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Abstract

The global deployment of IP multicast has been slow due
to the difficulties related to heterogeneity, scalability, man-
ageability, and lack of a robust inter-domain multicast rout-
ing protocol. Application-level multicast becomes a promising
alternative. Many overlay multicast systems have been pro-
posed in recent years. However, they are insufficient in sup-
porting applications that require large-scale any-source mul-
ticast with highly varied host capacities and highly dynamic
membership. In this paper, we propose two capacity-aware
multicast systems that focus on host heterogeneity, dynamic
membership, scalability, and any source multicast. We extend
Chord and Koorde to be capacity-aware. We then embed im-
plicit degree-varying multicast trees on top of the overlay net-
work and develop multicast routines that automatically follow
the trees to disseminate multicast messages. The implicit trees
are well balanced with workload evenly spread across the net-
work. We also perform extensive simulations to evaluate the
proposed multicast systems.

1. Introduction

Multicast is an important function for efficient information
exchange among a distributed, dynamic cluster of heteroge-
neous nodes. IP Multicast [9, 8] was proposed as an exten-
sion of the Internet datagram service to support group-oriented
communication or multi-point packet delivery at the network
level. With IP Multicast, the data flow from a source node is
delivered efficiently to all interested receivers through a distri-
bution tree. The global deployment of IP multicast has been
slow due to the difficulties related to heterogeneity, scalability,
manageability, lack of a robust inter-domain multicast routing
protocol, and so forth.

In recent years, many research papers (e.g., [11, 5, 7, 13, 17,
2, 23]) pointed out the disadvantages of implementing multi-
cast at the IP level, and argued for an application-level over-
lay multicast service. More recent work (e.g., [6, 30, 15, 33,
25, 1, 16]) studied overlay multicast from different aspects.

There are four important design issues to be addressed in
an overlay multicast system.
• host heterogeneity: Member hosts may vary widely in

their capacities in terms of CPU power, memory, or network

bandwidth. Some may be able to support a large number of di-
rect children, but others may only support few.
• dynamic membership: Members may join and leave at

any time. The system must be able to efficiently maintain the
multicast tree for a dynamic group.
• any source multicast: The system should allow any mem-

ber to send data to other members. A multicast tree that is op-
timal for one source may be bad for another source. On the
other hand, one tree per member is too costly.
• scalability: The system must be able to scale to a very

large Internet group. It should be fully distributed without sin-
gle point of failure.

None of the existing systems meet the above four require-
ments.

To handle dynamic groups and ensure scalability, novel
proposals were made to implement multicast on top of P2P
overlay networks. For example, Bayeux [34] and Borg [31]
were implemented on top of Tapestry [32] and Pastry [22] re-
spectively, and CAN-based Multicast [20] was implemented
based on CAN [19]. The scheme of overlay multicasting can
be extended to other structured peer-to-peer networks. El-
Ansary et al. studied efficient broadcast in a Chord network,
and their approach can be adapted for the purpose of multi-
cast [10]. Castro et al. compares the performance of tree-based
and flooding-based multicast in CAN-style versus Pastry-style
overlay networks [4].

Host heterogeneity is not addressed in the above systems
that assume each node have the same number of children.
While overlay multicast can be implemented on top of overlay
unicast, they also have very different requirements. In overlay
unicast, low-capacity nodes only affect traffic passing through
them and therefore they create bottlenecks of limited impact.
In overlay multicast, all traffic will pass all nodes in the group.
The multicast throughput is decided by the node of the small-
est throughput, particularly in the case of reliable delivery. The
strategy of assigning an equal number of children to each inter-
mediate node is far from optimal. If the number of children is
set too high, the low-capacity nodes will be overloaded, which
slows the entire session down. If the number of children is set
too low, the high-capacity nodes will be under-utilized. To sup-
port efficient multicast, we should allow nodes in a P2P net-
work to have different numbers of neighbors.

Shi et al. proved that constructing a minimum-diameter
degree-limited spanning tree is NP-hard [27]. Central-
ized heuristic algorithms were proposed to balance mul-



ticast traffic among multicast service nodes (MSNs) and
to maintain low end-to-end latency [27, 26]. The algo-
rithms do not address the dynamic membership problem,
i.e., MSN join/departure. Overlay Multicast Network Infras-
tructure (OMNI) [3] dynamically adapts its multicast tree
to minimize the latencies to the entire client set. It is de-
signed for a single source and therefore not suitable for in-
teractive multicast applications such as distributed games.
Riabov et al. proposed a constant-factor approximation al-
gorithm for the problem of constructing a single-source
degree-constrained minimum-delay multicast tree [21]. It is
not a distributed algorithm, which is the focus of this pa-
per. Yamaguchi et al. described a distributed algorithm
that maintains a degree-constrained multicast tree for a dy-
namic group [29]. The single-tree approach leaves the ca-
pacities of the majority nodes (leafs) unused, which affects
the overall throughput in multi-source multicasting. In ad-
dition, a single tree may be partitioned beyond repair for a
highly dynamic group.

