q is termed as semantically contained in 
another query Qs if, (i) the region defined by the base and 
scope of Q falls completely inside the corresponding 
region for Qs, (ii) the attributes in Q are a subset of 
attributes in Qs, and (iii) the filter in Q is more restrictive 
than the filter in Qs. This can be stated formally as:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where f � fs denotes that the filter f is semantically 
contained in fs and the scope values are assumed to be 
integers with BASE=0, SINGLE LEVEL=1, SUBTREE=2.  

isparent (a, b) returns TRUE if the DN a is the parent of 
DN b. 
 
4.1. LDAP filter containment 

 
An LDAP filter F1 is contained in F2 if it is impossible 

for an entry to satisfy F1 but not F2. This condition is 
formalized by Proposition 1. 
Proposition 1: (General LDAP query containment) 
An LDAP query filter F1 is semantically contained in 
another query filter F2 if and only if the expression F1��F2  
is inconsistent.                       �  
 
For the expression F1��F2 to be inconsistent:  
� x1,x2..xn such that  F1��F2  is satisfied.  
where attribute set {x1,x2..xn} is the union of attribute sets 
appearing in the filters F1 and F2. 
If F1��F2 = B1�B2 ….�Bk where each Bi is a conjunction 
of simple predicates, then each Bi should be inconsistent, 
i.e. the following boolean expression should evaluate to 
TRUE.  
(�x1,x2..xn(B1))�(�x1,x2..xn(B2))..�(�x1,x2..xn(Bk))        (1)             
where �x1,x2..xn (Bi) represents the condition that Bi is not 
satisfiable for any values of attributes x1,x2..xn  in their 
valid ranges. Let the set AXY represent the union of sets of 
assertion values in LDAP filters X and Y                                                                
 
Proposition 2: (Cross template containment) 
For positive LDAP filters F1 and F2 containing equality 
and range predicates, the condition for F1 to be contained 
in F2 can be expressed as a boolean expression in 
conjunctive normal form (CNF) with each simple 
predicate of the form:  
(a �  b) where  a,b � AF1F2.                                                � 
 
Sketch of proof: The expression in (1) is a conjunction. 
The condition for each Bi being inconsistent requires that 
the predicates in Bi should impose an empty range for at 
least one of the attributes appearing in it. Thus the 
condition of each Bi being inconsistent is disjunctive and 
(1) can be written in CNF. It is easy to show that a 
possibly empty range for an attribute xj imposed by the 
predicates of Bi is (axj, bxj], or [axj, bxj) where axj, bxj � 
AF1F2.  For this range to be empty: axj � bxj.  
 
Example:   
Let F1 be (a � p) � (b �q) and  F2  be (a = x) � (b � y) 
The condition for F1 to be contained in F2 is easily seen to 
be (q � y). The example helps in illustrating proposition 2.  
Here, AF1F2 = {p, q, x, y}. 
F1 is contained in F2 if the following expression is 
inconsistent.  
F1��F2 = ((a � p) � (b �q) �(a >x) � (b<y)) � ((a � p) � 
(b �q) �(a <x) � (b<y)) 

Algorithm QC (Q, Qs) { 
  /* Q = (b, s, f, A), Qs = (bS, sS, fS AS) */ 
 if (bS = b & sS � s) 
   goto NEXT 
 else if (!issuffix (bS, b)) 
   return FALSE 
 if (sS = SUBTREE) 
   goto NEXT 
 else if ((sS > s) & isparent (bS, b)) 
   goto NEXT 
 return FALSE 
NEXT: 
 if (A ⊆ As & f � fs) 
   return TRUE 
 return FALSE 
} 
 



B1= ((a � p) � (b �q) �(a >x) � (b<y)).  
B2= ((a � p) � (b �q) �(a <x) � (b<y)).  
For B1 to be inconsistent: (x � p) � (q � y) 
For B2 to be inconsistent: (q � y) 
Thus F1 is contained in F2 if:  
     ((x�p)�(q�y))�(q�y) �(q � y)         �                                                            

In the worst case all m predicates in F1 might have to 
be compared with all n predicates in F2. Thus checking 
containment of an incoming filter with a cached filter 
requires O (mn) such comparisons.  

The following observation about positive filters 
belonging to the same template can be made: 
Proposition 3: (Filters of same template) 
Let F1 and F2 be two positive LDAP query filters 
belonging to the same template. F1 is contained in F2 if 
each predicate in F1 is contained in the corresponding 
predicate of F2.        �  
 

Containment problem for filters of the same template 
having n predicates using Proposition 3 requires O(n) 
comparisons of assertion values. The algorithms described 
in the section can be extended for substring assertions by 
interpreting substrings as range assertions. An 
implementation of LDAP query containment algorithm 
was contributed to OpenLDAP [17], the open-source 
directory server, as proxy cache engine [16]. Proxy 
caching is included in the OpenLDAP 2.2 distribution.  
 
