
Content-Based Publish-Subscribe over Structured Overlay Networks

Roberto Baldoni, Carlo Marchetti, Antonino Virgillito
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
email: {baldoni,marchet,virgi}@dis.uniroma1.it

Roman Vitenberg
IBM Research, Haifa

email: romanv@il.ibm.com

Abstract

This paper introduces a novel architecture for imple-
menting content-based pub/sub communications on top of
structured overlay networks. This architecture overcomes
some well-known limitations of existing infrastructures, i.e.
lack of self-configuration and of adaptiveness to dynamic
changes. This is achieved by devising a mediator stratum
between the rich event subscription semantics of content-
based pub/sub systems and the standard logical address-
ing scheme of overlays. The paper describes details of
the design and provides considerations in selecting the
subscription-to-node and event-to-node mappings suitable
for the solution. We identify the lack of native support
for one-to-many communication by overlay networks as the
main impediment for efficient system operation. The pa-
per introduces a novel primitive for one-to-many message
delivery, showing through simulation how this can improve
performance of the architecture. The simulation study also
shows performance comparison between the different map-
pings proposed as well as evaluation of other optimizations
discussed in the paper.

1 Introduction

It is well known that a large class of application do-
mains ranging from enterprise application integration to
sensor networks can benefit from the presence of pub-
lish&subscribe (pub/sub) systems [1]. The most general
form of pub/subs supports content-based subscriptions, us-
ing which subscribers are able to express interest in events
by specifying a set of constraints over event attributes. This
subscription semantics is significantly more expressive and
flexible than topic-based subscriptions, wherein a single
topic attribute determines the relationship between informa-
tion sources and sinks. However, content-based subscrip-
tion is harder to implement because the source-sink corre-
lation cannot be determined a priori: it has to be computed
on a per-event basis. As a consequence, the significant body

of research focuses on efficient matching and event routing
algorithms, while the problem of devising a scalable and at
the same time highly adaptive content-based implementa-
tion remains largely unresolved.

In this work, we propose an architecture for implement-
ing content-based pub/sub that harnesses and leverages the
scalable message routing and adaptive self-configuration of
overlay networks, i.e. the properties so much sought by
content-based pub/sub schemes. To the best of our knowl-
edge, the proposed architecture is the first content-based
pub/sub implementation not requiring any manual config-
uration and management apart from the setup of an overlay
network itself.

Designing a content-based pub/sub infrastructure on top
of the standard communication and programming model
provided by common structured overlay networks (e.g.
CAN, Chord, Pastry, and Tapestry) requires to address two
main issues: (i) the gap between the rich language that de-
scribes an event or a subscription and the single key identi-
fier by which a message is typically routed in overlay net-
works, and (ii) the inefficiences due to implementing one-
to-many communications on top of the unicast primitive
commonly provided by overlays.

In order to address the former issue, we introduce a new
class of “subscription-static” mappings whose nature facili-
tates system adaptiveness to dynamic changes. We consider
three specific mappings in this class and provide their analy-
sis in terms of memory usage and message complexity.

In order to address the latter issue, we propose several
complementary optimizations. At the overlay level, we pro-
pose to introduce a multicast primitive in order to eliminate
the inefficiencies that arise when using the standard overlay
unicast primitive for implementing content-based pub/sub
semantics (namely, non-optimal routing paths and redun-
dant deliveries of a same message). At the pub/sub level,
we propose two optimizations, namely mapping discretiza-
tion and event collecting and buffering, that can increase
system scalability and performance.

This study is supported by comprehensive performance
analysis, performed through simulation that shows the over-

all scalability of our approach as well as the effectiveness of
the proposed optimizations. The paper is structured as fol-
lows: Section 2 presents related work, Section 3 provides
background on overlay networks and pub/sub systems, Sec-
tion 4 describes the general architecture and optimizations,
Section 5 presents the experimental results, Section 6 con-
cludes the paper.

2 Related work

Several pub/sub systems (e.g., Gryphon [8], Her-
mes [10], JEDI [4], LeSubscribe [6], SIENA [2]) have been
proposed in the literature, featuring a content-based ad-
dressing scheme for subscriptions. All these systems rely on
an application-level network of servers that share the load of
determining the recipients for an event and routing events
toward them. As a consequence, the research on content-
based pub/sub focuses on scalable and efficient algorithms
for carrying out these functions. None of current content-
based pub/sub systems features self-organization capabil-
ities, thereby requiring human intervention for set-up and
management of the application-level network. This strongly
limits the actual deployment of such systems in practical
large-scale settings.

An alternative approach is the event space partitioning,
presented in [16]. Here the event space is divided into a
set of partitions, and each partition is assigned to a node.
This approach minimizes event traffic by forwarding each
event to just a single node. This simplifies the initial sys-
tem setup and eliminates the need of propagating and keep-
ing the knowledge about the system state (i.e., stored sub-
scriptions), thereby rendering the architecture less stateful
and vulnerable to failures. Yet, even in these favorable set-
tings, providing system self-configuration as well as scal-
able and balanced routing of events and subscriptions in a
dynamic environment is still non-trivial. This issue of self-
configuration is the main focus of our work.