Given the above limitations, the existing multicast algo-
rithms are not sufficient in supporting distributed applications
that require large-scale any-source multicast with highly var-
ied host capacities and highly dynamic membership. This pa-
per proposes two capacity-aware multicast systems that sat-
isfy all four requirements discussed previously. We model
the capacity as the maximum number of direct children that
a node is willing to forward multicast messages. We extend
Chord [28] and Koorde [14] to be capacity-aware and they
are called CAM-Chord and CAM-Koorde, respectively.1 A
dedicated CAM-Chord or CAM-Koorde overlay network is
established for each multicast group. We then embed im-
plicit degree-varying multicast trees on top of CAM-Chord or
CAM-Koorde and develop multicast routines that automati-
cally follow the implicit multicast trees to disseminate multi-
cast messages. Dynamic membership management and Scala-
bility are inherited features from Chord or Koorde. Host het-
erogeneity and capacity-aware multicast are added features.

The rest of the paper is organized as follows. Section 2
gives an overview of our proposed systems. Section 3 and Sec-
tion 4 describe CAM-Chord and CAM-Koorde in details, re-
spectively. Section 5 discusses some related issues. Section 6
presents the the simulation results. Section 7 draws the con-
clusion.

2. Overview

Consider a multicast group G of n nodes. Each node x ∈ G
has a capacity cx, specifying the maximum number of direct
child nodes to which x is willing to forward the received mul-
ticast messages. The value of cx should be made roughly pro-
portional to the upload bandwidth of node x. Intuitively, x is
able to support more direct children in a multicast tree when it
has more upload bandwidth. In a heterogenous environment,
the capacities of different nodes may vary in a wide range.
Our goal is to construct a resilient capacity-aware multicast

1 CAM stands for Capacity-Aware Multicast.

service, which meets the capacity constraints of all nodes,
allows frequent membership changes, and delivers multicast
messages from any source to the group members via a dy-
namic, balanced multicast tree. No prior work possesses all
these features.

Our basic idea is to build a multicast service on top of a
capacity-aware stuctured P2P network. We focus on extend-
ing Chord [28] and Koorde [14] for such a service. The result-
ing systems are called CAM-Chord and CAM-Koorde, respec-
tively. The principles and techniques developed in this paper
should be easily applied to other P2P networks as well.

A CAM-Chord or CAM-Koorde overlay network is estab-
lished for each multicast group. All member nodes (i.e., hosts
of the multicast group) are randomly mapped by a hash func-
tion (such as SHA-1) onto an identifier ring [0, N − 1], where
the next identifier after N−1 is zero. N(= 2b) should be large
enough such that the probability of mapping two nodes to the
same identifier is negligible. Given an identifier x ∈ [0, N−1],
we define successor(x) as the node clockwise after x on the
ring, and predecessor(x) the node clockwise before x on the
ring. x̂ refers to the node whose identifier is x; if there is not
such a node, then it refers to successor(x). Node x̂ is said
to be responsible for identifier x. With a little abuse of no-
tation, the notations, x, x̂, successor(x), and predecessor(x)
may represent a node or the identifier that the node is mapped
to, depending on the appropriate context where the notations
appear. Given two arbitrary identifiers x and y, (x, y] is an
identifier segment that starts from (x + 1), moves clockwise,
and ends at y. The size of (x, y] is denoted as (y − x). Note
that (y − x) is always positive. It is the number of identi-
fiers in the segment of (x, y]. The distance between x and y
is |x− y| = |y − x| = min{(y − x), (x− y)}.

Before we overview the proposed CAMs, we briefly re-
view Chord and Koorde. Each node x in Chord has
O(log2 n) neighbors, which are responsible for identi-
fiers (x + 2i) mod N , ∀i ∈ [1.. log2 N ]. It takes O(log2 n)
hops with high probability to find a node responsible for any
given identifier. Koorde forms a de Brujin graph amongst
the nodes. With k neighbors per node, it finds a node re-
sponsible for any given identifers in O(logk n) hops with
high probability. Readers are referred to the original pa-
pers for more details.

Our first system is CAM-Chord. Different from Chord, the
number of neighbors of a node in CAM-Chord is related to
the node’s capacity. Not all nodes have the same number of
neighbors. In particular, each node x maintains O(cx

log n

log cx

)

neighbors that are responsible for the following identifiers,
(x + j × ci

x) mod N , ∀j ∈ [1..cx − 1], ∀i ∈ [0.. log N

log cx

− 1].2

Node x selects cx neighbors as its direct children in the multi-
cast tree and each of the cx neighbors handles a subtree of sim-
ilar size. The robustness of the system comes from the main-
tenance protocol of Chord.

2 There is a disparity between the number of neighbors, cx
log n

log cx
, and the

number of identifiers, cx
log N

log cx
. That is because some neighbors will be

responsible for more than one of those identifiers, similar to the same dis-
parity in the original Chord.



The second system is CAM-Koorde, which differs from
Koorde in both the number of neighbors and how the neigh-
bors are calculated. The difference is critical in constructing
balanced multicast trees. Again, nodes have different numbers
of neighbors if their capacities are different. Each node x has
cx neighbors, and the neighbor identifiers are derived by shift-
ing x one or more bits to the right and then replacing the high-
est bits with a certain number. In comparison, Koorde shifts x
one digit (base k) to the left and replaces the lowest digit. This
subtle difference makes sure that CAM-Koorde spreads neigh-
bors of a node evenly on the identifier ring while neighbors in
Koorde tend to cluster together.