5. Replica Consistency 
 

LDAP does not standardize a replication protocol for 
keeping a replica in sync with the master copy, allowing 
individual vendors to use their own proprietary protocols. 
Section 5.1 describes the filter synchronization problem in 
LDAP while Section 5.2 discusses existing and proposed 
filter synchronization protocols for LDAP.  

 
5.1. Filter synchronization 
 
    To support consistency in filter based replicas, a means 
of synchronizing content corresponding to a search 
request is required. Let the set of DNs corresponding to 
entries satisfying an LDAP search request, S, at instant t 
be CS(t). The set of entries at t’ > t  is then given by:  
 

CS(t �) = CS(t) + ES
01(t, t�) − ES

10(t, t�)
                (2) 

                                 add               delete                
where Es

01(t,t’) is the set of DNs of entries moving into the 
content and Es

10(t,t’) is the set of DNs of entries moving 
out of the content in the interval (t,t’). To obtain the 
content at time t’ entries corresponding to these two terms 
must be respectively added and deleted from the content 
at time t. Additionally entries inside the content at t which 

are changed during this interval but remain inside the 
content (represented by Es

11(t,t’)) should be modified.  
The last term in (2) requires the master server to 

reliably compute the set of entries which are deleted from 
the content of S. This requires history information to be 
maintained either in the form of change logs, tombstones 
(empty entries representing deleted entries) or a per-
session history of entries leaving the content.  

In the absence of complete history information, it is 
still possible to synchronize the content without a full 
reload being required. This can be achieved by the server 
returning DNs of all unchanged entries in the content and 
entries changed since t which match the search criteria at 
t’. Mathematically,   

       CS(t �) = ES
un(t, t�) + ES

01(t, t �) + ES
11(t, t �)        (3) 

where Es
un(t,t’) represents DNs of the set of entries in the 

initial content which remained unchanged in the interval 
(t,t’).  
 
5.2. The ReSync protocol  

 
The persistent search control proposed in [15] is a 

means of extending the LDAP search operation such that 
the operation does not end after all the matching entries 
have been sent. Instead the connection between the client 
and server remains open over which subsequent changes 
to the content are sent. While persistent search can 
provide strong consistency for filter based replicas, it 
requires a TCP connection per replicated filter which 
might not scale for large replicas. Polling is a better mode 
of update for information typically stored in directories. 

The proposed mechanism is an extension of persistent 
search to support polling mode for synchronization. The 
client can specify the mode of update as polling or 
notifications and optionally specify a cookie. The 
following resync control is attached to a normal search 
request:  

reSyncControl = (mode, cookie) 
The server (master) handles a resync request from the 

client (replica in this case) as follows: (i) if cookie is null, 
it is the initial request in an update session and the entire 
content is sent, (ii) otherwise, the cookie is used to 
identify the resync session and content updates 
accumulated since the last request (stored as session 
history) are sent, (iii) further if the mode is “persist”, 
the connection with the client is maintained on which any 
further change notifications can be sent, (iv) else if the 
mode is “poll”, a cookie to resume the session is also 
sent. 

Each notification/update PDU contains an entry along 
with a control specifying the action to be taken by the 
client. If the action is add or modify, the complete entry 
is sent, otherwise if the action is delete, only the DN of 
the entry is sent. Note that an add action representing an 



entry moving into the content could happen due to an add, 
modify or modify DN operation at the master. Similarly 
the delete action could take place due to an entry being 
deleted, modified or renamed.  
    When the server has incomplete history information, 
unchanged entries (Es

un(t,t’) in (3)) are conveyed using the 
retain action.  A session can be ended by the client 
sending a request with mode as “sync_end” or 
abandoning a persistent search. The server can time out 
sessions which have been inactive for more than an admin 
time limit.     

 

 
Figure 3: An example ReSync session 

 
Figure 3 shows the message sequence chart for an 

example session. Vertical lines representing lifetimes of 
entries E1, E2…E5 are also shown. The length of a line 
represents the life span of an entry. The duration that an 
entry is in the content of a search request S, is shown by a 
solid segment, while the duration which it spends outside 
the content is shown by a dashed segment. The symbols A, 
M, D, R correspond to the four update operations: add, 
modify, delete and rename (modify DN). Note that update 
corresponding to a modify DN which does not move an 
“in content” entry “out” is a delete action for the old DN 
(E3) followed by an add action for the new DN (E5). 