Self-organization and fault-tolerance capabilities charac-
terize structured peer-to-peer overlay network infrastruc-
tures, such as CAN [11], Chord [13], Pastry [12] and
Tapestry [17]. Such systems provide an addressing scheme
(independent of the actual network addresses) that is used to
implement scalable and efficient application-level routing
mechanisms, which are adaptive to node joins and depar-
tures. Scribe [3] and Bayeux [18] are two pub/sub systems
built on top of Pastry and Tapestry respectively, which lever-
age their scalability, efficiency and self-organization capa-
bilities. However, both systems provide only a topic-based
addressing, thus offering limited expressiveness to users.

A few previous works (e.g., [9], [10], [14], and [15])
have already recognized the potential of combining the
self-organization capabilities of overlay networks with the
expressive addressing schemes of content-based pub/sub.

In particular, [15] and [9] describe methods for mapping
general content-based subscriptions, including range con-
straints, to overlay addresses, respectively using Chord and
CAN as a reference overlay. However, each of these works
develops a single individual mapping that is dynamically
adjusted in order to cope with routing inefficiencies and im-
prove load balancing. In contrast, our paper considers a
general architecture for implementing a pub/sub system that
uses the standard interface and functionality of structured
overlay networks. We introduce an abstract stateless map-
ping, which is instantiated through three different specific
mapping methods. One of those methods (Attribute-split)
resembles the solution in [15], but it is implemented with a
different communication protocol (see Section 4.2).

3 An overview of overlay networks and
content-based pub/sub systems

3.1 Overlay networks

The common idea behind self-organization and routing
in most overlay networks is that instead of being routed di-
rectly using physical nodes’ addresses ranging over a space
N , messages are routed by logical key identifiers, defined
over a space K. The overlay network manages the mapping
KN : K → N of keys to actual nodes (further denoted
as the KN-mapping); in other words, each key is covered
by some node (e.g., the one which maps to the closest key
value.) The system automatically routes the message to the
node which covers the key in the message.

While the keys are exposed to the application, the KN-
mapping is the sole responsibility of the overlay network
and is typically hidden from the user. Such key-based rout-
ing provides a convenient higher-level abstraction for the
application. In addition, it allows the system to quickly
adapt to dynamic changes, such as a failure or addition of
individual data centers to the system.

Virtually all overlay schemes provide a similar interface
for the applications, which consists of the following basic
primitives: a) send(m,k) operation to send a message m
to a destination determined by the key k, b) join() and
leave() operations for a node to join or leave the system,
and c) deliver(m) operation that invokes an application
upcall upon message m delivery.

For the purposes of this paper, we now present the key
features of a specific overlay routing protocol, namely the
Chord protocol [13]1.

1Let us note that the publish-subscribe infrastructure presented in this
paper is portable in the sense that it can use any overlay routing scheme
mentioned above.

2

+1

K26

K17

+16

+2

K13

Finger table
N8

N1

Data consumer/producer

N14

N20

N23
N8+1 N11

+4

N8+2 N11
N8+4 N14
N8+8 N20
N8+16 N1+8

N11

Figure 1. Chord: a content-based routing pro-
tocol for P2P networks

3.1.1 The Chord protocol

The Chord protocol is based on the fast distributed compu-
tation of a hash function that maps keys to the nodes cover-
ing them. A Chord node only maintains information about
O(log n) other nodes in an n-node network.

The assignment of keys to nodes is done with consistent
hashing. The consistent hash function assigns each node
and key an m-bit identifier using SHA-1. These identifiers
are ordered on an identifier circle modulo 2m. The identifier
circle is called the Chord ring. We will use the term “key”
to refer to both the original key and its image under the hash
function, as the meaning will be clear from context. Key k
is assigned to the first node called the successor node of key
k, whose identifier is equal to or follows k in the ring. Fig-
ure 1 shows a Chord ring with m = 5. Keys with identifiers
13, 17 and 26 are assigned to nodes with identifiers 14, 20
and 1.

For efficient lookup, Chord maintains a table called fin-
ger table. The ith entry in the table at node n is the suc-
cessor node s of the identifier (n + 2i−1) modulo 2m. The
node s is called the ith finger of node n. Each entry also
contains the IP address and the port number of the relevant
node. Figure 1 shows an example finger table for node 8.
For example, the 4th entry is N20 which is the successor
node of identifier (8 + 24−1) mod 25 = 16.

3.2 Content-based publish/subscribe

A distributed content-based publish/subscribe system
comprises a set of nodes, each of which can act both as a
producer and a consumer of information, playing the role of
publisher and subscriber, respectively. Publishers and sub-
scribers exchange information in form of events and sub-
scriptions.