CAM-Chord maintains a larger number of neighbors than
CAM-Koorde (by a factor of O( log n

log cx

)), which means larger
maintenance overhead. On the other hand, CAM-Chord is
more robust and flexible because it offers backup paths in
its topology [12]. The two systems achieve their best perfor-
mances under different conditions.
• If node capacities are small, CAM-Koorde is not re-

silient against frequent membership changes. The overlay net-
work may even be partitioned as nodes depart. CAM-Chord
is a better choice in such an environment because of denser
connectivity. In addition, our simulations in Section 6 show
that CAM-Chord has much shorter delivery paths than CAM-
Koorde when node capacities are small.
• If node capacities are large, the maintenance overhead

of CAM-Chord is significant. Meanwhile the robustness of
CAM-Koorde is improved with an increased number of neigh-
bors. Furthermore, when the node capacities reach certain
level, the average path lengths of CAM-Chord and CAM-
Koorde become more or less the same, as demonstrated by our
simulations. Hence, CAM-Koorde becomes a better choice.

3. CAM-Chord Approach

CAM-Chord is an extension of Chord. It takes the capac-
ity of each individual node into consideration. We first de-
scribe CAM-Chord as a regular P2P network that supports the
lookup routine, and then present our multicast algorithm on
top of CAM-Chord.

The members of a multicast group use the lookup routine
to join and leave the overlay topology. CAM-Chord is not de-
signed for data sharing among peers as most other P2P net-
works (e.g., Chord [28]) do. There are NO data items associ-
ated with the identifier space. Each multicast group forms its
own CAM-Chord network. The CAM-Chord overlay provides
the foundation for dynamic capacity-aware multicasting.

3.1. Neighbors

Instead of maintaining O(log n) neighbors as Chord does,
each node x in CAM-Chord maintains O(cx

log n

log cx

) neigh-
bors, which are nodes responsible for the identifiers (x +
j × ci

x) mod N , denoted as xi,j , ∀j ∈ [1..cx − 1], ∀i ∈
[0.. log N

log cx

− 1]. i and j are called the level and the sequence
number of xi,j . The top two levels of neighbor identifiers are
illustrated in Figure 1. There are (cx − 1) neighbor identifiers

neighbor identifiers at the top level

neighbor identifiers at the second top level

x

segments of identifiers 

Figure 1: Neighbor identifiers at the top two levels
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Figure 2: Neighbors of x. N = [0..31]. cx = 3.

at each level. The higher the level is, the wider the neighbor
identifiers are separated. Let x0,0 = x.

Figure 2 illustrates an 8-node example of the CAM-Chord
network. The neighbors of node x are shown by arrows. The
name space is [0..31], and the capacity of x is 3. x0,1 = x + 1,
x0,2 = x + 2, and x1,1 = x + 3. Node x + 4 are responsi-
ble for these identifiers. It means that x̂0,1, x̂0,2, and x̂1,1 re-
fer to the same node x+4. Similarly, x̂1,2 refers to node x+8,
x̂2,1 refers to node x+13, x̂2,2 refers to node x+18, and x̂3,1

refers to node x + 29.
Consider an arbitrary identifier k. Let

i = b
log (k − x)

log cx

c (1)

j = b
k − x

ci
x

c (2)

It can be easily verified that xi,j is the neighbor identifier of x
that is counter-clockwise closest to k, which means x̂i,j is the
neighbor node of x that is counter-clockwise closest to node
k̂.3 We call i the level and j the sequence number of k with
respect to x.

3.2. Lookup Routine

CAM-Chord requires a lookup routine in order to support
group management for a dynamic multicast session. This rou-
tine returns the address of node k̂ responsible for a given iden-
tifier k. x.foo() denotes a procedure call to be executed at x.

3 It is possible that x̂i,j = k̂ if there is not a node between xi,j and k on
the ring.



It is a local (or remote) procedure call if x is the local (or a re-
mote) node. The set of identifiers that x is responsible for is
(predecessor(x), x]. The set of identifiers that successor(x)
is responsible for is (x, successor(x)]. An identifier region
(x, y] starts from x, moves clockwise, and ends at y.

x.LOOKUP(k)
1. if k ∈ (x, successor(x)] then
2. return the address of successor(x)
3. else
4. i← b log k−x

log cx

c

5. j ← bk−x
ci

x

c

6. if k ∈ (x, x̂i,j ] then
7. return the address of x̂i,j

8. else
/* forward request to next hop xi,j */

9. return x̂i,j .LOOKUP(k)

First the LOOKUP routine checks if k is between x
and successor(x). If so, LOOKUP returns the address of
successor(x). Otherwise, it calculates the level i and the se-
quence number j of k. If k falls between x and x̂i,j , which
means x̂i,j is responsible for the identifier k, LOOKUP re-
turns the address of x̂i,j . On the other hand, if x̂i,j pre-
cedes k, then x contacts x̂i,j to handle the request, which
makes a greedy progress to move the request closer to k be-
cause x̂i,j is x’s closest neighbor preceding k.

