
Filter Based Directory Replication:
Algorithms and Performance

Apurva Kumar

IBM India Research Lab
kapurva@in.ibm.com

Abstract

Directories have become an important component of
the enterprise security and identity management
middleware. This paper describes a novel filter based
replication model for Lightweight Directory Access
Protocol (LDAP) directories. Instead of replicating entire
subtrees from a Directory Information Tree (DIT), only
entries matching a filter specification are replicated.
Efficient algorithms for selecting such filters, keeping
them synchronized with the master copy and for using
them to answer directory queries have been proposed.
Advantages of the filter based replication framework over
existing subtree based mechanisms have been
demonstrated for a real enterprise directory using real
workloads.

1. Introduction

Directories are specialized databases optimized for
read access. They are traditionally associated with storing
information about people and accessed using address
books for fast lookup of email addresses, phone numbers
etc. However, directories have a very flexible information
model which allows them to represent real world entities
like people, network resources (e.g. printers, servers),
devices, machines, services, applications and policies in a
single instance. With information about all these entities
and their relationships accessible from a single location,
directories cease to be merely repositories of information
and provide a basis for application integration and policy
based network management in an enterprise. However,
this also means that an overloaded directory could be a
potential bottleneck in an enterprise infrastructure.

Directory replication has been particularly effective in
improving scalability. Most enterprises typically deploy a
centralized load balanced array of replicas to scale their
directories. However, full replication at remote sites to
improve performance for remote users has not been very
successful, particularly for large directories. Firstly, there
is a significant setup, maintenance and administration cost
associated with the heavyweight replicas. Secondly, even
though directories are read more often than updated, the
bandwidth costs of keeping a full replica in sync with the
master copy is usually prohibitive. Thirdly, while

directory servers are optimized for read access, full
remote replicas will typically have a high update/read
ratio. Thus partial replication of directories is desirable.

Lightweight Directory Access Protocol (LDAP) [1,2],
the standard way of accessing directories conforming to
the X.500 information model over TCP/IP, does support
partitioning of directories across multiple servers. Each
server can hold one or more proper subtree of entries.
However, performance of distributed operations in LDAP
is severely degraded because of the distributed directory
being exposed to the client. In Section 2.3, the LDAP
distributed directory model is described and reasons for
performance issues with the referral mechanism are
explained.

Partial replication of directories suffers from the same
performance problems. The problem with distributed
directories is worsened because typical applications are
minimally directory enabled (Section 3.1.1) and perform
searches on the entire DIT rather than individual subtrees.

The goal of this paper is to improve upon existing
replication models by providing a better hit ratio (fraction
of queries answered by a replica without generating
referrals) for the same replica size. A novel filter based
approach for replication of directory content is proposed.
The unit of replication is entries in a subtree matching an
LDAP search filter (see Section 2.2 for a definition). It
has been shown that an LDAP query is a much more
flexible unit of replication and can be used to describe
regions demonstrating locality of reference in access
patterns. In addition to replicating queries which describe
regions of semantic and spatial locality, recently
performed user queries can be cached to take advantage of
any temporal locality in the access pattern.

Earlier work in database query caching [4-8] can not be
directly applied to LDAP because of the inherent
differences in data models and query languages of
directories and relational databases [9,10]. Relevant work
in LDAP query caching has been in the following areas:
(a) determining whether an LDAP query is contained in
another query (query containment), (b) using caching
algorithms which make efficient caching, pre-fetching,
decisions to maximize the fraction of queries answered
from the cache. The complexity of (a) is the subject of
[11]. The authors of [11] consider general query
containment problem for LDAP and show it to be NP-

complete in the size of the query. The authors of [12]
introduce the notion of generalized queries and propose
algorithms for (b). They use a real directory but synthetic
workloads and a single type of query for performance
evaluation.

This paper reduces complexity of the query
containment problem by using the concept of LDAP
templates (Section 3.4.2). The query generalization
concept of [12] has been developed further and a simpler
algorithm for selecting filters to be replicated has been
used (Section 6.2). Performance of these algorithms is
evaluated for multiple query types, using real workloads
for an enterprise directory of a large organization.

To keep the replicated content in sync with the master
copy, a new filter synchronization protocol for LDAP has
been proposed. The ReSync protocol supports both
polling and notification modes for updating. The protocol
minimizes synchronization traffic and provides
convergence guarantees.

The rest of this paper is organized as follows: Section 2
provides an overview of the LDAP v3 [1,2] standard.
Section 3 describes and compares, existing and proposed
replication models. Section 4 describes the query
containment problem and the proposed solution. Section 5
discusses the filter synchronization problem and describes
the proposed protocol. Section 6 describes algorithms
used for filter generalization and filter selection. Section 7
presents a case study based on a real enterprise directory.
Section 8 concludes the work.