ReSync protocol maintains session history of entries 
leaving the content. The alternatives (described below) 
either do not provide convergence or require unreasonably 
large history information and/or synchronization traffic. 
Some servers keep track of a deleted entry using a 
tombstone - a hidden entry that keeps track of the state, 
but not the data, of an entry that has been deleted. 

Similarly change logs [18] use the directory itself to store 
information about update operations.  

A tombstone does not contain the original attributes of 
the entry, and therefore it is impossible for the server to 
determine if a deleted entry moved out of the content, thus 
requiring transmission of all deleted entry DNs since the 
last update. Change logs only contain information about 
the changed attributes. If an entry is first modified out of 
the content and then deleted, change logs are not sufficient 
to determine whether the entry moved out of the content. 
The ReSync protocol is lightweight and designed to 
reduce synchronization traffic while providing 
convergence guarantees.     
 
6. Replica content determination 
 

In subtree replication, a set of subtrees to be replicated 
is identified based on long term spatial locality of access 
patterns and configured to be replicated. Typically there is 
no provision for allowing dynamic changes to the set of 
replicated subtrees. 

Similarly, for filter based replication, it is possible to 
find a set of generalized filters (Section 6.1), which 
capture the semantic and spatial locality of the access 
pattern and statically configure them to be replicated. 
However, since the replication unit is much smaller 
compared to subtrees, it is feasible to dynamically update 
the set of filters stored in the replica to improve hit-ratio 
(Section 6.2). 

 
6.1. Generalizing filters 
 

User queries typically return very few entries for them 
to be efficient units of replication. The meta-data size for 
queries like (telephoneNumber=_) will be comparable to 
the data size. Moreover, such queries will not take 
advantage of any spatial/semantic locality in the access 
pattern. However, generalized form of user queries can be 
used to represent frequently accessed regions. 

The following guidelines for generalizing filters based 
on those in [12] have been used: (i) generalization based 
on attribute components, (ii) generalization based on 
natural hierarchy of filters. E.g. of generalized queries are 
(telephoneNumber=261-758*), (&(div=X)(dept=_)). 

  
6.2. Filter selection 
 

In filter based replication, it is possible to dynamically 
adapt to changes in access patterns.  Authors of [12] 
describe an efficient algorithm for improving hit-ratio 
from stored filters. It works by maintaining statistics for 
two lists of filters: the list of filters which is actually 
stored and a list of candidate filters. For each user query, 
the benefits of filters in both the lists are updated which 
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might result in filters moving in and out of the lists. 
Updating of the actual list, when a new query arrives, is 
termed as evolution.  If the benefit of the ‘candidates’ 
becomes larger than the ‘actuals’ by a specified amount, a 
revolution is initiated in which the two lists are combined 
and filters with the best benefits are chosen. 

Using evolutions as described above requires frequent 
updates to the stored filter list and is thus not suitable for a 
replication scenario. The approach used in the case study 
of Section 7 is to maintain ‘hit’ statistics for candidate 
filters which is then used to perform a periodic update to 
the list of stored filters by selecting filters with the best 
benefit to size ratios. The benefit is defined as the number 
of hits for a candidate since the last update, while size is 
the estimated number of entries matching the filter. The 
interval between updates depends on the type of query. 
This is a simple means of approximating the expensive 
revolutions of [12]. 
 
7. Replica Performance 
 

Effectiveness of partial replication in improving 
performance of directory enabled applications when 
accessed from remote locations is considered. Subtree and 
filter based partial replicas are compared on the basis of 
hit-ratio, update traffic and processing overheads. 
 
7.1. Directory and workloads characteristics 

 
The IBM enterprise directory containing more than 

half a million employee and organizational records has 
been used to evaluate performance of replication models. 
Each employee entry is approximately 6KB in size. The 
enterprise directory is used by hundreds of applications 
accessed from over 150 countries and different 
geographies. The problem considered was to use partial 
replication to improve performance for a geography 
containing nearly 30% employees. 

Most directory queries are accesses to the following 
entities represented in the directory: people, departments 
and locations. The employees are organized in the 
directory on a country basis with all employees of a 
country appearing as children of the country entry. This is 
an example of a relatively flat namespace (Section 3.3). 
Similarly all department entries belonging to a particular 
division are placed under the division entry.  

Table 1: Workload distribution 
 

Type of query  Approx % 
contribution 

(serialNumber=_) 58 
(mail=_) 24 

(&(dept=_)(div=_)) 16 
(location=_) 2 

Real workloads for two days of accesses were 
considered. The distribution of query-types in the 
workload is given in Table 1. 