As an example, consider the CAM-Chord ring in Figure 2.
Suppose node x wants to find the address of the node that is
responsible for identifier x + 25. The level and the sequence
number of identifier x+25 are both 2 with respect to x. Recall
that x̂2,2 refers to node x+18 and it precedes x+25. By Line 9,
the request is forwarded to the node (x+18). Node x+18 re-
peats the above process by executing (x + 18).LOOKUP(k).
Suppose the capacity of node (x + 18) is also 3. The level and
the sequence number of identifier x + 25 are 1 and 2 with re-
spect to x+18. Because ̂(x + 18)1,2 refers to the node x+26

and x + 25 ∈ (x + 18, x + 26], by Lines 6-7, the address of
node x + 26 is returned.

Due to space limitation, we omit the proof for all theorems.

Theorem 1 Let cx, for all nodes x, be independent random
variables of certain distribution. The expected length of a
lookup path in CAM-Chord is O(− ln n

ln E( ln cx

cx
)
).

Theorem 2 Suppose the node capacity cx follows a uniform
distribution with E(cx) = c. The expected length of a lookup
path in CAM-Chord is O( log n

log c
).

3.3. Topology Maintenance

Because CAM-Chord is an extension of Chord, we use the
same Chord protocols to handle member join/departure and to
maintain the correct set of neighbors at each node. The only
difference is that our LOOKUP routine replaces the Chord
LOOKUP routine and the rest of the Chord protocols stay the
same. The details of the protocols can be found in [28].

3.4. Multicast Routine

On top of the CAM-Chord overlay, we want to implicitly
embed a dynamic, roughly balanced multicast tree for each
source node. The outdegree of each intermediate node in a tree
does not exceed its capacity. It should be emphasized that no
explicit tree is built. Given a multicast message, the source x
executes a MULTICAST routine, which sends the message to
cx selected neighbors. Upon receipt of a multicast message,
a node will also executes the same MULTICAST routine and
the message are propagated to more nodes. The collective ex-
ecution of the MULTICAST routine at different nodes makes
sure that the message follows a capacity-aware multicast tree
to reach every member.

Let msg be a multicast message and k indicate an identifier
region (x, k]. The goal of x.MULTICAST(msg, k) is to de-
liver msg to all nodes in (x, k]. The basic idea is described as
follows: x chooses cx child neighbors that split (x, k] into cx

subregions as even as possible, as illustrated in Figure 1. Each
subregion begins from one chosen neighbor and ends with the
next clockwise chosen neighbor. x sends each chosen neigh-
bor a control message, which carries the message as well as
the subregion assigned to this neighbor. After the neighbor re-
ceives the message, it forwards the message using the same
method recursively until the size of the subregion is reduced
to zero. The process divides (x, k] into non-overlapping subre-
gions and hence no node will receive the message twice. The
key is how to select the child neighbors.

x.MULTICAST(msg, k)
1. if k = x then
2. return
3. else
4. i← b log k−x

log cx

c

5. j ← bk−x
ci

x

c

/*select children from level-i neighbors
preceding k*/

6. k′ ← k
7. for m = j down to 1
8. x̂i,m.MULTICAST(msg, k′)
9. k′ ← xi,m − 1

/* select (cx − j − 1) children from
level-(i− 1) neighbors */

10. l← cx

11. for m = cx − j − 1 down to 1
12. l← l − cx

cx−j
/* for even separation */

13. x̂i−1,dle.MULTICAST(msg, k′)
14. k′ ← xi−1,dle − 1

/* select x’s successor */
15. x̂0,1.MULTICAST(msg, k′)

To split (x, k] evenly, x first calculates the level i and the se-
quence number j of k with respect to x (Line 4-5). Then neigh-
bors x̂i,m (∀m ∈ [1..j]) at the ith level preceding k are se-
lected as children of x in the multicast tree (Line 6-9). We also
select x’s successor, which is x̂0,1 (Line 15). Since j + 1 may
be less than cx, in order to fully use x’s capacity, cx − 1 − j
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Figure 3: Multicast Spanning Tree

neighbors at the (i−1)th level are chosen; Line 10-14 ensures
that the selection is evenly spread at the (i − 1)th level. Be-
cause the algorithm selects neighbors that divide (x, k] as even
as possible, it constructs a multicast tree that is roughly bal-
anced. At Line 9, we optimize the code by using k ← xi,m−1
instead of k ← x̂i,m − 1. That is because there is no node in
(xi,m, x̂i,m) by the definition of x̂i,m.