2. LDAP Overview

2.1. Information and naming model

LDAP assumes the existence of one or more directory
servers jointly providing access to a Directory
Information Tree (DIT), which is composed of entries. An
entry is defined as a set of attribute value pairs with the
required objectclass attribute determining its
mandatory and optional attributes. Each entry has a
distinguished name (DN) belonging to a hierarchical
namespace. The root of the DIT has a “null” DN. Figure 1
shows an example directory tree and with an
inetOrgPerson [13] entry. Each node is named with its
relative DN (RDN). The DN of an entry is constructed by
prefixing its RDN to its parent’s DN.

2.2. Functional model

The functional model [1] adopted by LDAP is one of

clients performing protocol operations against servers.
LDAP defines three types of operations: query operations,
like search, compare, update operations like add, modify,
delete, modify DN (entry move) and connect/disconnect

operations like bind, unbind, abandon. The most common
operation is search, which provides a flexible means of
accessing information from the directory. The LDAP
search operation, also referred as a query consists of the
following parameters which represent the semantic
information associated with a query: (i) base: A DN that
defines the starting point of the search in the DIT, (ii)
scope: {BASE, SINGLE LEVEL, SUBTREE}, specifies how
deep within the DIT to search from the base, (iii) filter: A
boolean combination of predicates using the standard
operators: AND (&), OR (|) and NOT (!), specifying the
search criteria, (iv) attributes: Set of required attributes
from entries matching the filter. The special value “*”
corresponds to selecting all user attributes. Every entry in
the directory belongs to at least one (object) class, thus the
filter (objectclass=*) matches all entries in the
directory.

LDAP filters are represented using the parentheses
prefix notation of RFC 2254 [3], e.g.:
(&(sn=Doe)(givenName=John)). Filters without any
NOT operators are called positive filters. Predicates of the
form (name operator value) where operator � {=, �, � }
are considered. name is an attribute name and value is
termed as assertion value. Examples of predicates are:
(sn=Doe), (age�30), (sn=smith*) where “Doe”,
“30” and “smith*” are assertion values representing
equality, range and substring assertions, respectively.

LDAP controls can be attached to operations to alter
their behavior. An example is the control for requesting,
server side sorting of search results [14].

Figure 1: Example DIT and entry.

2.3. Distributed directory model

LDAP supports partitioning a directory into multiple
servers with each server holding one or more naming
contexts. A naming context is a subtree of the DIT rooted
at an entry, known as its suffix and terminated by leaf
entries or special referral objects. Referral objects point
to other subordinate naming contexts. A naming context is

 dn: cn=John Doe,
 ou=research,c=us,o=xyz
 cn: John Doe
 cn: John M Doe
 objectclass: inetOrgPerson
 telephoneNumber: 2618-2618
 mail: john@us.xyz.com
 serialNumber: 0456
 departmentNumber: 80

cn=John Smith

cn=Carl Miller

cn=Fred Jones
ou=research

o=xyz

“ ”

c=us

defined as an n+1 tuple, where n is the number of referral
objects. Formally C = (S, R1,R2…Rn) where S denotes the
suffix DN and R1,..Rn denote DNs of referral objects.

 Distributed operation processing in LDAP and the
problems associated with the referral mechanism are
illustrated by an example. Figure 2 shows three servers
collectively serving the o=xyz namespace. hostA contains
a single naming context with suffix as o=xyz and referrals
for hostB and hostC which hold subordinate naming
contexts. The client requests a subtree search with base as
o=xyz from hostB.

First, a distributed name resolution is performed for the
target o=xyz. Since hostB does not contain the target, it
refers the client to hostA (default referral). The client
contacts hostA which contains the target object. hostA
returns three matching entries and referrals for hostB and
hostC for naming contexts contained by them. Finally the
client sends searches (with modified bases) to hostB and
hostC which return the remaining entries. It requires four
round trips between client and the servers to evaluate one
request. This example illustrates why the referrals based
LDAP operation completion mechanism is extremely
slow.

Figure 2: Distributed Operation Processing

3. Directory Replication Models

LDAP itself does not standardize replication, allowing
different vendors to support their proprietary protocols
and mechanisms. However, there are certain features
common to all models. Each entry in the DIT must have at
least one master server. Replication is typically based on
an implicit or explicit agreement between the consumer
(replica) and the supplier (master). The agreement
identifies what is to be replicated (replication unit) and
when the updates should be sent (mode of update). E.g.

consumer could be notified immediately after an update
takes place (on change) or the master could wait for the
next update window in a periodic update scheme. In either
case the consumer might be allowed to poll the master for
changes since it was last updated. The agreement might be
explicitly negotiated using a proprietary protocol, or
implicitly reached between the administrators of the two
systems. In this paper the following two replication
models are discussed and compared. They differ in how
the replication unit is defined.