Events are defined according to a data model in which
an event is defined as a set of attribute-value pairs. Each
attribute e.ai has a name, a simple character string, and

a type. The type is generally one of the common primi-
tive data types defined in programming and query languages
(e.g. integer, float, string, etc.). Events are thus defined over
a d-dimensional event space, denoted as Ω.

On the subscribers’ side, interest in specific events is ex-
pressed through subscriptions. A subscription σ is a query
composed by a conjunction of constraints (disjunctive con-
straints can be treated as separate subscriptions). A sin-
gle constraint is indicated with σ.ci. Actual constraints de-
pend on the specific data model and subscription language.
Without loss of generality we consider a content-based lan-
guage allowing range constraints over numerical attributes.2

Queries defined according to this assumption are elements
of the space Σ of all possible subscriptions. Therefore a
query σ ∈ Σ captures a subspace of the overall event space,
i.e. σ ⊆ Ω. We say that an event e ∈ Ω matches a sub-
scription σ ∈ Σ iff it satisfies all the constraints in σ, i.e.
iff e ∈ σ . When an event matches a subscription, the cor-
responding subscriber has to be delivered a notification for
e.

In order to implement the matching, available content-
based systems distribute across the nodes in the system
the tasks of storing subscriptions, matching events against
subscriptions, and delivering notifications to subscribers.
Subscriptions in Σ and events in Ω are assigned to nodes
through two mapping functions, namely SN : Σ → 2N

and EN : Ω → 2N . In particular, given a subscription
σ, SN(σ) returns a set of nodes, named rendezvous nodes
of σ, which are responsible for storing σ and forwarding
events matching σ to all the subscribers of σ. EN(e) com-
plements SN by returning the rendezvous nodes of e, which
are the nodes responsible for matching e against subscrip-
tions registered in the system. These functions are used by
nodes as follows: upon issuing a subscription σ, a consumer
node sends σ to the nodes in SN(σ), which store σ and the
consumer identifier. Producer nodes send their events to
the nodes in EN(e), which match e against the subscrip-
tions they host. For each subscription matched by e, e is
forwarded to the corresponding subscriber. In order for the
matching scheme to work and forward e to the consumers,
it is necessary that the rendezvous nodes of e collectively
store all the subscriptions matched by e, i.e., if e ∈ σ for
any subscription σ, then EN(e)∩ SN(σ) �= ∅. We refer to
this property as the “mapping intersection rule” in the rest
of the paper.

4 Content-based Pub/Sub using Overlay Net-
works

We propose an architecture that is based on two major
principles: 1) to utilize and leverage the self-organization

2For example, string values can be reduced to numbers by applying a
hashing.

3

and scalable routing capabilities provided by overlay net-
works in order to design scalable and dynamically adapt-
able content-based pub/sub systems and 2) to employ a gen-
eral form mapping that does not depend on the stored sub-
scriptions (we call such mapping stateless). In summary,
both principles contribute to the system adaptivity and self-
configuration: the first principle makes it adaptive to node
failures and joins whereas the second principle eliminates
the need to propagate the knowledge about currently stored
subscriptions.

4.1 Basic system architecture

The basic architecture we propose is depicted in Fig-
ure 2. According to it, the generic application using the
content-based pub/sub infrastructure can perform subscrip-
tions (sub()) and publications (pub()) as well as to be noti-
fied of incoming events matching some of its subscriptions
(notify()). The lower layer in the architecture is formed by
the overlay network that implements the behavior and pro-
vides the primitives we described in Section 3.1.

overlayoverlay kn-mappingkn-mapping

CB-pub/subCB-pub/sub
SubsSubs

ak-mappingak-mapping

applicationapplication

sub() pub() notify()

send() join()delivery() leave()

unsub()

Figure 2. The proposed basic architecture

As a consequence, the CB-pub/sub layer has to map the
event space into the universe of keys instead of nodes. In
other words, the implementation need to provide SK : Σ →
2K and EK : Ω → 2K mapping functions instead of SN
and EN.

More precisely, the middle CB-pub/sub layer is respon-
sible for implementing the functionality of a content-based
pub/sub system, by exploiting the underlying overlay net-
work infrastructure. To this end, this layer performs the
following operations:

• implementing and computing the SK and EK map-
pings. In Figure 2, we abstract this functionality out into
the ak-mapping module of the layer;

• forwarding subscriptions σ and events e to the keys in
SK(σ) or EK(e), respectively. This is done by invoking the
unicast send() primitive provided by the overlay network.
When sending a subscription, the key of the subscriber is
also sent;

• receiving subscriptions and events through the deliv-
ery() upcall of the underlying overlay network. Subscrip-
tions are stored along with the subscriber’s keys whereas
events are matched against the stored subscriptions;

• forwarding notifications when matches are found. If an
event matches multiple subscriptions, the keys of the match-
ing subscribers are determined and a notification is sent to
all of the corresponding subscribers, again by utilizing the
unicast send() primitive;

• managing node joins and departures.
While hiding the dynamic KN-mapping from the appli-

cation greatly facilitates the design it creates a problem for
stateful applications whose state distribution depends on the
composition of nodes. For example, when a new node n
joins the system, the subscriptions that map to its parti-
tion in the key space have to be moved to n from other
nodes. Similarly, when a node leaves or crashes, the sub-
scriptions that it stores should be relocated to its “neigh-
bors” in the key space. Currently existing overlay networks
neither manage the distribution of the application state nor
expose information about node’s neighbors.