Consider the CAM-Chord topology in Figure 2. Accord-
ing to the algorithm of MULTICAST, the implicit multicast
tree rooted at x is shown in Figure 3. A source node x ini-
tiates the delivery of a multicast message msg by calling
x.MULTICAST(x−1,msg), whose distributed, recursive ex-
ecution makes sure that every member node will receive one
and only one copy of the message. By Line 4-5, the level and
the sequence number of x− 1 is 3 and 1 respectively. By Line
6-9, x forwards msg to x̂3,1 (node x + 29) with assigned seg-
ment (x+29, x+31]. By Line 10-14, x forwards msg to x̂2,2

(node x + 18) with assigned segment (x + 18, x + 26]. By
Line 15, x forwards msg to x̂0,1 (node x + 4) with assigned
segment(x + 4, x + 17]. After (x + 18) receives the mes-
sage, the execution of (x + 18).MULTICAST(x + 26, msg)
will forward the message to nodes (x+21) and (x+26). Sim-
ilarly, (x + 4).MULTICAST(x + 17, msg) will forward the
message to nodes (x + 8) and (x + 13).

Because each multicast group forms its own overlay net-
work, multicast is implemented as broadcast. The broadcast in
Chord has been studied in [10]. Given a message, the source
node forwards it to all M = O(log n) neighbors, and each
neighbor x is responsible for delivering the message to the
identifier segment (x, y), where y is the next neighbor after
x. More specifically, x forwards the message only to its neigh-
bors in (x, y), and these neighbors are then responsible for
delivering the message to smaller segments in a similar way.
This process repeats until all nodes receive a copy of the mes-
sage. Because the nodal degree and the tree depth are both
O(log n), the multicast tree is not optimal. Consider the first
hop from the root to its neighbors. Because the size of (x, y)
ranges from N/2 to N/2M , the depths of the root’s subtrees
range from O(log n) to O(1). Therefore, the whole multicast
tree is not balanced. Moreover, any subtree is not balanced due
to the same reason that the spacing between Chord neighbors
varies exponentially. At the hth level of the multicast tree, the
number of children per node ranges from 1 to (M−h) [10], in-
dependent of the node’s capacity.

Our multicast algorithm is similar to the algorithm of [10]
but has differences to make the multicast trees better balanced
and capacity-aware. First of all, in a CAM-Chord multicast
tree, the number of children for an internal node is always

equal to the node’s capacity as long as the node is not at the
bottom levels of the tree where there are not enough child
nodes to fill up the capacities of parent nodes. Second, if the
capacities of all nodes are the same, our algorithm still per-
forms differently than [10]. It balances the tree by making sure
that the number of children per node does not vary from sub-
tree to subtree or from level to level as long as the node is not
at the bottom levels of the tree. The tree depth is O( log n

log c
) if the

nodes have the same capacity c. This property is due to Lines
6-14, which choose the children of a node such that they are
as evenly spaced as possible. The cost for capacity awareness
and better balanced trees is that each node has more neigh-
bors than Chord.

Theorem 3 Let cx, for all nodes x, be independent random
variables of certain distribution. The expected length of a mul-
ticast path in CAM-Chord is O(− ln n

ln E( ln cx

cx
)
).

Theorem 4 Suppose the node capacity cx follows a uniform
distribution and E(cx) = c. The expected length of a multi-
cast path in CAM-Chord is O( ln n

ln c
).

4. CAM-Koorde Approach

This section proposes CAM-Koorde. For any node x in
CAM-Koorde, its number of neighbors is exactly equal to its
capacity cx. The maintenance overhead of CAM-Koorde is
smaller than that of CAM-Chord due to a smaller numbr of
neighbors.

Like Koorde, CAM-Koorde embeds the Bruijn graph in the
identifier ring. On the other hand, it has two major differences
from Koorde, which are critical to our capacity-aware multi-
cast service.
• The first difference is about neighbor selection. The

neighbor identifiers of a node x in Koorde are derived by shift-
ing x one digit (base k) to the left and then replacing the last
digit with 0 through k. The neighbor identifiers differ only at
the last digit. Consequently they are clustered and often re-
fer to the same physical node. For the purpose of multicast,
we want the neighbors to spread evenly on the identifier ring.
The neighbor identifiers of a node x in CAM-Koorde are de-
rived by shifting x one or more bits to the right and then re-
placing the high-order bits with 0 through certain number. The
neighbor identifiers differ at the high-order bits, and therefore
they are evenly distributed on the identifier ring.
• The second difference is about the number of neighbors.

Koorde requires every node to have the same number of neigh-
bors. CAM-Koorde allows nodes to have different numbers of
neighbors.

4.1. Neighbors

Let N = 2b. In CAM-Koorde, x has cx neighbors, which
are categorized into three groups. All computations are as-
sumed to be modulo N .
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• The basic group has four neighbors. Two are x’s prede-
cessor and successor. The other two are the nodes responsible
for identifiers (x/2) and 2b−1 + (x/2), respectively.
• After the basic group, there are cx − 4 remaining neigh-

bors. Let s = blog(cx−4)c. If s > 1, we shall shift x by s bits
to the right to derive the neighbor identifiers.4 If s > 1, then let
t = 2s; otherwise let t = 0. The neighbors in the second group
are the nodes responsible for identifiers (i × 2b−s + x/2s), ∀
i ∈ [0..t− 1].
• After the basic and second groups, there are t′ = cx −

4 − t remaining neighbors. Let s′ = s + 1. The neighbors in
the third group are the nodes responsible for identifiers (i ×
2b−s′

+ x/2s′

),∀i ∈ [0..t′ − 1].
It is required that cx ≥ 4. The basic group is mandatory.

