
HYPER: A Hybrid Approach to Efficient Content-based Publish/Subscribe

Rongmei Zhang and Y. Charlie Hu
Purdue University

West Lafayette, IN 47907
{rongmei, ychu}@purdue.edu

Abstract

Publish/Subscribe (pub/sub) is an important paradigm
for distributed content delivery. Traditionally, there have
been two approaches to supporting pub/sub service: subject-
based and content-based. Content-based pub/sub allows
fine-grained expressiveness, and thus is a more attractive so-
lution for content dissemination. However, the performance
of a content-based pub/sub network is bounded by the ex-
pensive matching cost of content messages. In this paper,
we propose a hybrid approach capable of minimizing both
the matching and forwarding overhead within the pub/sub
network and the delay experienced by clients receiving the
content. The hybrid approach aims to eliminate redundant
matching and forwarding inside the pub/sub network. In par-
ticular, it identifies a number of virtual groups by exploring
common subscription interests among clients, and messages
for each virtual group are only matched once at the group en-
try point. In addition, for each virtual group, the content de-
livery tree embedded in the underlying pub/sub network can
benefit from shortcutting forwarding-only paths. Simulations
have shown that the hybrid approach is highly effective in im-
proving the service efficiency and quality of a content-based
pub/sub system.

1 Introduction

Publish/Subscribe (pub/sub) systems [11] provide selec-
tive content distribution services. Clients specify content
of interests through “subscriptions”; any content matching
the subscriptions is delivered to the client when available.
Pub/sub is an important building block of various distributed
applications such as event notification systems and resource
discovery services.

There have been two basic approaches to pub/sub ser-
vices. In subject-based pub/sub systems, content is labeled
with pre-defined “subjects”, to which clients subscribe. Con-
tent for each subject is usually disseminated by multicast.
The other approach allows fine-grained content distribution.
Both subscriptions and content are specified with respect to
attributes; content delivery is performed based on match-
ing the attributes. These systems are called content-based
pub/sub systems. A classic example is a stock trade sys-

tem, where content can be described by three attributes:
(issue, price, volume) and a subscription can be specified as
a disjunction of predicates, e.g., (issue = Google, price <
100, volume > 1000).

A content-based pub/sub system usually consists of a net-
work of pub/sub servers that manage client subscriptions and
forward content to interested clients. Clients attach to these
servers in order to send or receive content messages. For the
efficiency of subscription propagation and content delivery,
the pub/sub network usually has a tree topology [4, 7].

Content-based pub/sub systems fall into two categories.
The first category groups similar content into clusters, and
each cluster is usually implemented by a multicast group, as
in subject-based pub/sub systems. Previous work have stud-
ied various content clustering schemes (e.g., [13]) and mul-
ticast channel assignment algorithms (e.g., [1]). Clients sub-
scribe to all clusters that overlap, possibly partially, with their
interests, and thus may receive unwanted content. Therefore,
the fine-grained expressiveness of content-based pub/sub sys-
tems has to be sacrificed to certain degrees in this “clustering”
approach. The second category achieves precise content de-
livery: content is only delivered to the clients whose subscrip-
tions match the attribute descriptions of the content [7, 4].
This “exact-match” approach retains the desirable features of
expressiveness and flexibility in content-based pub/sub sys-
tems, at the expense of potentially higher state maintenance
and processing cost.

Previous work on content-based pub/sub has focused on
the pub/sub system architecture and content matching. De-
signing efficient content matching algorithms is a key chal-
lenge in content-based pub/sub systems [2, 8], especially for
the “exact-match” approach. Since content messages are not
given explicit destination addresses, the pub/sub network is
responsible for determining the forwarding paths for each
message. At each step, this process amounts to evaluating
the predicates associated with the message, matching them
against the subscription table, and deciding the next-step
servers to forward the message. If the content space is defined
by a large number of complex predicates, message match-
ing can be a significant source of cost at the pub/sub servers.
The situation is exaggerated when there are large volumes
of published content so that the frequency of matching at



each pub/sub server is extremely high, or when the content is
very popular so that matching has to be performed by a large
number of pub/sub servers. In [8], a matching algorithm
aimed at fast message forwarding is proposed; it has been
shown to achieve matching time of from a few milliseconds
to tens of milliseconds for a content space with millions of
attribute constraints. The results imply that matching time is
significant compared with the network delay of message for-
warding, which usually is also on the magnitude of millisec-
onds. Therefore, from the perspective of the pub/sub system,
content matching can be a defining factor for the throughput
of the service network. Meanwhile, content matching can
also be an important contributor to the delay experienced by
clients receiving the content.