Fortunately, each overlay network provides a proprietary
way of sending messages to neighbors (e.g., node successor
in Chord). This allows the joining node to pull the state
from its neighbors. Failures can be handled by each node
having its state replicated on a small number of neighbors.

4.2 Stateless mappings

We now consider three specific ak-mappings that satisfy
the mapping intersection rule. The following notation is
used to describe system parameters: d, the number of di-
mensions in the event space, Ωi, projection of Ω on i’s di-
mension, and K, the key space. For the Key Space-Split
mapping, it is important that K be represented by a bit
string, whose length we denote m. While this is consis-
tent with most overlays, such as Chord and Pastry, a slightly
more general representation is easy to obtain for other over-
lays, e.g., CAN, wherein a key is a discrete point in a mul-
tidimensional space.

Each our mapping is based on a collection of hash func-
tions hi : Ωi → [0, 1]l; hi maps attribute values in Ωi to bit
strings of length l. The hash functions as well as l are part
of the mapping definition and may differ across the map-
pings. Given the set of hi functions, we define a set of
hash functions Hi for constraints σ.ci (both equality and
inequality ones) to return sets of l-length bit strings as fol-
lows: Hi(σ.ci) = {hi(x)|x ∈ Ωi ∧ x satisfies σ.ci}.

The mapping definitions below specify l but use hi as an
external parameter. However, our implementation and per-
formance analysis use a simple scaling function: hi(x) =
x · 2l/|Ωi|. Assuming that a constraint σ.ci spans the range
of ri values and that for every i, 2l < |Ωi|, this implies that
Hi(σ.ci) returns �ri · 2l/|Ωi|	 distinct values.

We use this fact below to compare the proposed map-
pings wrt. the number of keys to which subscriptions and
publications map. While it is desirable that a subscription

4

c1 c2
σ a1 < 2 3 < a2 < 7
e a1 = 1 a2 = 6

(a)

SK(σ) = {H(σ.c1), H(σ.c2)}
H(σ.c1) = {h(0), h(1)} = {0000, 0001}
H(σ.c2) = {h(4), h(5), h(6)} = {0100, 0101, 0110}

EK(e) = {h(e.a1)}
h(e.a1) = h(1) = 0001
h(e.a2) = h(6) = 0110

(b) Mapping 1

SK(σ) = {H(σ.c1) × H(σ.c2)} = {0010, 0011}
H(σ.c1) = {h(0), h(1)} = {00, 00}
H(σ.c2) = {h(4), h(5), h(6)} = {10, 10, 11}

EK(e) = h(e.a1) ◦ h(e.a2) = 0011
h(e.a1) = h(1) = 00
h(e.a2) = h(6) = 11

(c) Mapping 2

Figure 3. Mapping Examples

map to multiple keys as it facilitates load-balancing and
high-availability, mapping a subscription to a high number
of keys is non-scalable in terms of both memory and band-
width consumption.

In order to illustrate the mappings, we consider a simple
example event space composed of 2 integer attributes taking
values in the range of 0–7 each (|Ωi| = 8) so that h1 =
h2 = h and H1 = H2 = H . The key space in this example
coincides with the attribute space so that m = 4. We take a
subscription σ = {a1 < 2, 3 < a2 < 7} and an event e =
{a1 = 1, a2 = 6} (Figure 3(a)) and show their processings
for two of the mappings.

Mapping 1: Attribute-Split. The length of a bit se-
quence returned by hi functions is equal to the number of
bits in a key, i.e. l = m, so that hi and Hi functions returns
simply keys and sets of keys. The idea behind this map-
ping is to hash each constraint σ.ci within a subscription σ
independently to a set of keys Hi(σ.ci), and then to send
the subscription to the union of all these sets. In order to
satisfy the mapping intersection rule, it suffices to choose
a rendezvous key for an event by hashing just one of the
event attributes. Formally, the SK function is defined as
SK(σ) =

⋃
i Hi(σ.ci), and the EK function is defined as

EK(e) = {hi(e.ai) for some i, 1 ≤ i ≤ d}. An example
of this mapping is shown in Figure 3(b). The figure shows
the 4-bit strings returned by SK and EK when invoked on
σ and e, respectively. Since 2 values are spanned by c1 and
3 by c2, SK(σ) returns a total of 5 keys.

Thus, the EK function returns just one key but the SK

function returns a set of up to O(
∑d

i=1�ri · 2m/|Ωi|) =
O(d+2m·∑d

i=1(ri/|Ωi|)) distinct keys. This feature can be
used to provide increased availability. However, if d is high,
a subscription might be mapped to a large number of keys
thereby impeding system scalability. The goal of reducing
the number of keys to which a subscription is mapped mo-
tivates the following two mappings.