The optional second and third groups pick up the remaining
neighbors.

An example is given in Figure 4, showing the neighbors of
node 36 (100100) whose capacity is 10. The binary represen-
tation of the node identifier is given in the parentheses. The
basic group is

{35 (100011), 37 (100101), 18 (010010), 50 (110010)}

The second group is

{9 (001001), 25 (011001), 41 (101001), 57 (111001)}

The third group is

{4 (000100), 12 (001100)}

4.2. Lookup Routine

Definition 1 Given two b-bit identifiers x and k, if an l-bit
prefix of x matches an l-bit suffix of k, we say x and k share l
ps-common bits. x = k if the two share b ps-common bits.

Similar to CAM-Chord, a lookup routine is needed in
CAM-Koorde for member join/departure. First consider an
N -node network with every identifier having a corresponding
node. Given an identifier k, suppose node x wants to query for
the address of node k. The lookup routine forwards the lookup
request along a chain of neighbors whose identifiers share pro-
gressively more ps-common bits with k. Starting from x, we

4 If s = 1, it means to shift one bit. The basic group already does that.

identify a neighbor that has the longest prefix matching the
suffix of k. More specifically, if the third group is not empty
and a third-group neighbor can be derived by selecting the
(blog(cx − 4)c + 1) bits of k that precedes the current ps-
common bits and shifting them from the left into x, then the
lookup request is forwarded to this neighbor. Otherwise, if the
second group is not empty and a second-group neighbor can
be derived by selecting the blog(cx−4)c bits of k that precedes
the current ps-common bits and shifting them from the left into
x, then the lookup request is forwarded to this neighbor. Oth-
erwise, we forward the request to a first-group neighbor that
increases the number of ps-common bits by one. To determine
each subsequent node on the forwarding path, a similar pro-
cess repeats by shifting more bits of k into the identifier of the
next hop receiver. After at most b hops, the request can reach
node k.

Now suppose n¿ N , which is normally the case. We still
calculate the chain of neighbor identifiers in the above way,
which essentially transforms identifier x to identifier k in a se-
ries of steps, each step adding one or more bits from k. Once
the next neighbor identifier y on the chain is calculated, the re-
quest is forwarded to ŷ, which in turn calculates its neighbor
identifier that should be the next on the forwarding path and
then forwards the request.

The pseudo code of the LOOKUP routine is shown below.
It uses the high-order bits of the node identifier to match the
low-order bits of k, which is different from Koorde’s routine
and is critical for our multicast routine, to be discussed shortly.

x.LOOKUP(k)
1. if k ∈ (predecessor(x), x] then
2. return the address of x
3. if k ∈ (x, successor(x)] then
4. return the address of successor(x)
5. let m1 be the number of ps-common bits shared

by x and k
6. find the neighbor y that shares the largest number

m2 of ps-common bits with k
7. if m1 ≤ m2 then
8. return y.LOOKUP(k)
9. else
10. if |k − predecessor(x)| < |k − successor(x)| then
11. return predecessor(x).LOOKUP(k)
12. else
13. return successor(x).LOOKUP(k)

Koorde uses Chord’s protocols with a new LOOKUP rou-
tine for node join/departure, so does CAM-Koorde.

4.3. Multicast Routine

When a node receives a multicast message, it forwards the
message to all neighbors except those that have received or are
receiving the message. Because neighbor connections are bidi-
rectional, it is easy for a node to perform the checking through
a short control packet. The overhead is negligible when the
message is large, e.g., a video file. Note that a node does not
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have to wait for the entire message to arrive before forward-
ing it to neighbors. The forwarding is done on per packet ba-
sis, but the checking is performed only for the first packet of a
message, which carries the message header. The pseudo code
of the MULTICAST routine is shown below.

x.MULTICAST(msg)
1. for each neighbor y do
2. if y has not received or is not receiving msg then
3. y.MULTICAST(msg)

We give an example based on the CAM-Koorde topol-
ogy in Figure 4. For simplicity, assume the node capacities
are all 10. An implicit multicast tree is shown in Figure 5,
which is rooted at node 36. When the source node 36 ini-
tiates the delivery of a multicast message msg by calling
MULTICAST(msg), it forwards the message to all its neigh-
bors, nodes 9,12,18,25,35,37,41,50,57, and 4. The neighbors
then forward the received message to their neighbors that have
not received the messages, forming an implicit multicast tree.

Theorem 5 Let cx, for all nodes x, be independent random
variables of certain distribution. The expected length of a mul-
ticast path in CAM-Koorde from a source node to a member
node is O(log n/E(log cx)).

Theorem 6 Suppose the node capacity cx follows a uniform
distribution and E(cx) = c. The expected length of a mul-
ticast path in CAM-Koorde from a source node to a member
node is O(log n/ log c)).

5. Discussion

5.1. Tree building versus flooding

To accomplish application-level multicast based on struc-
tured P2P networks, there are two general approaches: tree
building and flooding, categorized by [4]. In the approach of
tree building, nodes from different multicast groups partici-
pate in a single overlay network, and each group forms a mul-
ticast tree on top of the overlay network by using reverse path
forwarding. In the approach of flooding, each group forms its
own overlay network, which transforms multicast to broad-
cast within the overlay. We call the single overlay network in
the tree-building approach as global overlay, in order to distin-
guish it from the per-group ovelays in the flooding approach.