In both Gryphon [4] and Siena [7], matching is conducted
at each step of forwarding the content message from the pub-
lisher towards the subscribers, thus possibly reaching all the
servers in the pub/sub network. More recently, Kyra [6] pro-
poses to create multiple smaller pub/sub networks based on
content clustering so that each network is in charge of a sub-
set of the content space. In Kyra, each instance of content
distribution only involves the one pub/sub network associ-
ated with the content; however, it may still result in matching
at all the servers in the corresponding cluster. In all of these
systems, expensive matching operations may be invoked un-
necessarily many times, when a large volume of messages
are published with the same attribute descriptions, e.g., on-
line price monitoring of a particular issue of stock.

In this paper, we propose a hybrid pub/sub scheme that
minimizes both the amount of matchings inside the pub/sub
network and the delay to receive subscribed content at clients.
In particular, the pub/sub network dynamically identifies a
number of virtual groups based on common subscriptions.
For each of such groups, content messages only need to be
matched once at the entry point of the group, and subse-
quently forwarded to the other group members without any
more matchings. Similar to subject-based pub/sub systems,
each group uses a delivery tree for message dissemination.
However, the groups are defined on-demand according to
client subscriptions other than being pre-defined. Moreover,
these virtual groups co-exist with the original content-based
pub/sub system, and their correspondent delivery trees are
embedded inside the default pub/sub network. The virtual
groups collectively cover a subset (possibly all) of the con-
tent space, and the content outside their definition scope is
matched and forwarded by the default pub/sub network as
usual.

In addition, for each virtual group, the delivery tree can be
optimized to further reduce the forwarding overhead in the
pub/sub system. The rationale is similar to that of tunneling
in IP multicast [19]. If a particular path in the delivery tree
passes through one or more servers without branching off,
this path can be shortcut to bypass those intermediate servers.

In this way, message forwarding can be achieved by travers-
ing fewer servers. The benefit of shortcutting is also two-fold:
First, the efficiency of content delivery is improved for both
the pub/sub servers and the underlying network. Secondly,
clients can receive the content with reduced delay.

The rest of the paper is organized as follows. We first
give an overview of the hybrid pub/sub architecture, and then
discuss the techniques of on-demand grouping and tunneling
respectively, followed by results from extensive evaluations
of the hybrid approach. Finally we draw conclusions.

2 Design Overview

In this section, we describe the design rationale of the hy-
brid pub/sub architecture.

2.1 System Model

For clarity of presentation, we model the content space
Ω as a multi-dimensional space, with each dimension repre-
senting an attribute. A content message is uniquely described
as a point in such a space, while a subscription is a defined
as a rectangle. A published content message matches a sub-
scription if it is within its defining rectangle. This data model
is consistent with the assumptions made by existing pub/sub
systems in the literature [13, 14]. In practice, the content
space can be refined by designating a name, type and value
range to each dimension. In the examples we will show in this
section, the content space is a 1-D line and each subscription
is described as a range.

A content-based network is an overlay of pub/sub servers.
We assume that the pub/sub network is organized as a single-
source tree N , as show in Fig. 1. The tree root R is the
source of content. Clients (subscribers) are attached to the
tree leaves L0, . . . , Ln, which serve as their pub/sub prox-
ies. Each tree node maintains a subscription table, which
records the subscriptions from each downstream tree node
or clients. Subscription tables are created as client subscrip-
tions are aggregated and propagated from the leaves up the
tree. This process is similar to the subscription advertise-
ment in Siena [7]. Here we focus on the pub/sub tree N and
do not consider data dissemination from the leaf servers to
the clients, i.e., the actual subscribers. When a content mes-
sage is published, it is forwarded down the tree N as being
matching against the subscription tables at each step. In the
example by Fig. 1, if a message is described by the value of
3, it will be forwarded first to nodes K0 and K1, and then to
leaves L0 and L2. We do not assume any specific matching
algorithm in this paper.

2.2 Content-based Pub/Sub with Virtual Groups

In the hybrid pub/sub system, a virtual group Gi is identi-
fied as a sub-region of the content space shared by the same
subset of subscribers, i.e., the same leaf nodes in our model.

2



L0

R

L1 L2 L30−4 2−6 5−7

0−7,9−10

9−10

2−7K1K00−4,9−10

Figure 1. Pub/sub tree

L0

R

L1 L2 L30−4 2−6 5−79−10

G1 (2−4) G2 (5−6)

K0 K1

Figure 2. Virtual groups in the
pub/sub tree
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Figure 3. Virtual groups with short-
cuts

For the pub/sub tree in Fig. 1, there exist two virtual groups
G1 and G2, as highlighted by dash lines. Each leaf node Lj

can belong to multiple of such virtual groups. However, the
definition of each group in the content space is unique and
non-overlapping with other groups. We discuss how to find
these virtual groups in the next section.