Subtree Based Replication

Since directories are partitioned by naming contexts
(Section 2.3), which are essentially subtrees of entries, it
seems natural to define the unit of replication in a similar
way. A subtree based replica contains one or more
subtrees of entries. Most directory vendors implement a
subtree based replication model. For each replication unit,
the replica stores meta information which includes the
context suffix and referrals (if any). The meta information
is used to determine whether a query can be answered, or
a referral needs to be generated.

Filter Based Replication

This is the replication model proposed in this paper.
The replication unit is semantically equivalent to an
LDAP query (Section 2.2). A replica stores entries
satisfying one or more LDAP queries. For each replicated
query, meta information comprising of the corresponding
search specification is stored. The meta information is
used to determine if an incoming query is semantically
contained in any stored query. Otherwise a referral is
generated.

Note that a query specification can be reduced to a
subtree specification with base as the root of the subtree,
scope as SUBTREE, and filter as (objectclass=*).

It should be noted that these models are for replicating
directory content and not for partitioning. In both the
models, directory is partitioned between a set of master
servers, each containing one or more naming contexts
(essentially subtrees) as described in Section 2.3.

Sections 3.1-3.4 provide a comparison of subtree based
and filter based models.

3.1. Hit-ratio comparison

Hit-ratio for a replica is defined as the fraction of client

requests which can be completely answered (without
generating referrals) by the replica. The following factors
are responsible for a lower hit-ratio in subtree based
replicas:

3.1.1. Minimally directory enabled applications. Many
directory enabled applications work with a simplified

hostC

Subtree search B:<base>
Referral R: ldap://
Entry PDUs

c=in, o=xyz

ou=research,
c=us, o=xyz

o=xyz

 client B: o=xyz

R1: ldap://hostA

R1: ldap://hostB
R2: ldap://hostC

B: ou=research,
c=us, o=xyz

B: o=xyz

B: c=in,o=xyz

hostB

hostA

model of the directory. The simplified model typically
consists of relational database like tables corresponding to
important object classes in the directory. Without
knowledge of the hierarchical namespace most
applications generate queries with base as the root of the
DIT. These queries can not possibly be answered by
subtree based partial replicas. This results in a lower hit-
ratio for such replicas. Filter based partial replicas can
replicate null based queries.

3.1.2. Semantic versus spatial locality. Any partial
replication model will be useful only if there is some
semantic locality of reference in the access pattern.
Semantic locality in directories is not restricted to spatial
locality. Consider two semantically close filters generated
from:(&(objectclass=inetOrgPerson)(departme

ntNumber=<value>)) with values 2406 and 2407. If
the departments are located in different country subtrees,
the result sets satisfying the two filters are not spatially
close to each other and might not be held by the same
replica. A filter based replica, however is not restricted to
hold queries from a single subtree and could contain the
filter(&(objectclass=inetOrgPerson)(departmen
tNumber=240*)) which answers both these queries.

3.1.3. Partially answered queries. A subtree based
replication context is not necessarily a complete subtree.
A replica might point to servers holding subordinate
contexts (e.g., see Figure 2). Thus even if the base of a
query is inside a subtree of the replica, it is possible that
the query does not contribute to hit-ratio since it generates
referrals for subordinate servers. In filter based
replication, once the base lies under the base of the
replicated query, the query can be answered without
generating referrals.

3.2. Update traffic

The replica must be updated to be consistent with the
master copy. The mode of update might be through
notifications, periodic batch updates or polling. All of
these require modified entries in the replication context to
be sent to the replica. Subtree based models store all
entries from a subtree, generating larger update traffic
volumes compared to the proposed filter based model
which stores only selected entries from a subtree. For the
same number of replicated entries the filter based model
can thus span larger subtrees, thereby reducing the
referrals generated from the replica.

Filter based replication also allows the flexibility of
adapting to the access pattern. Since replication units can
be very small in size, it is feasible to dynamically fetch
new filters and discard old ones. This can be used to
provide trade-off between hit-ratio and update traffic.

Finally, a filter based replica allows the flexibility of
specifying different consistency levels for different types
of objects. A subtree of entries could contain a variety of
objects. A subtree based replication model will associate
the most stringent requirement amongst these with the
complete subtree, thus further increasing the update
traffic.