 
7.2. Hit ratio comparison 
 
(a) Serial number query: Figure 4 shows that the filter 
based model provides a hit-ratio of 0.5 with a replica size 
which is less than 10% of the total person entries in the 
directory. A subtree based replica can not selectively 
replicate employee entries from a country. The entries in a 
country are not accessed uniformly and semantic locality 
can be captured in filters of the form 
(serialnumber=_*_). This is the reason for filter based 
replication performing better.   

 
Figure 4: Hit ratio v/s replica size 

(b) Department query: Not all departments in a division 
are accessed uniformly. While a filter based replica stores 
only the more beneficial departments, a subtree based 
replica can either store all or none of the department 
entries under a division. Since the replicated generalized 
queries of this type are smaller in size, the dynamic filter 
selection described in Section 6.2 can be used. Figure 5 
shows the effect of reducing the revolution interval from 
10000 to 6000. queries for filter based replication. 

 
Figure 5: Hit-ratio v/s replica size. 

 



(c) Other queries: Since the field <user> in <user>@ 
<cc>.xyz.com is not organized (unlike the fields in 
serialnumber attribute), filter based caching can not 
describe the access patterns efficiently for this case.   

The access rate of location entries was seen to be high 
compared to the relatively small number of location 
entries. Thus the entire location tree can be replicated 
ensuring a hit ratio of 1 for this type of query while using 
a very small fraction of the total replica size. 
 
7.3. Update traffic 
 

For filter based replica there are two components of the 
update traffic, (i) the resync traffic corresponding to 
currently stored filters, (ii) traffic associated with bringing 
new filters to adapt to the access pattern.  (ii) is attributed 
to the revolutions described in 6.2. This component is not 
present for the (serialnumber=_) query because 
generalized filters in this case could have thousands of 
entries, hence dynamic selection of filters is not 
performed.    

 
(a) Serial number query: Figure 6 compares update traffic 
(in number of entries) for subtree and filter based 
replication for a given hit-ratio. The resync protocol is 
used by a filter based replica to reliably determine the 
minimal set of updates to be sent. Thus the higher update 
traffic for subtree based replicas is a direct consequence 
of the large number of entries stored for the same hit-ratio. 

 
Figure 6: Update traffic v/s hit ratio 

 
(b) Department query: Department entries in the directory 
have a very low update rate, thus the update traffic for 
subtree based replication is negligible. However updates 
for filter based replica are not negligible due to the second 
component of update traffic mentioned above. This 
component can be controlled by having larger intervals 
between revolutions as shown by the lower curve 
(R=10000). 

 
Figure 7: Update traffic v/s hit ratio 

 
7.4 Query processing overheads 
 

Additional query processing overhead incurred in filter 
based replication is directly proportional to the number of 
stored filters. Along with replicating generalized filters 
(templates) it is also advantageous to store recently 
performed user queries. However these queries are simply 
cached for a short time window and not updated. The 
three curves in Figures 8 and 9 correspond to storing only 
user queries, storing only generalized filters and storing 
both. Storing a window of last 50 queries gives a 20% hit-
ratio.  Since query hits are due to temporal locality in the 
access pattern the hit-ratio curve saturates after 100 
cached queries. 

From Figure 8, it can be seen that storing both 
generalized filters and user queries provides a hit ratio of 
0.5 with just 200 stored filters for the 
(serialnumber=_) query. Since query containment in 
this case is a simple substring match, the processing cost 
is minor. 

 
Figure 8: Hit ratio v/s # of filters 



 
Figure 9: Hit ratio v/s # of filters 

 
8. Conclusions 

 
A new directory replication model based on filters has 

been proposed and compared with existing subtree based 
replication models. The model consists of a directory 
server replica storing entries and meta data corresponding 
to one or more LDAP filters. Replicated filters are 
generalized user queries which correspond to semantic 
regions demonstrating locality of reference. The concept 
of LDAP templates (query prototypes) has been 
introduced to reduce the complexity of the query 
containment problem. A filter synchronization protocol 
which uses standard means of extending LDAP is 
proposed. The protocol supports both polling and 
notification modes of synchronization. The session history 
based protocol reduces synchronization traffic and size of 
historical data to be maintained compared to existing 
techniques like changelogs and tombstones. Performance 
of the proposed model is evaluated and compared with 
subtree based models for a real enterprise directory using 
real workloads. A hit ratio (percentage of queries 
completely answered by the replica) of 0.5 is reported for 
the proposed model while replicating less than 10% of the 
employee directory for a typical query which requests an 
employee entry matching a unique ID. The update traffic 
is also considerably smaller than subtree based replicas. 
Filter based partial replication can be used to significantly 
improve performance of directory based applications. 
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