Each virtual group Gi induces a sub-tree Ti embedded in
the original pub/sub tree N . The sub-tree consists of the leaf
servers Li0 , . . . , Lin in the virtual group and all the interme-
diate tree nodes on the paths from these leaves to the tree
root. For virtual group G1 in Fig. 2, its corresponding sub-
tree includes the root R, the two internal nodes K0 and K1

and leaves L0 and L1. As a content message is published
at the root R, it is first matched against the virtual groups.
If the message belongs to one of these groups, i.e., Gi, it
is forwarded down the associated sub-tree Ti without being
semantically matched at any other node. Otherwise, the mes-
sage is delivered by the default pub/sub tree N by matching
and forwarding at each step. It is easy to see that for an indi-
vidual message, the number of matching operations saved by
using the virtual group Gi is determined by size of the corre-
sponding sub-tree Ti. More precisely, the saving per message
is equal to the number of internal nodes Fi in the sub-tree.
Therefore, generally speaking, the more popular the virtual
group Gi, i.e., the more leaf servers that the group spans, the
more beneficial to use it for content delivery. In addition, the
value of Fi, and thus the matching saving, is also determined
by the specific topology of an individual sub-tree Ti.

In a real-world situation, the density of published mes-
sages in the content space can vary, A second factor in deter-
mining the potential benefit of creating a virtual group Gi is
the amount of messages Ci covered by the group. The more
messages to be delivered by the virtual group, the more sav-
ings in terms of matching operations. Overall, the benefit of a
virtual group in terms of saved matchings can be formulated
as: Fi ∗ Ci.

2.3 Efficient Forwarding in Virtual Groups

The benefit index of a virtual group can be improved by
optimizing the sub-tree structure. The delivery tree Ti for
each virtual group Gi is obtained from the original pub/sub
tree N . As a result, there may exist redundant forwarding
hops in the induced tree Ti as messages are passed through a
sequence of server nodes without being replicated. In this
case, the sequence of simply-forwarding hops can be re-
placed by a single hop from the entry node to the exit node
where the forwarding path branches off. The virtual group
G1 in Fig. 2 has two shortcuts, as shown in Fig. 3. This
type of shortcutting can further reduce the cost of the pub/sub
system by eliminating unnecessary messaging between the
pub/sub servers. The benefit of a shortcut is determined by
the number of forwarding hops being bypassed by the short-
cut.

Shortcuts may exist in any virtual group tree. However, it
is likely to find more shortcuts in sparse virtual groups shared
by only a few leaf servers. Therefore, although the bene-
fit from saved matching operations may be lower for sparser
groups, their overall benefit index can be improved by apply-
ing shortcutting. Similar to the achievable matching saving
by a virtual group Gi, the benefit of shortcutting is also tied
with the specific topology of the sub-tree Ti.

An extreme situation of shortcutting is a virtual group with
a single leaf, and thus a shortcut can be established from the
root to the leaf, bypassing all internal nodes. In this case, the
shortcut creates a unicast path.

2.4 Summary

The hybrid pub/sub architecture combines the strengths
of both subject-based and content-based systems. It is built
based on a content-based pub/sub network and retains the
expressiveness and flexibility of fine-grained content deliv-
ery. Meanwhile, virtual groups are extracted to exploit shared
subscription interests among clients. Virtual groups are used
as expressways for disseminating content of common inter-
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Figure 4. Subscription rectangles at leaf servers

ests. These expressways can be further expedited by adding
shortcuts between branching points in the delivery tree.

Virtual groups enhanced with shortcutting is potentially
beneficial for various group sizes. A virtual group can over-
lap with the underlying content-based pub/sub tree; in this
case, it serves as an express broadcast channel. On the other
hand, a virtual group can consist of a single shortcut from the
root to a leaf server and is equivalent of unicast. Neverthe-
less, virtual groups are more likely to include subsets of the
pub/sub network and act as optimized multicast channels.

So far we have assumed a single-sourced tree for the
content-based pub/sub system. However, the same approach
is applicable in other pub/sub network topologies. For exam-
ple, in a content-based network like Siena [7], there exists a
delivery tree for each publishing server; each of these trees
can benefit from exploring virtual groups and shortcutting, as
we have discussed in this section.

3 Implementing Virtual Groups

This section discusses the techniques related to creating
virtual groups in a content-based pub/sub network.