3.3. Partial replication of flat namespaces

Some directories could have a very flat DN namespace.
E.g. carrier directories used by large telcos can have all
their subscribers (millions of entries) under a single
container entry. Since subtree based replicas can not
partially replicate the container’s children, large replicas
need to be deployed. Filter based replication can be used
to selectively replicate entries from a flat namespace.

3.4. Query processing

The increased hit-ratio for filter based replication
comes at the cost of increased query processing. Sections
3.4.1 and 3.4.2 describe complexity of the cache
answerability problem for the two replication models.

3.4.1 Subtree based replication. To know if a query can
be answered (fully or partially) a subtree based replica
simply checks if the base object (b) of the incoming query
lies inside any of the replication contexts held in it. Let a
replica hold n replication contexts with the ith context
defined as (see Section 2.3): Ci = (Si, R

i
1, R

i
2…. Ri

Ci). The
algorithm for determining whether the query can be
partially or fully answered by the replica is as follows:

where isSuffix (a, b) returns TRUE if the DN a is an
ancestor of DN b and FALSE otherwise.

3.4.2. Filter based Replication. A filter based replica
needs to check for containment of an incoming query in
all replicated queries. To reduce the complexity of the
problem, we introduce the notion of LDAP templates.

Algorithm isContained (b, C) {
 /* C = {C1, C2 …. Cn } */
 for each Ci in C
 if (Si = b)
 return TRUE
 if (!isSuffix (Si, b))
 continue
 for Rj in { Ri

1, R
i
2…. Ri

Ci }
 if (isSuffix (Rj, b))
 return FALSE
 return TRUE
 return FALSE
}

Typical directory applications have a finite number of
prototypes (templates) for generating query filters. In this
paper templates are represented using the LDAP filter
representation of [3] except that the assertion value is
replaced by the “_” character. Examples are
(&(cn=_)(ou=research)), (uid=_), (&(sn=_)

(givenName=_)), (sn=_*). The last template is used
to generate substring queries for the surname attribute.

In template based containment, queries belonging to
only a specified set of templates are replicated and
answered. Templates simplify the query containment
problem in several ways. Firstly, number of query
comparisons is reduced by eliminating containment
checks against templates which can not potentially answer
the query. E.g. a query of template (&(sn=_)(ou=_))
can not answer a query of template (sn=_). Secondly, for
all the remaining cross template comparisons, conditions
for containment can be computed apriori (Proposition 2 in
Section 4.1). E.g. query (age=X) can be answered by
query (age � Y) if (Y � X). Thirdly, answerability
against queries of the same template requires simply
comparing the corresponding assertion values. This is
formalized in Proposition 3 of Section 4.1. Section 4
discusses LDAP query and filter containment in detail.

4. LDAP Query Containment

A query Q is termed as semantically contained in
another query Qs if, (i) the region defined by the base and
scope of Q falls completely inside the corresponding
region for Qs, (ii) the attributes in Q are a subset of
attributes in Qs, and (iii) the filter in Q is more restrictive
than the filter in Qs. This can be stated formally as:

where f � fs denotes that the filter f is semantically
contained in fs and the scope values are assumed to be
integers with BASE=0, SINGLE LEVEL=1, SUBTREE=2.

isparent (a, b) returns TRUE if the DN a is the parent of
DN b.

4.1. LDAP filter containment

An LDAP filter F1 is contained in F2 if it is impossible

for an entry to satisfy F1 but not F2. This condition is
formalized by Proposition 1.
Proposition 1: (General LDAP query containment)
An LDAP query filter F1 is semantically contained in
another query filter F2 if and only if the expression F1��F2
is inconsistent. �

For the expression F1��F2 to be inconsistent:
� x1,x2..xn such that F1��F2 is satisfied.
where attribute set {x1,x2..xn} is the union of attribute sets
appearing in the filters F1 and F2.
If F1��F2 = B1�B2 ….�Bk where each Bi is a conjunction
of simple predicates, then each Bi should be inconsistent,
i.e. the following boolean expression should evaluate to
TRUE.
(�x1,x2..xn(B1))�(�x1,x2..xn(B2))..�(�x1,x2..xn(Bk)) (1)
where �x1,x2..xn (Bi) represents the condition that Bi is not
satisfiable for any values of attributes x1,x2..xn in their
valid ranges. Let the set AXY represent the union of sets of
assertion values in LDAP filters X and Y

Proposition 2: (Cross template containment)
For positive LDAP filters F1 and F2 containing equality
and range predicates, the condition for F1 to be contained
in F2 can be expressed as a boolean expression in
conjunctive normal form (CNF) with each simple
predicate of the form:
(a � b) where a,b � AF1F2. �

Sketch of proof: The expression in (1) is a conjunction.
The condition for each Bi being inconsistent requires that
the predicates in Bi should impose an empty range for at
least one of the attributes appearing in it. Thus the
condition of each Bi being inconsistent is disjunctive and
(1) can be written in CNF. It is easy to show that a
possibly empty range for an attribute xj imposed by the
predicates of Bi is (axj, bxj], or [axj, bxj) where axj, bxj �
AF1F2. For this range to be empty: axj � bxj.