Mapping 2: Key Space-Split. This mapping is based on
the idea of partitioning the m bits of the key space across the
attributes so that �m/d� bits are assigned to each attribute.

Accordingly, l = �m/d� in this mapping. The SK function
returns all possible concatenations of bit strings: SK(σ) =
{s1 ◦ . . . ◦ sd|si ∈ [0, 1]l ∧ si ∈ Hi(σ.ci)}. To satisfy the
mapping intersection rule, the EK mapping is defined as
EK(e) = h1(e.a1) ◦ . . . ◦ hd(e.ad), i.e. it returns a single
rendezvous key. An example of this mapping is shown in
Figure 3(c). The h function returns a 2-bit string for each
value (l = m/d = 2).

The number of distinct concatenations is
∏d

i=1�ri ·
2�m/d�/|Ωi|	. In particular, if ∀i, ri ·2�m/d�/|Ωi| > 1, then
this expression becomes O(2m · ∏d

i=1(ri/|Ωi|)).

Mapping 3: Selective-Attribute. This mapping is based
on the observation that in many cases subscriptions may
exhibit strong selectivity in one particular attribute, i.e.,
they filter out all but a small portion of all possible values
for this attribute (i.e., the selective attribute). These selec-
tive constraints frequently occur in event spaces in practice
[6], e.g., equality constraints on attributes such as ’type’ or
’topic’. The idea behind this mapping is to map a subscrip-
tion σ just by its most selective constraint σ.cs, rs/|Ωs| =
mind

i=1(ri/|Ωi|). l = m, as in Attribute-Split. The SK
function is simply defined as SK(σ) = Hs(σ.cs). How-
ever, each event has to be mapped by every attribute sepa-
rately so that EK is defined as EK(e) =

⋃d
i=1{hi(e.ai)}.

Thus, a subscription is mapped to �2m·mind
i=1(ri/|Ωi|)	

keys by this mapping. This is at the very least d times better
than the figure for Attribute-Split, even if no selective con-
straints are present. However, comparison with Key Space-
Split is less straightforward. If all constraints are non-
selective to the extent that ∀i, ri ·2�m/d�/|Ωi| > 1, then Key
Space-Split always outperforms this mapping. However, in
the presence of at least one selective constraint, e.g., an
equality constraint, Selective-Attribute maps the subscrip-
tion to just a single key (or a few keys). At the same time,
Key Space-Split may still return a huge number of all pos-
sible combinations if all other constraints are non-selective.
In particular, Selective-Attribute is the least sensitive to par-
tially defined subscriptions, i.e., subscriptions that specify
constraints on only some of the attributes.

However, unlike the other two mappings, Selective-

5

Attribute maps an event to d keys in the worst case. This
disadvantage might be significant if the workload is domi-
nated by events.

Discussion. It is important to note that while devising
good SK and EK functions is still a non-trivial task, it is
simpler than providing SN and EN mappings. This is be-
cause the universe of keys is static and known by all nodes
in advance. As a further advantage of using such static map-
pings, nodes do not need to coordinate their computation
of the mapping, not in the beginning to bootstrap the sys-
tem and not in presence of dynamic changes in the node
composition. The underlying overlay network transparently
handles and dynamically adjusts the KN-mapping and per-
forms the routing accordingly. In addition to facilitating
self-configuration, the proposed architecture also makes the
system state less dependent on the node composition. Fur-
thermore, most overlay networks are symmetric in the sense
that they have no special purpose nodes (such as the root of
a hierarchy). These two factors make the architecture highly
resilient to failures because very little information is lost in
the case of a node crash, and this information can be easily
replicated on a small number of other nodes (see Section 4.1
for more details).

Unlike event space partitioning, we do not limit the EK-
mapping in such a way that each event is mapped to just a
single key (or only to keys that the underlying KN-mapping
would map to a single node). This generalization alleviates
an intrinsic drawback of event space partitioning. It should
be also noted that static EK- and SK-mappings make han-
dling dynamic hotspots, i.e., situations when all subscrip-
tions and events fall into a small portion of the subscrip-
tion/event space, more challenging. We suggest two com-
plementary ways of fighting hotspots: a) by corresponding
techniques at the level of KN-mapping; in particular, most
overlay networks provide such mechanisms, and b) by pro-
viding nearly static EK- and SK-mappings in which infre-
quent changes may slightly alter the initially defined func-
tions in order to accommodate hotspots. Since the knowl-
edge about these changes would be disseminated very infre-
quently, it would not have any strong impact on the perfor-
mance.

4.3 Optimizations

This section elaborates on various optimizations that im-
prove the performance of the proposed architecture. While
the first optimization (implementing a multicast primitive)
aims at extending the standard interface and functionality
of structured overlay networks, the other optimizations are
implemented entirely within the CB-pub/sub layer. Our per-
formance results in Section 5 quantify the improvement due
to each optimization.