3.1 Virtual Group Identification

A virtual group Gi is defined by the subset of the multi-
dimensional content space shared by the bottom-level group
members: Li0 , . . . , Lin . Since subscriptions are described by
rectangles, the aggregated subscriptions Sj at a leaf pub/sub
server Lj can be described as a disjunction of individual rect-
angles. Fig. 4 shows an example of three leaf servers, with
their respective subscription rectangles highlighted by differ-
ent shades. Each leaf server can have many, possibly over-
lapping rectangles. In this simple example, the aggregated
subscription S0 at leaf server L0 consists of two overlapping
rectangles. Identifying virtual groups amounts to finding the
intersections of the aggregated subscriptions from different
leaf servers. There exist four distinct intersections between
the three leaf servers in Fig. 4, each labeled with the inter-
secting servers.

It is straightforward to produce the intersection of two
rectangles. However, finding all possible virtual groups re-
quires testing and reporting intersections from any combina-

S1

S2

S0

S0

Figure 5. Colored intersection graph

tion of group members, i.e., 2n combinations in total. There-
fore, a brute-force solution is not practical.

Theorem: The virtual group identification problem is NP-
complete.
Proof: Given the n set of rectangles, one from each leaf
server, an intersection graph V can be generated by denoting
each rectangle with a node and connecting any two intersect-
ing rectangles with an edge. Furthermore, we assume that
each set is characterized with a distinct color code (shown
as different shadings in our example), and each node in the
intersection graph has the same color as the set associated
with the respective rectangle. Fig. 5 depicts the colored in-
tersection graph corresponding to the subscription rectangles
in Fig. 4. In this way, an intersection between k rectangles
is translated into a k-size clique in the intersection graph V .
The number of distinct colors (≤ k) in each clique represents
the number of intersecting sets. There exist five cliques in
total in Fig. 5. However, only four have at least two different
colors (shades), while the two overlapping subscription rect-
angles at leaf server L0 corresponds to the fifth clique. The
problem of virtual group identification is equivalent of pro-
ducing any intersection between k sets, where k ∈ [2, n], and
thus is reduced to finding all cliques with at least two different
colors in the intersection graph. A special case of this prob-
lem is when each set contains only one rectangle. If we could
solve this special case, we would be able to answer the fol-
lowing question, e.g., by scanning all the identified cliques:
whether there exists a clique of size k in the graph V . How-
ever, the latter is a well-known NP-complete problem called
the clique problem [9]. Therefore, the virtual group identifi-
cation problem is NP-complete.

3.1.1 Grid-based Grouping

In this paper, we adopt a grid-based scheme for virtual group
identification. A similar approach was used to cluster similar
content in [13]. First the content space Ω is partitioned into a
regular grid. Each leaf server Lj marks the grid cells based on
its local aggregation of subscriptions, i.e., whether the local
aggregated subscription covers a cell ak.

Next, a subscription chart is generated by putting together
all the marked grids, with each cell ak annotated with all the
leaf servers interested in it. Finally, virtual groups can be
picked out by grouping all the grid cells that feature the same

4



set of subscribing leaves. If both cell a1 plus cell a2, and
no other cells, are subscribed by the same set of leaves, a1

and a2 make a virtual group. In this way, the total number of
potential virtual groups is bounded by the number of cells in
the grid, i.e., in the worst case, there can exist as many virtual
group candidates as the grid cells. In practice, only the most
beneficial candidates are selected to form virtual groups.

A virtual group can be characterized by both its defining
grid cells and the associated leaf servers. As discussed pre-
viously, the potential benefit of a virtual group is determined
by both the group size and the content volume delivered by
the group. In addition to the distribution of subscriptions, in-
formation on message density can also be collected based on
the same grid, i.e., each cell can be marked with the amount
of relevant content messages. In this way, the weight of a
virtual group can be simply calculated as the sum of the mes-
sage density of each associated cell. In our model, message
density can be recorded by the root R, where all content mes-
sages are originated.

The partition of the grid is mandated by the specific
pub/sub application and its content space. In the stock ex-
change example, the dimension corresponding to the price
or the volume can be divided into unit lengths based on the
numerical precision of the application. Since there can be a
large number of cells in the grid for some applications, the
grid can be pre-processed using the message density infor-
mation [13]: only those cells with message density higher
than a certain threshold are selected for consideration in vir-
tual group identification. In applications with highly skewed
publication density, this process can eliminate a potentially
large number of cells with zero or very low density. A sec-
ond potential solution is to use coarser partitioning if clients
can tolerate unwanted deliveries to certain extent, e.g., by de-
ploying local content filters. In this case, each leaf server can
mark the grid cells based on whether the local aggregated
subscription partially overlaps with a cell (instead of contain-
ing the cell).