Example:
Let F1 be (a � p) � (b �q) and F2 be (a = x) � (b � y)
The condition for F1 to be contained in F2 is easily seen to
be (q � y). The example helps in illustrating proposition 2.
Here, AF1F2 = {p, q, x, y}.
F1 is contained in F2 if the following expression is
inconsistent.
F1��F2 = ((a � p) � (b �q) �(a >x) � (b<y)) � ((a � p) �
(b �q) �(a <x) � (b<y))

Algorithm QC (Q, Qs) {
 /* Q = (b, s, f, A), Qs = (bS, sS, fS AS) */
 if (bS = b & sS � s)
 goto NEXT
 else if (!issuffix (bS, b))
 return FALSE
 if (sS = SUBTREE)
 goto NEXT
 else if ((sS > s) & isparent (bS, b))
 goto NEXT
 return FALSE
NEXT:
 if (A ⊆ As & f � fs)
 return TRUE
 return FALSE
}

B1= ((a � p) � (b �q) �(a >x) � (b<y)).
B2= ((a � p) � (b �q) �(a <x) � (b<y)).
For B1 to be inconsistent: (x � p) � (q � y)
For B2 to be inconsistent: (q � y)
Thus F1 is contained in F2 if:
 ((x�p)�(q�y))�(q�y) �(q � y) �

In the worst case all m predicates in F1 might have to
be compared with all n predicates in F2. Thus checking
containment of an incoming filter with a cached filter
requires O (mn) such comparisons.

The following observation about positive filters
belonging to the same template can be made:
Proposition 3: (Filters of same template)
Let F1 and F2 be two positive LDAP query filters
belonging to the same template. F1 is contained in F2 if
each predicate in F1 is contained in the corresponding
predicate of F2. �

Containment problem for filters of the same template
having n predicates using Proposition 3 requires O(n)
comparisons of assertion values. The algorithms described
in the section can be extended for substring assertions by
interpreting substrings as range assertions. An
implementation of LDAP query containment algorithm
was contributed to OpenLDAP [17], the open-source
directory server, as proxy cache engine [16]. Proxy
caching is included in the OpenLDAP 2.2 distribution.

5. Replica Consistency

LDAP does not standardize a replication protocol for
keeping a replica in sync with the master copy, allowing
individual vendors to use their own proprietary protocols.
Section 5.1 describes the filter synchronization problem in
LDAP while Section 5.2 discusses existing and proposed
filter synchronization protocols for LDAP.

5.1. Filter synchronization

 To support consistency in filter based replicas, a means
of synchronizing content corresponding to a search
request is required. Let the set of DNs corresponding to
entries satisfying an LDAP search request, S, at instant t
be CS(t). The set of entries at t’ > t is then given by:

CS(t �) = CS(t) + ES
01(t, t�) − ES

10(t, t�)
 (2)

 add delete
where Es

01(t,t’) is the set of DNs of entries moving into the
content and Es

10(t,t’) is the set of DNs of entries moving
out of the content in the interval (t,t’). To obtain the
content at time t’ entries corresponding to these two terms
must be respectively added and deleted from the content
at time t. Additionally entries inside the content at t which

are changed during this interval but remain inside the
content (represented by Es

11(t,t’)) should be modified.
The last term in (2) requires the master server to

reliably compute the set of entries which are deleted from
the content of S. This requires history information to be
maintained either in the form of change logs, tombstones
(empty entries representing deleted entries) or a per-
session history of entries leaving the content.

In the absence of complete history information, it is
still possible to synchronize the content without a full
reload being required. This can be achieved by the server
returning DNs of all unchanged entries in the content and
entries changed since t which match the search criteria at
t’. Mathematically,

 CS(t �) = ES
un(t, t�) + ES

01(t, t �) + ES
11(t, t �) (3)

where Es
un(t,t’) represents DNs of the set of entries in the

initial content which remained unchanged in the interval
(t,t’).

5.2. The ReSync protocol

The persistent search control proposed in [15] is a

means of extending the LDAP search operation such that
the operation does not end after all the matching entries
have been sent. Instead the connection between the client
and server remains open over which subsequent changes
to the content are sent. While persistent search can
provide strong consistency for filter based replicas, it
requires a TCP connection per replicated filter which
might not scale for large replicas. Polling is a better mode
of update for information typically stored in directories.