Castro et al. performed extensive simulations to evaluate
the two approaches by using both Pastry and CAN [4]. The

paper concluded that building per-group overlays incurs sig-
nificantly more overhead than building per-group trees on a
global overlay. Therefore, the tree-building approach is a bet-
ter choice in general.

On the other hand, there also exist several common sit-
uations where the flooding approach is preferred. First, as
pointed out in [4], due to administrative reasons, it may be un-
desired for external nodes to relay the multicast traffic. Fur-
thermore, the tree-building approach needs to maintain the
multicast tree not only when a group member changes but also
when a non-group member that is in the tree leaves the over-
lay.

Second, the end users may not always stay in the global
overlay in anticipation for possible future multicast commu-
nication. The observations in [24] showed that over 20% of
the connections last 1 minute or less and 60% of the IP ad-
dresses keep active in the FastTrack P2P system for no more
than 10 minutes each time after they join the system. If the
common pattern of end users is to launch an overlay multicast
software (possibly via a browser) before joining a multicast
group and quit the software when leaving the group, then the
overhead saving by a global overlay may be jeopardized be-
cause ad-hoc users have to join the global overlay anyway be-
fore joining multicast trees and the global overlay has a much
larger size than the per-group overlays.

Third, the flooding approach distributes forwarding work-
load more evenly over all group members. In the tree-building
approach, there is one multicast tree per group. The multicast
messages from group members travel to the root first and then
disseminate to all other nodes. An internal node in the tree
forwards every message, while a leaf node never forwards a
message. Let k be the average number of children and M be
the total size of all messages. If k > 2, then the majority of
nodes will be leaves. The average forwarding load of an in-
ternal node is O(kM); the forwarding load of a leaf node is
zero. In the flooding approach, there is one implicit tree per
node. Each node serves as an internal node in some implicit
trees and a leaf in other trees. Every node in the group re-
ceives M traffic. Suppose there are n nodes. The total volume
of forwarding load is therefore nM , and this load is spread
among all nodes. If the traffic sources are well distributed,
most nodes are likely to have comparable forwarding load,
which is O(nM/n) = O(M).

The proposed CAMs fall in the flooding category. We are
currently investigating the capacity-aware multicast problem
following the tree-building approach. An observation is that
the multicast tree is constrained by the node capacities but the
global overlay is not. How to match the disparity raises some
interesting design issues.

5.2. Latency and Geography

The overlay connections between neighbors may have very
different delays. Two neighbors may be separated by transcon-
tinental links, or they may be on the same LAN. There exist
some approaches to cope with geography, for example, Prox-
imity Neighbor Selection and Geographic Layout. With Prox-
imity Neighbor Selection, nodes are given some freedom in



choosing neighbors based on other criteria (i.e. latencies) in
addition to the arithemic relations between their identifiers.
With Geographic Layout, node identifiers are chosen in a ge-
ographically informed manner. The main idea is to make geo-
graphically closeby nodes form clusters in the overlay. Read-
ers are referred to [18, 12] for details.

Extension to the existing P2P networks, CAMs can natu-
rally inherit most of those features without much additional
effort. Take CAM-Chord as an example. Although the set
of neighbors is fixed in our description, nodes actually can
have some freedom in choosing their neighbors. A node x
can choose any node whose identifier belongs to the segment
[x+ j× ci

x, x+(j +1)× ci
x) as the neighbor xi,j .5 Given this

freedom, some heuristics (e.g., least delay first) may be used
to choose neighbors to promote geograhpic clustering.

6. Simulation

Throughput and latency are the two major performance
metrics for a multicast application. We evaluate the perfor-
mance of CAMs from these two aspects. We simulate multi-
cast algorithms on top of CAM-Chord, Chord, CAM-Koorde,
and Koorde, respectively. The identifier space is [0, 219). If
not specified otherwise, the default size of a multicast group
(and thus the size of the overlay network) is 100,000, and
the node capacities are taken from [4..10] with uniform prob-
ability. The upload bandwidth of nodes are randomly dis-
tributed in a default range of [400,1000] kbps. In our simu-
lation, cx = bBx/pc, where Bx is the node’s upload band-
width and p is a system parameter of CAMs, specifying the
desired bandwidth per link in the multicast tree. By varying
the value of p, we can construct CAMs with different average
node capacity, which means different average number of chil-
dren per non-leaf node and consequently different tree depth
(latency).

6.1. Throughput

We compare the sustainable throughput of multicast sys-
tems based on CAM-Chord, Chord, CAM-Koorde, and Ko-
orde. Throughput is defined as the rate at which data can be
continuously delivered from a source to all other nodes. Due
to limited buffer space at each node, the sustainable multicast
throughput is decided by the link with the least allocated band-
width in the multicast tree. CAM-Chord and CAM-Koorde
produce much larger throughput because a node’s capacity cx

(which is the number of children in the multicast tree) is ad-
justable based on the node’s upload bandwidth. The primary
advantage of CAMs over the Chord/Koorde is their ability to
adapt the overlay topology according to host heterogeneity.