4.3.1 Extending the architecture with multicast

Upon the invocation of a sub(σ) or a pub(e), σ or e have to
be propagated to all the rendezvous nodes. Being restricted
to use only the unicast send primitive, this is done by a se-
quence of calls to send(). However, having the CB-pub/sub
layer implementing one-to-many send with unicast primi-
tives provided by the overlays suffers from the following
inefficencies:

Multiple delivery: a single node can be assigned more
than one key by the KN-mapping. However, since the CB-
pub/sub layer is unaware of the underlying KN-mapping, it
cannot detect that different keys map to the same node with-
out sending probe messages. Thus, simulating multicast by
a sequence of unicasts may result in redundant sends and
deliveries of the same message.

Non-optimal paths: multiple copies of the message can
traverse the same path several times. For example, let us
consider a message multicast to two keys k1 and k2: it could
happen that KN(k1) is on the routing path toward KN(k2)
so that the message separately sent to k1 and k2 will tra-
verse the same path section twice. Since the actual routing
path are handled entirely by the overlay network, the CB-
pub/sub layer has no means to detect such situations.

It should be noticed that the CB-pub/sub layer may en-
deavor implementing a multicast routing scheme itself (e.g.,
a multicast tree of keys). While this could alleviate the
above problems, no optimal scheme could be constructed
without knowledge of the KN-mapping.

We claim that a generally efficient solution to these prob-
lems can only be obtained by building a one-to-many send
primitive within the overlay network. Specifically, we pro-
pose to extend the overlay layer of the basic architecture by
providing an additional primitive, namely m-cast().

m-cast() receives a set of keys and a message as para-
meters and implements a multicast protocol in which every
node to which at least one of the specified keys maps will
receive the message. Each of such nodes will receive the
message at most once. Furthermore, the implementation
of m-cast() should also deal with finding an efficient rout-
ing path and maintaining a bound on the number of concur-
rently open connections at a node.

Building the CB-pub/sub functions above the extended
overlay becomes significantly less complicated: for each
event, notification, or subscription change, the ak-mapping
returns the set of keys involved in the operation, and the
actual send is performed by a single call to m-cast().

Implementing the dynamic multicast primitive with
Chord. [5] shows how a broadcast mechanism may be
implemented over Chord. This work uses a single specific
addressing (range of keys starting from the sending node)
for the sake of illustration. We now show how we imple-

6

ment a generic multicast primitive (m-cast(M,K) where M
is the message to send and K = {k1, . . . , kx} is a set of target
keys) and analyze its performance.

As described in Section 3.1.1, each node in Chord main-
tains a set of fingers {f1, . . . , fl} with exponentially in-
creasing keys. In addition, each node n knows its successor
n.succ and predecessor n.pred in the ring. To simplify the
notation, we assume that f1 is the node’s successor in the
ring and fl is its predecessor.

The m-cast primitive is called both by the application
that needs to send a message and the Chord deliver prim-
itive upon message reception. The algorithm in Figure 4
piggybacks a (sub)set of target keys on a target message,
which we denote as M.K.

e x t r a c t−t a r g e t s (K, n1 ,n2)
begin

r e t u r n {k ∈ K| k ∈ (n1.key, n2.key] on the ring} ;
end

n .m−c a s t (M,K)
begin

K := M.K;
t a r g e t s := e x t r a c t−t a r g e t s (K, n . pred , n) ;
i f t a r g e t s �= ∅

n . d e l i v e r (M) ;
t a r g e t s := e x t r a c t−t a r g e t s (K, n , n . su cc) ;
i f t a r g e t s �= ∅
begin

M.K := t a r g e t s ;
n . send (M, n . su c c . key) ;

end
f o r each i ∈ [1, l − 1] do
begin

t a r g e t s := e x t r a c t−t a r g e t s (K, fi ,fi−1) ;
i f t a r g e t s �= ∅
begin

M.K := t a r g e t s ;
n . send (M, fi . key) ;

end
end

end

Figure 4. m-cast implementation over Chord

Note that the algorithm sends messages only to node’s
fingers so that each unicast message is delivered within a
single hop. Furthermore, the algorithm preserves the log n
limit on the number of neighbors that each node has to
maintain connections with. Also, it is optimal in the sense
that no node receives the same message twice.

Since our architecture mostly uses the primitive for send-
ing a subscription to ranges of keys, we consider the mes-
sage complexity and delivery dilation for the case when K
represents a key range. Denote the number of nodes in
the [k1, kx] interval by N[k1,kx]. Note that every message
in this protocol is sent either to a finger node outside of
[k1, kx] or to a node that covers [k1, kx] and delivers the
message to the application. It is easy to see that the num-
ber of such finger nodes outside of the range is limited by
log n in the worst case. Thus, the algorithms sends a total
of O(log n + N[k1,kx]) one-hop messages in the worst case,
with the maximal message delivery dilation being O(log n).