The proposed mechanism is an extension of persistent
search to support polling mode for synchronization. The
client can specify the mode of update as polling or
notifications and optionally specify a cookie. The
following resync control is attached to a normal search
request:

reSyncControl = (mode, cookie)
The server (master) handles a resync request from the

client (replica in this case) as follows: (i) if cookie is null,
it is the initial request in an update session and the entire
content is sent, (ii) otherwise, the cookie is used to
identify the resync session and content updates
accumulated since the last request (stored as session
history) are sent, (iii) further if the mode is “persist”,
the connection with the client is maintained on which any
further change notifications can be sent, (iv) else if the
mode is “poll”, a cookie to resume the session is also
sent.

Each notification/update PDU contains an entry along
with a control specifying the action to be taken by the
client. If the action is add or modify, the complete entry
is sent, otherwise if the action is delete, only the DN of
the entry is sent. Note that an add action representing an

entry moving into the content could happen due to an add,
modify or modify DN operation at the master. Similarly
the delete action could take place due to an entry being
deleted, modified or renamed.
 When the server has incomplete history information,
unchanged entries (Es

un(t,t’) in (3)) are conveyed using the
retain action. A session can be ended by the client
sending a request with mode as “sync_end” or
abandoning a persistent search. The server can time out
sessions which have been inactive for more than an admin
time limit.

Figure 3: An example ReSync session

Figure 3 shows the message sequence chart for an

example session. Vertical lines representing lifetimes of
entries E1, E2…E5 are also shown. The length of a line
represents the life span of an entry. The duration that an
entry is in the content of a search request S, is shown by a
solid segment, while the duration which it spends outside
the content is shown by a dashed segment. The symbols A,
M, D, R correspond to the four update operations: add,
modify, delete and rename (modify DN). Note that update
corresponding to a modify DN which does not move an
“in content” entry “out” is a delete action for the old DN
(E3) followed by an add action for the new DN (E5).

ReSync protocol maintains session history of entries
leaving the content. The alternatives (described below)
either do not provide convergence or require unreasonably
large history information and/or synchronization traffic.
Some servers keep track of a deleted entry using a
tombstone - a hidden entry that keeps track of the state,
but not the data, of an entry that has been deleted.

Similarly change logs [18] use the directory itself to store
information about update operations.

A tombstone does not contain the original attributes of
the entry, and therefore it is impossible for the server to
determine if a deleted entry moved out of the content, thus
requiring transmission of all deleted entry DNs since the
last update. Change logs only contain information about
the changed attributes. If an entry is first modified out of
the content and then deleted, change logs are not sufficient
to determine whether the entry moved out of the content.
The ReSync protocol is lightweight and designed to
reduce synchronization traffic while providing
convergence guarantees.

6. Replica content determination

In subtree replication, a set of subtrees to be replicated
is identified based on long term spatial locality of access
patterns and configured to be replicated. Typically there is
no provision for allowing dynamic changes to the set of
replicated subtrees.

Similarly, for filter based replication, it is possible to
find a set of generalized filters (Section 6.1), which
capture the semantic and spatial locality of the access
pattern and statically configure them to be replicated.
However, since the replication unit is much smaller
compared to subtrees, it is feasible to dynamically update
the set of filters stored in the replica to improve hit-ratio
(Section 6.2).

6.1. Generalizing filters

User queries typically return very few entries for them
to be efficient units of replication. The meta-data size for
queries like (telephoneNumber=_) will be comparable to
the data size. Moreover, such queries will not take
advantage of any spatial/semantic locality in the access
pattern. However, generalized form of user queries can be
used to represent frequently accessed regions.

The following guidelines for generalizing filters based
on those in [12] have been used: (i) generalization based
on attribute components, (ii) generalization based on
natural hierarchy of filters. E.g. of generalized queries are
(telephoneNumber=261-758*), (&(div=X)(dept=_)).

6.2. Filter selection

In filter based replication, it is possible to dynamically
adapt to changes in access patterns. Authors of [12]
describe an efficient algorithm for improving hit-ratio
from stored filters. It works by maintaining statistics for
two lists of filters: the list of filters which is actually
stored and a list of candidate filters. For each user query,
the benefits of filters in both the lists are updated which

M

D

R

S, (poll, null)

cookie

E2, add
E3, add

E1, add

S, (poll, cookie)

M

E4, add
E1,E2,delete

E3, mod
cookie1

S, (persist, cookie1)

A

A

E3, delete
E5, add
abandon

Client(replica) Server(master) E1 E2 E3 E4 E5

might result in filters moving in and out of the lists.
Updating of the actual list, when a new query arrives, is
termed as evolution. If the benefit of the ‘candidates’
becomes larger than the ‘actuals’ by a specified amount, a
revolution is initiated in which the two lists are combined
and filters with the best benefits are chosen.