3.2 Virtual Group Setup

This subsection proposes a distributed protocol for virtual
group construction based on the algorithm described above.

We assume that there exists a protocol coordinator in the
pub/sub network, and it can be the tree root R or any pre-
designated entity. First, each leaf server updates the coordi-
nator with its local subscriptions, i.e., as a marked grid. Af-
ter aggregating all subscriptions, the coordinator identifies all
candidate virtual groups, each with a benefit value as formu-
lated previously.

Creating a virtual group is also associated with a cost, in
terms of state maintenance and messaging overhead. The net
benefit of a virtual group should take this cost into account.
In other words, the potential benefit should offset the cost of
setting up a virtual group. For example, the coordinator can

Step 1: for each leaf server Li

Update subscriptions to coordinator
Step 2: for the coordinator

Identify virtual group candidates
Step 3: for each virtual group candidate Gj

for each leaf server in Gj

Send Group message upward subtree Tj

for each non-leaf server on subtree Tj

Update forwarding table for Gj

Step 4: Repeat step 1-3 for each virtual group candidate

Figure 6. Distributed algorithm for virtual group setup
Step 1: for root R

Send Shortcut Probe message down subtree Ti

Step 2: for each non-root server on sub-tree Ti

if branching point or leaf server
Check Shortcut Probe message for shortcut
if shortcut exists

Send back Shortcut Reply message
if not leaf server

Send new Shortcut Probe message down
else

Append itself to Shortcut Probe message
Forward Shortcut Probe message on

Step 3: Repeat step 1-2 for each virtual group

Figure 7. Distributed algorithm for shortcut setup

choose those candidate groups with benefit values larger than
a certain threshold.

After finalizing the selection of virtual groups, the coor-
dinator initializes the process of group creation by informing
the leaf servers of the groups that they belong to. For each
virtual group being notified of, a leaf server sends a Group
message up the pub/sub tree. At receiving a Group message,
an internal tree node sets up the forwarding state in the cor-
responding forwarding table that it maintains for the virtual
group. The setup process is complete when the tree root R
receives the Group message for each virtual group. This pro-
tocol is briefly summarized in Fig. 6.

This protocol can be invoked repeatedly to update vir-
tual groups according to subscription changes. The coor-
dinator is responsible for initiating protocol executions and
for maintaining correct content delivery throughout group re-
configurations. For example, the tree root R can be instructed
to temporarily buffer all content messages during the setup
process.

4 Optimizing Virtual Groups
The Group messages described in the previous section cre-

ate a content delivery (sub)tree for each virtual group. This
tree is induced by the group membership and embedded in-
side the default pub/sub tree. The tree structure can be im-
proved by adding shortcuts to bypass forwarding-only tree
nodes. This section presents a distributed protocol for ma-
terializing such shortcuts. The protocol is applied to each
existing virtual group in the pub/sub system.

First, the root R sends Shortcut Probe messages down the
virtual group tree. Each probe message represents a prob-
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ing thread. After receiving a probe message, an internal
node checks the corresponding forwarding table. If there are
more than one downstream nodes, i.e., if the current node is
a branching point on the tree, the probing thread associated
with the probe message is ended. However, new probe mes-
sages are sent down the sub-tree rooted at the current node,
creating new probing threads. On the other hand, if the re-
ceiving node is forwarding only, it appends itself to the probe
message and forwards it on to the next hop. In this way, a
probe message records its own traveling path. When a prob-
ing thread is ended at a branching point, or when it reaches
the a leaf node, the path recorded by the probe message is
checked for possible shortcuts, i.e., if the path consists of at
least two hops. If a shortcut is identified, a Shortcut Reply
message is sent back to the origin of the probe message to set
up the shortcut. The distributed algorithm is formulated in
Fig. 7.

During content delivery, a tree node (except the leaves)
first checks if there exists a shortcut on each of the down-
stream paths and uses the shortcut for message forwarding.

5 Performance Evaluation
This section presents results from extensive simulations to

evaluate the hybrid content-based pub/sub system.

5.1 Methodology
The simulations were conducted using a regular 4-ary tree

of 4 levels, i.e., there are 64 leaves and 85 nodes in total. For
the purpose of constructing virtual groups, the content space
is partitioned into 100 unit cells. We experimented with com-
binations of different distributions for both the popularity and
the message density of the content space. These distributions
are widely used in the pub/sub literature [13, 6]. In particular,
we study three scenarios:

• uniform-uniform, or uni-uni for brevity. Both the pop-
ularity and publishing density follow a random uniform
distribution. More precisely, the number of leaf servers
interested in each cell is randomly selected from the
range [1, 64]. The amount of content messages pub-
lished in each cell is randomly distributed in the range
[1, 100].