Figure 6 compares the throughput of CAM-Chord, Chord,
CAM-Koorde, and Koorde with respect to the average number
of children per non-leaf node in the multicast tree. CAMs per-
form much better. Their throughput improvement over Chord
and Koorde is 70-80% when the nodes’ upload bandwidths

5 The lookup and multicast routines need to be modified superficially.
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Figure 6: Multicast throughput with respect to average number
of children per non-leaf node
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load bandwidth range

are chosen from a rather narrow range of [400, 1000] kbps. In
general, let [a, b] be the range of upload bandwidth. The up-
per bound b of the range is shown on the horizontal axis of
Figure 7, while the lower bound a is fixed at 400 kbps. The
figure shows that the throughput improvement by CAMs in-
creases when the upload-bandwidth range is larger, represent-
ing a greater degree of host heterogeneity. The simulation data
also indicate that the throughput ratio of CAM-Chord (CAM-
Koorde) over Chord (Koorde) is roughly proportional to a+b

2a
(which can be regarded as a measurement for the degree of
bandwidth heterogeneity).
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6.2. Throughput vs. Latency

We measure multicast latency by the average length of
multicast paths. Both throughput and latency are functions of
average node capacity. With a larger average node capacity
(achieved by a smaller value of p), the throughput decreases
due to more children per non-leaf node and the latency also
decreases due to smaller tree depth. Therefore, there exists a
tradeoff between throughput and latency, which is depicted by
Figure 8. Higher throughput can be achieved at the cost of
larger latency. Given the same upload bandwidth distribution,
the system’s performance can be tuned by adjusting p. The fig-
ure also shows that, for relatively small throughput (less than
46kbps in the figure) — namely, for large node capacities —
CAM-Koorde slightly outperforms CAM-Chord; for relatively
large throughput (greater than 46kbps in the figure) — namely,
for small node capacities — CAM-Chord outperforms CAM-
Koorde, which will be further explained in Section 6.4.

6.3. Path Length Distribution

Figure 9 and Figure 10 present the statistical distribution
of multicast path lengths, i.e., the number of nodes that can
be reached by a multicast tree in certain number of hops.
Each curve represents a simulation with node capacities cho-
sen from a different range. When the capacity range increase,
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Figure 11: Average path length with respect to average node
capacity

the distribution curve moves to the left of the plot due to
shorter multicast paths. The improvement in the distribution
can be measured by how much the curve is shifted to the left.
At the beginning, a small increase in the capacity range causes
significant improvement in the distribution. After the capacity
range reaches a certain level ([4, 10] in our simulations), the
improvement slows down drastically. Each curve has a single
peak, and the right side of the peak quickly decreases to zero.
It means that the vast majority of nodes are reached within
a small range of path lengths. We didn’t observe any multi-
cast path whose length was significantly larger than the aver-
age path length.

6.4. Average Path Length

Figure 11 shows the average path length with respect to the
average node capacity. We also plot an artificial line, 1.5 log n

logc

with n = 105, which upper-bounds the average path lengths
of CAM-Chord and CAM-Koorde, verifying Theorem 4 and
Theorem 6. From the figure, when the average node capac-
ity is less than 10, the average path length of CAM-Chord is
smaller than that of CAM-Koorde; when the average node ca-
pacity is greater than 12, the average path length of CAM-
Koorde is smaller than CAM-Chord. A smaller average path
length means more balanced multicast trees. Therefore, for
small node capacities, CAM-Chord multicast trees are more
balanced than CAM-Koorde multicast trees, and vice versa.
The reasons are explained as follows. On the one hand, a non-
leaf CAM-Koorde node x may have less children than cx be-
cause some neighbors may have already received the multi-
cast message from a different path. This tends to make the
depth of a CAM-Koorde multicast tree larger than that of a
CAM-Chord tree. On the other hand, a CAM-Chord node x
may split (x, k] into uneven subsegments (i.e., subtrees) with
a ratio up to cx (Lines 6-15 in Section 3.2). This ratio of un-
evenness becomes small when the node capacities are small.
Combining these two factors, CAM-Chord creates better bal-
anced trees for small node capacities; CAM-Koorde creates
better balanced trees for large node capacities.



7. Conclusion

This paper proposed two overlay multicast services, called
CAM-Chord and CAM-Koorde, which are capacity-aware ex-
tensions of Chord and Koorde, with multicast routines that
follow implicit, well-balanced trees to disseminate multicast
messages. One attractive property is that the number of mul-
ticast children of a node is bounded by its capacity, which
may vary widely among the nodes. It ensures that the mul-
ticast throughput is not degraded by overloaded low-capacity
nodes. With each source node having a separate, implicit mul-
ticast tree, the overall traffic is well balanced across the net-
work.

Based on the simulation results, CAM-Chord and CAM-
Koorde achieve their best performances under different condi-
tions, depending on membership change frequency and node
capacities. CAM-Chord works better with relatively small fre-
quency of membership change and small node capacities,
while CAM-Koorde works better with relatively large fre-
quency of membership change and large node capacities.
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