Using evolutions as described above requires frequent
updates to the stored filter list and is thus not suitable for a
replication scenario. The approach used in the case study
of Section 7 is to maintain ‘hit’ statistics for candidate
filters which is then used to perform a periodic update to
the list of stored filters by selecting filters with the best
benefit to size ratios. The benefit is defined as the number
of hits for a candidate since the last update, while size is
the estimated number of entries matching the filter. The
interval between updates depends on the type of query.
This is a simple means of approximating the expensive
revolutions of [12].

7. Replica Performance

Effectiveness of partial replication in improving
performance of directory enabled applications when
accessed from remote locations is considered. Subtree and
filter based partial replicas are compared on the basis of
hit-ratio, update traffic and processing overheads.

7.1. Directory and workloads characteristics

The IBM enterprise directory containing more than

half a million employee and organizational records has
been used to evaluate performance of replication models.
Each employee entry is approximately 6KB in size. The
enterprise directory is used by hundreds of applications
accessed from over 150 countries and different
geographies. The problem considered was to use partial
replication to improve performance for a geography
containing nearly 30% employees.

Most directory queries are accesses to the following
entities represented in the directory: people, departments
and locations. The employees are organized in the
directory on a country basis with all employees of a
country appearing as children of the country entry. This is
an example of a relatively flat namespace (Section 3.3).
Similarly all department entries belonging to a particular
division are placed under the division entry.

Table 1: Workload distribution

Type of query Approx %
contribution

(serialNumber=_) 58
(mail=_) 24

(&(dept=_)(div=_)) 16
(location=_) 2

Real workloads for two days of accesses were
considered. The distribution of query-types in the
workload is given in Table 1.

7.2. Hit ratio comparison

(a) Serial number query: Figure 4 shows that the filter
based model provides a hit-ratio of 0.5 with a replica size
which is less than 10% of the total person entries in the
directory. A subtree based replica can not selectively
replicate employee entries from a country. The entries in a
country are not accessed uniformly and semantic locality
can be captured in filters of the form
(serialnumber=_*_). This is the reason for filter based
replication performing better.

Figure 4: Hit ratio v/s replica size

(b) Department query: Not all departments in a division
are accessed uniformly. While a filter based replica stores
only the more beneficial departments, a subtree based
replica can either store all or none of the department
entries under a division. Since the replicated generalized
queries of this type are smaller in size, the dynamic filter
selection described in Section 6.2 can be used. Figure 5
shows the effect of reducing the revolution interval from
10000 to 6000. queries for filter based replication.

Figure 5: Hit-ratio v/s replica size.

(c) Other queries: Since the field <user> in <user>@
<cc>.xyz.com is not organized (unlike the fields in
serialnumber attribute), filter based caching can not
describe the access patterns efficiently for this case.

The access rate of location entries was seen to be high
compared to the relatively small number of location
entries. Thus the entire location tree can be replicated
ensuring a hit ratio of 1 for this type of query while using
a very small fraction of the total replica size.

7.3. Update traffic

For filter based replica there are two components of the
update traffic, (i) the resync traffic corresponding to
currently stored filters, (ii) traffic associated with bringing
new filters to adapt to the access pattern. (ii) is attributed
to the revolutions described in 6.2. This component is not
present for the (serialnumber=_) query because
generalized filters in this case could have thousands of
entries, hence dynamic selection of filters is not
performed.

(a) Serial number query: Figure 6 compares update traffic
(in number of entries) for subtree and filter based
replication for a given hit-ratio. The resync protocol is
used by a filter based replica to reliably determine the
minimal set of updates to be sent. Thus the higher update
traffic for subtree based replicas is a direct consequence
of the large number of entries stored for the same hit-ratio.

Figure 6: Update traffic v/s hit ratio

(b) Department query: Department entries in the directory
have a very low update rate, thus the update traffic for
subtree based replication is negligible. However updates
for filter based replica are not negligible due to the second
component of update traffic mentioned above. This
component can be controlled by having larger intervals
between revolutions as shown by the lower curve
(R=10000).

Figure 7: Update traffic v/s hit ratio

7.4 Query processing overheads

Additional query processing overhead incurred in filter
based replication is directly proportional to the number of
stored filters. Along with replicating generalized filters
(templates) it is also advantageous to store recently
performed user queries. However these queries are simply
cached for a short time window and not updated. The
three curves in Figures 8 and 9 correspond to storing only
user queries, storing only generalized filters and storing
both. Storing a window of last 50 queries gives a 20% hit-
ratio. Since query hits are due to temporal locality in the
access pattern the hit-ratio curve saturates after 100
cached queries.