• zipf-uniform, or zipf-uni for short. The popularity of
content messages follow a zipf distribution: the ith cell
has 64 ∗ i−1 subscribing leaf servers. The message den-
sity follows the same random uniform distribution as de-
scribed above.

• zipf-zipf, The popularity of the content space follows
the same zipf distribution as the previous scenario. The
message density also has a similar zipf distribution: the
ith cell has 100 ∗ i−1 messages.

We measure the performance of the proposed hybrid
pub/sub scheme using the following metrics:

• Delay: The average delay to receive subscribed content
at the leaf servers. The delay to deliver a message is
determined by two factors: the network delay of for-
warding the message between the pub/sub servers, and
the processing delay of matching the message against
the subscription tables at relevant pub/sub servers. We
assume that each overlay hop of forwarding takes one
unit time, as well as each message matching operation.

• Messaging cost at internal nodes: The amount of
content messages received at an internal server node,
whether matching is performed or not. This metric is
normalized by the total number of published messages.

• Matching cost at internal nodes: The number of
matching operations performed at an internal nodes. It
is also normalized by the total message count.

• Overhead: We measure the messaging overhead of the
hybrid approach, i.e., the number of messages spent to
maintain the virtual groups and to set up shortcuts.

5.2 Results
We simulated the hybrid pub/sub approach with and with-

out applying shortcutting, and compare the results with a pure
content-based pub/sub system. During the process of virtual
group initialization, we also investigate three configurations:
the first materializes the top 10% virtual group candidates
identified using the protocol presented previously, which are
ranked based on their benefit values. The second and the third
select the top 20% and all 100% from the candidate virtual
groups, respectively. Since the protocol coordinator does not
have enough information to determine the benefit of shortcut-
ting at the time of virtual group initialization, only the benefit
from saved matchings is used at this stage. Building a vir-
tual group improves the pub/sub system efficiency, but at the
cost of state and messaging cost. The purpose of simulat-
ing these three options is to quantify this trade-off between
performance and overhead.

5.2.1 Delay

Table 1 summarizes the content delivery delay of the hybrid
approach, in terms of the average delay experienced by the
leaf servers. Since the pub/sub tree has 4 levels, it takes 3
hops to deliver a message from the root to a leaf. Thus, the
total delay to receive a message is 6 for the default content-
based system as matching is performed at each hop. For the
hybrid scheme, the delay is reduced to 4 if all virtual groups
are used (100%), because only one matching is required at
the root to determine which group that the message belongs
to. When the virtual groups go through a selection process
based on their benefit values (10% and 20%), the delay at the
leaf servers is between 4.078 and 5.377.

For the same configuration, the “zipf-zipf” distribution ex-
periences the lowest content delivery delay. With only 10%
of virutal groups, the hybrid approach can reduce the delay
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Table 1. Average delay at leaf servers.

hybrid hybrid+shortcuts
uni-uni(10%) 5.377 5.375
uni-uni(20%) 4.950 4.943
uni-uni(100%) 4.000 3.885
zipf-uni(10%) 4.748 4.582
zipf-uni(20%) 4.568 4.277
zipf-uni(100%) 4.000 3.203
zipf-zipf(10%) 4.137 4.037
zipf-zipf(20%) 4.078 3.942
zipf-zipf(100%) 4.000 3.796

to very close to the optimal value, i.e., the delay with 100%
virtual groups. On the other hand, the uni-uni distribution has
the highest content delivery delay. This suggests that the hy-
brid approach is more powerful for application with skewed
subscribing popularity and publishing density distributions,
where more popular content is also published more often. In
this case, a small number of virtual groups can substantially
improve the performance of the pub/sub system.

When shortcutting is applied to the hybrid approach, the
delay can be further minimized, e.g., to below 4 with all
virtual groups incarnated. Generally speaking, the further
reduction in delivery delay is more notable with more vir-
tual groups used. This can be explained by the fact that
given a fixed number of virtual groups to be materialized,
larger groups are selected first, while smaller (sparser) groups
present better chances for shortcutting.

Fig. 8,11,14,17,20,23 depict the more detailed distribu-
tion of the delay at the leaf servers under various settings.
Overall, the improvement in content delivery delay is mainly
the result of applying virtual groups, while shortcutting also
contributes, to various extent depending on the size and mem-
bership distribution of the constructed virtual groups.