To quantify the benefits of using a multicast primitive
that is natively supported by the platform, let us consider
the performance of a unicast-based propagation to a range

of keys. A unicast-based protocol may send messages con-
servatively in the following fashion: first, M is sent to
k1. Then, the algorithm operates recursively: each node
that receives M being destined for a key ki forwards M
to ki + 1 mod 2m. The recursion stops when ki + 1 mod
2m goes beyond kx. Like in the multicast-based protocol,
it is guaranteed that no node receives M twice. Therefore,
this protocol has the same worst-case message complexity
of O(log n+N[k1,kx]). However, O(log n+N[k1,kx]) is also
message dilation of this protocol, which will be intolerable
in most practical settings.

On the other hand, if a unicast-based protocol sends M
aggressively, i.e., in parallel to all the keys, it will have the
same appealing dilation of O(log n) as the above multicast-
based protocol. However, it may send as many as Ω(log n×
x) messages, which is clearly unacceptable.3

4.3.2 Buffering and collecting notifications

In our basic architecture, when a rendezvous node receives
an event, it attempts to match it against each of the stored
subscriptions. For each match found, a notification is imme-
diately sent to the subscription source. While this provides
a highly responsive system, at the sime time it may result in
several short notification messages being sent (the number
of events times the number of active subscriptions, in the
worst case).

Note that in many cases (e.g., stock tickers, temper-
ature sensors, and in general events produced by a data
stream), consecutive events exhibit temporal locality, i.e.,
have close attribute values. Consequently, they map to the
same node or neighbor nodes in a range. To improve per-
formance in these settings, we propose the use of a buffer-
ing mechanism: each node accumulates notifications for a
given amount of time and sends notifications periodically in
batches (all the matches for each subscription are sent in a
single message) [7]. Additionally, we introduce a mecha-
nism that gathers notifications in a coordinated way for the
case when events are mapped to nodes that lie close on the
ring. If a subscription maps to a range of nodes, the mid-
dle node of the range serves as agent for this subscription
and periodically forwards all collected notifications to the
subscription source. Every other node in the range a) pe-
riodically sends detected matches to its neighbor that lies
closer to the middle of the range, and b) aggregates all the
matches it receives from its neighbor that lies farther from
the middle of the range. Note that the cost of exchanging
notifications between neighbor nodes is amortized across
all stored subscriptions so that fewer exchange messages
are sent but those messages are longer, which is typically
more desirable.

3We leave out the details of analysis due to the lack of space.

7

1

10

100

1000

10000

Map 1-ucast Map 1-mcast Map 2-ucast Map 2-mcast Map 3-ucast Map 3-mcast

H
o

p
s

p
er

 R
eq

u
es

t

Subscriptions

Publications

Notifications

Figure 5. Total Number of Hops

4.3.3 Discretization of mappings

Associating a rendezvous node to each single value in a
range may not be a feasible solution: for non-selective con-
straints, a subscription may be mapped to an excessively
large number of nodes.

In order to cope with this problem, we propose a coarser
subdivision of the event space by mapping intervals into
keys rather than single values so that all the values within
the same interval correspond to a single rendezvous. The
coarser is discretization, the lower is the number of ren-
dezvous nodes a large range is mapped to, subsequently re-
quiring less hops for propagating a subscription.

The size of discretization intervals should be set consid-
ering that the total number of possible intervals (obtained
by dividing the total size of event space for the size of the
intervals) should be always higher than the number of the
nodes in the system. If intervals are too large some nodes
may be never considered as rendezvous, causing imbalance
in the distribution of subscriptions.

5 Simulations

In this section we presents the results of a simulation
study of our system, focusing on the performance compar-
ison between the mappings and on the benefits obtained by
using the multicast primitive and the other optimizations we
introduced. The results are shown in terms of the following
characteristics that are measured under varying conditions:
a) the number of one-hop messages sent in the system and
b) the number of subscriptions stored on the nodes.

We do not present any comparison with other existing
pub/sub systems that are based on a network of brokers be-
cause the performance of those systems strongly depends on
the broker network topology and distribution of subscrip-
tions across the brokers, which are configured by the users.
Hence, a meaningful comparison with our self-organizing
system is deemed difficult to achieve.

5.1 Simulation Details

We implemented a simulator of our pub/sub architec-
ture on top of the freely available Chord simulator. We
exploited the Chord infrastructure for management of node
joins, maintenance of finger tables, and point-to-point uni-
cast primitive. Furthermore, we extended the Chord simu-
lator by implementing the multicast primitive. We used a
key space of size 213.

Experiments are conducted by generating and replaying
subscriptions and publications defined over a 4 attribute
event space. All attributes are integers, ranging from 0
to the maximum attribute value ATTR MAX of 1,000,000.
Each attribute is categorized as selective or non-selective
for the purpose of workload generation on a per-experiment
basis: each constraint in a subscription spans an indepen-
dently chosen range that is generated as a random number
between 1 and X, wherein X is 3% of ATTR MAX for non-
selective attributes and 0.1% for selective ones. For the
sake of analyzing the performance of Selective-Attribute,
it is important to note that the range of the most restric-
tive constraint out of the 4 constraints in a subscription is
0.6% of ATTR MAX on average when all attributes are non-
selective. Ranges are centered around a value that is chosen
randomly following a uniform distribution for non-selective
attributes and a Zipf distribution for selective ones. The
characteristics of this workload are consistent with those of
a real-world pub/sub application studied in [16].