From Figure 8, it can be seen that storing both
generalized filters and user queries provides a hit ratio of
0.5 with just 200 stored filters for the
(serialnumber=_) query. Since query containment in
this case is a simple substring match, the processing cost
is minor.

Figure 8: Hit ratio v/s # of filters

Figure 9: Hit ratio v/s # of filters

8. Conclusions

A new directory replication model based on filters has

been proposed and compared with existing subtree based
replication models. The model consists of a directory
server replica storing entries and meta data corresponding
to one or more LDAP filters. Replicated filters are
generalized user queries which correspond to semantic
regions demonstrating locality of reference. The concept
of LDAP templates (query prototypes) has been
introduced to reduce the complexity of the query
containment problem. A filter synchronization protocol
which uses standard means of extending LDAP is
proposed. The protocol supports both polling and
notification modes of synchronization. The session history
based protocol reduces synchronization traffic and size of
historical data to be maintained compared to existing
techniques like changelogs and tombstones. Performance
of the proposed model is evaluated and compared with
subtree based models for a real enterprise directory using
real workloads. A hit ratio (percentage of queries
completely answered by the replica) of 0.5 is reported for
the proposed model while replicating less than 10% of the
employee directory for a typical query which requests an
employee entry matching a unique ID. The update traffic
is also considerably smaller than subtree based replicas.
Filter based partial replication can be used to significantly
improve performance of directory based applications.

9. References

[1] M Wahl, T Howes, S Kille, “RFC 2251: Lightweight
Directory Access Protocol (v3)”, http://www.ietf.org/rfc/
rfc2251.txt.
[2] M Wahl, A Coulbeck, T Howes, S Kille, “RFC 2252:
Lightweight Directory Access Protocol (v3): Attribute
Syntax Definitions”, http://www.ietf.org/rfc/rfc2252.txt.

[3] T Howes, “RFC 2254: The string representation of
LDAP search filters”, http://www.ietf.org/rfc/rfc2254.txt.
[4] Q Luo, S Krishnamurthy, C Mohan, H Pirahesh, H
Woo, B Lindsay, J Naughton, “Middle-Tier Database
Caching for e-Business”, ACM SIGMOD, 2002.
[5] Q Luo, J F Naughton, R Krishnamurthy, P Cao, and Y
Li, “Active Query Caching for Database Web Servers”,
ACM SIGMOD Workshop on the Web and Databases,
WebDB 2000.
[6] S Dar, M Franklin, B Jonsson, D Srivastava, M Tan.,
“Semantic Data Caching and Replacement”, Proceedings
of the 22nd VLDB Conference, 1996.
[7] P Deshpande, K Ramasamy, A Shukla, J Naughton,
“Caching Multidimentional Queries using Chunks”, ACM
SIGMOD 1998.
[8] Q Luo, J F Naughton, “Form-Based Proxy Caching for
Database-Backed Web Sites” VLDB Conference, Rome
2001.
[9] H V Jagadish, LVS Lakshmanan, D Srivastava,
“Revisiting the Hierarchical Data Model”, IEICE
Transactions on Information and Systems, Vol. E00-A,
No. 1, January 1999.
[10] H V Jagadish, LVS Lakshmanan, T Milo, D
Srivastava, D Vista, “Querying Network Directories”,
ACM SIGMOD Conference, Philadelphia, PA, June 1999.
[11] S Cluet, O Kapitskaia, D Srivastava, “Using LDAP
Directory Caches”, Proc. ACM Principles of Database
Systems,1999.
[12] O Kapitskaia, R T Ng and D Srivastava, “Evolution
and revolutions in LDAP directory caches”, Proceedings
of the International Conference on Extending Database
Technology (EDBT), 202-216, 2000.
[13] M Smith, “RFC 2798: Definition of the
inetOrgPerson LDAP object class”.
http://www.ietf.org/rfc/rfc2798.txt.
[14] T Howes, M Wahl, A Anantha, “RFC 2891: LDAP
Control Extension for Server Side Sorting of Search
Results”. http://www.ietf.org/rfc/rfc2891.txt
[15] M Smith et al "Persistent Search: A Simple LDAP
Change Notification Mechanism", draft-ietf-ldapext-
psearch-xx.txt, a work in progress.
[16] Apurva Kumar, “The OpenLDAP Proxy Cache”
http://www.openldap.org/pub/kapurva/proxycaching.pdf
[17] OpenLDAP Project, web page:
http://www.openldap.org
[18] G Good, L Poitou, “Definition of an Object Class to
Hold LDAP Change Records”, draft-good-ldap-
changelog-xx.txt, a work in progress.