5.2.2 Messaging Cost

Table 2 shows the average percentage of messages received
by an internal server. Without shortcutting, each inter-
nal server receives the same amount of messages, whether
there exist virtual groups or not. Shortcuts bypass the non-
branching internal servers in a virtual group, and thus elim-
inate unnecessary messaging by up to 73%, when all virtual
groups are in use (“zipf-uni”). Since shortcuts are more likely
to exist in sparser groups, the benefit of shortcutting is not
as notable when only large groups are used (10% and 20%).
Nevertheless, it can reduce the messaging cost by up to 16-
28% (“zipf-uni”).

Fig. 9,12,15,18,21,24 describe the distribution of messag-
ing cost at internal servers. Out of all three scenarios, the
“zipf-uni” and “zipf-zipf” combinations benefit more from
shortcutting. These configurations produce more smaller vir-
tual groups, compared with random uniform group sizes in
the “uni-uni” distribution.

Table 2. Average messages (%) received at internal
servers.

w/o shortcuts with shortcuts
uni-uni(10%) 0.828 0.824
uni-uni(20%) 0.828 0.816
uni-uni(100%) 0.828 0.650
zipf-uni(10%) 0.238 0.200
zipf-uni(20%) 0.238 0.171
zipf-uni(100%) 0.238 0.065
zipf-zipf(10%) 0.540 0.436
zipf-zipf(20%) 0.540 0.403
zipf-zipf(100%) 0.540 0.342

Table 3. Average matches (%) performed at internal
servers.

content-based hybrid
uni-uni(10%) 0.828 0.651
uni-uni(20%) 0.828 0.507
uni-uni(100%) 0.828 0.000
zipf-uni(10%) 0.238 0.150
zipf-uni(20%) 0.238 0.116
zipf-uni(100%) 0.238 0.000
zipf-zipf(10%) 0.540 0.110
zipf-zipf(20%) 0.540 0.067
zipf-zipf(100%) 0.540 0.000

5.2.3 Matching Cost

Table 3 shows the average percentage of messages that are
matched at an internal server. The number of matching oper-
ations is determined by the number of virtual groups and is
not affected by shortcutting. If each candidate virtual group
is taken advantage of, the matching cost at the internal nodes
is zero, since no matching needs to be conducted except at
the root. In the other scenario with limited number of virtual
groups, the matching saving is as high as more than 80%.
This suggests that a substantial amount of matching cost can
be saved even with selective virtual grouping. In all three sce-
narios, the “zipf-zipf” combination sees the most significant
improvement in matching cost. Only 10% virtual groups can
reduce the matchings by about 80%. This result is consistent
with the result of content delivery delay shown previously.

Fig. 10,13,16,19,22,25 show the distribution of match-
ing cost at internal servers. Although the hybrid approach
is more valuable for situations with highly skewed popularity
and density distributions in the content space, it is universally
beneficial, as can be seen in various simulation settings.

5.2.4 Protocol Overhead

Implementing virtual groups incurs control messaging over-
head, as shown in Table 4 (column 2). However, this over-
head is moderate when only 10% or 20% virtual group are ac-
tually constructed. In addition, it can be amortized over time
by the messages delivered by the virtual groups. Optimizing
virtual groups with shortcuts incurs additional control over-
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Table 4. Total messaging overhead and saving.

w/o shortcuts with shortcuts
overhead overhead msg. saving

uni-uni(10%) 1298 2051 368
uni-uni(20%) 2441 3873 1133
uni-uni(100%) 7463 12352 17875
zipf-uni(10%) 478 826 4309
zipf-uni(20%) 626 1116 7575
zipf-uni(100%) 1170 1928 19688
zipf-zipf(10%) 519 897 1195
zipf-zipf(20%) 670 1192 1578
zipf-zipf(100%) 1170 1928 2279

head (Table 4, column 3). However, shortcuts reduce the con-
tent messages being forwarded by the pub/sub servers, and
the resulted messaging savings (Table 4, column 4) can po-
tentially offset the messaging overhead of constructing short-
cuts and virtual groups, as in the “zipf-uni” and “zipf-zipf”
configurations.

A second type of overhead comes from state maintenance
for virtual groups. In the hybrid pub/sub system, each group
member maintains a forwarding table for the virtual group.
Since the pub/sub network usually consists of well provi-
sioned application-layer servers the state maintenance over-
head does not pose resource constraint problems. Content de-
livery in the pub/sub network does not rely on IP multicast,
and therefore the number of virtual groups are not confined
by the available IP multicast channels, as assumed in previ-
ous work [14, 1]. Moreover, in practice, it is not necessary
to build many virtual groups to achieve the desired perfor-
mance; only a few of the highest ranking groups can bring
significant improvement.

5.3 Summary
In summary, the simulations have demonstrated that:

1. The hybrid approach is beneficial in various scenarios
with different popularity and density distributions in the
content space.

2. Virtual groups, even only a few, can significantly reduce
the matching cost at the pub/sub servers, and thereby
improve the delay of content delivery. This technique is
more beneficial for larger virtual groups.

3. Shortcutting is effective in eliminating redundant mes-
saging inside virtual groups, resulting in improved ef-
ficiency in the pub/sub network and reduced content
delivery delay. This technique is more beneficial for
smaller, sparser virtual groups.

6 Related Work

This section discusses previous work related to content-
based pub/sub systems. A survey on the general pub/sub
topic can be found in [11].

In [13], various content clustering schemes were studied,
including a grid-based algorithm. However, the grid was used
to group similar content, while in this paper, grouping is con-
ducted only for those cells with the same subscribers. In [14],
matching and distribution issues were discussed based on the
clustering algorithms presented in [13]. Since clustering can
cause content to be delivered to un-interested clients, match-
ing is first performed to build a list of interested clients for
distribution. In [20], the k-mean method was evaluated in a
preference clustering framework. Since the “clustering” ap-
proach usually assumes a fixed number of available IP multi-
cast channels, the problem of mapping clusters to these mul-
ticast channels was studied in [1]. In [15], a set of schemes
for using a small number of IP multicast groups in a content-
based pub/sub network were also investigated.

In the “exact-match” category, Gryphon [4] organizes the
pub/sub network into a single-source tree and proposes a link
matching algorithm to forward content towards directions of
matching subscriptions. In [18], a similar pub/sub topology
was assumed, but this work considers a different problem of
filter placement, i.e., how to find the optimal positions for a
fixed number of matching points in a pub/sub tree. Siena [7]
builds a symmetric spanning tree, and each pub/sub server
can be a potential publisher or subscriber. Kyra [6] proposes
to create multiple pub/sub networks based on content cluster-
ing, with each network responsible for a subset of the con-
tent space, and thus requires a pre-processing stage of clus-
tering. In [8], a fast matching algorithm was proposed and it
can achieve matching time of milliseconds in a highly com-
plex content space. INS/Twine [3] uses a peer-to-peer based
pub/sub architecture for resource discovery. Herald [5] aims
to build a distributed event notification system at the global
scale. Other work on pub/sub can be found in [16, 10, 12, 17].

7 Conclusion

In this paper, we have presented a new hybrid approach to
content-based pub/sub systems. The hybrid approach lever-
ages shared interests in a distributed content delivery envi-
ronment by identifying virtual groups. These virtual groups
serve as expressways for the content-based pub/sub network.
Messages are only matched once at the entry point and then
forwarded to the rest of the virtual group, similar to in
subject-based pub/sub systems. In addition, these express-
ways can be made faster by adding shortcuts to the virtual
group tree. We have also proposed distributed protocols for
virtual group management and shortcut construction. Sim-
ulations under various settings have shown that the hybrid
approach is highly effective in reducing the content delivery
delay and in improving the pub/sub service efficiency.
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Figure 8. Average delay at leaf servers
(uni-uni)
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Figure 9. Average messages received
at internal servers (uni-uni)
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Figure 10. Average matches per-
formed at internal servers (uni-uni)
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Figure 11. Average delay at leaf
servers (uni-uni:20%)
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Figure 12. Average messages
received at internal servers(uni-
uni:20%)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f i
nt

er
na

l s
er

ve
rs

matches (%)

content-based
hybrid

hybrid+shortcuts

Figure 13. Average matches per-
formed at internal servers (uni-
uni:20%)
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Figure 14. Average delay at leaf
servers (zipf-uni)
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Figure 15. Average messages re-
ceived at internal servers (zipf-uni)
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Figure 16. Average matches per-
formed at internal servers (zipf-uni)
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Figure 17. Average delay at leaf
servers (zipf-uni:20%)
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Figure 18. Average messages
received at internal servers(zipf-
uni:20%)
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Figure 19. Average matches per-
formed at internal servers (zipf-
uni:20%)
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Figure 20. Average delay at leaf
servers (zipf-zipf)
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Figure 21. Average messages re-
ceived at internal servers (zipf-zipf)
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Figure 22. Average matches per-
formed at internal servers (zipf-zipf)
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Figure 23. Average delay at leaf
servers (zipf-zipf:20%)
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Figure 24. Average messages
received at internal servers(zipf-
zipf:20%)
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Figure 25. Average matches per-
formed at internal servers (zipf-
zipf:20%)
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