When a subscription is stored at a rendezvous node, we
set an expiration time after which the subscription is auto-
matically removed. This simulates possible requests for un-
subscriptions, which are common in real applications. Pub-
lications are generated with a given probability (that we call
matching probability) to match at least one subscription. If
not specified differently, the parameters used for simula-
tions are as follows: the number of nodes n is 500; message
delay is fixed to 50ms; subscriptions are injected at a regu-
lar rate of one each 5s, while publications follow a Poisson
process with the average of 5s (subscriptions and publica-
tions are randomly interleaved); matching probability is 0.5.

Upon n = 500, the average number of hops it took the
Chord simulator to deliver a single message between a pair
of random nodes was about 2.5. This is better than log n
due to the finger caching mechanism; this number showed
little variation throughout the experiments.

5.2 Experimental Results

Network Performance. Figure 5 shows the number of hops
per request (subscriptions, publications and notifications)
obtained when using the three proposed mappings with uni-
cast and multicast. Subscriptions never expire and all at-
tributes are non-selective.

8

As expected, each publication was mapped to one key in
mappings 1 and 2 and to four keys in mapping 3. For the
above workload parameters, each subscription was mapped
to slightly over one key in mapping 2. The number of
mapped keys per subscription was about ten times higher
for mapping 1 compared with mapping 3. These figures
are directly reflected in the number of hops per subscription
when using unicast. When the number of mapped keys is
high (as in the case of subscriptions in mappings 1 and 3),
using multicast significantly reduces the number of hops, by
more than 90% in our experiments.

1

10

100

1000

1000 2500 5000 7500 10000 17500 25000

Expiration Time (msec)

M
ax

 S
ub

sc
rip

tio
ns

 p
er

 N
od

e

Map 1 Map 2 Map 3

1

10

100

1000

1000 2500 5000 7500 10000 17500 25000

No selective attributes

One selective attribute

Figure 6. Memory consumption

0

2

4

6

8

10

12

14

16

18

20

250 500 1000 2500 5000

Number of nodes

H
o

p
s

p
er

 p
u

b
lic

at
io

n

Figure 7. Scalability of bandwidth consump-
tion

Memory consumption. We compared the memory occu-
pation due to subscriptions for each of the three different
mappings. In these experiments 25000 subscriptions and no
publications were injected in the system. Figure 6 shows the
maximum number of subscriptions per node in the system
for different values of the expiration time of subscriptions,
when zero (below) and one (above) selective attributes are
present. The average number of subscriptions per node fol-
lows the same trend and it is not shown because of lack of
space. Again, mapping 2 appears to have the best overall
behavior when no selective attributes are present. However,
we point out how mapping 3 can benefit from the presence
of one selective attribute.

1

10

100

1000

10000

250 500 1000 2500 5000
Number of Nodes

M
ax

 S
u

b
sc

ri
p

ti
o

n
s

Mapg 1 Mapg 2 Mapg 3

1

10

100

1000

10000

250 500 1000 2500 5000

No selective attributes

One selective attribute

Figure 8. Scalability of memory consumption

Scalability. Figure 7 shows how the number of hops per
publication depends on the number of nodes n. The results
are shown for mapping 3 when using unicast. In all cases,
the number of hops grows logarithmically with n, which is
determined by the basic scalability property of the underly-
ing overlay network.

Figure 8 depicts the maximum number of subscriptions
per node when 25000 subscriptions are injected in the sys-
tem, with zero (below) and one (above) selective attributes.
The overall number of subscriptions in the system increases
with n because a same range is divided among a higher
number of rendezvous, hence the corresponding subscrip-
tions is copied several times. Mappings 1 and 3 are particu-
larly sensitive to this phenomenon, exhibiting poor scalabil-
ity when no selective attributes are present. On the contrary,
when using mapping 2 the average number of subscriptions
per node is almost constant. However, these experiments
confirm the suitability of mapping 3 when selective sub-
scriptions are present: in this setting, subscription duplica-
tion occurs rarely and the growth of the subscriptions per
node is limited, allowing mapping 3 to perform better than
mapping 2 when the number of nodes is less than 2500.

Optimizations. Figure 9(a) depicts the number of hops re-
quired for notifications with different matching probability.
The different histograms correspond to different settings for
notification buffering and collecting: no buffering and no
collecting, buffering plus collecting (with a buffering period
set to 1, 2 and 5 times the average publication period), and
buffering and no collecting. Both buffering and collecting
significantly reduce the number of hops due to notifications,
introducing only a delay in the notification itself. However,
the experiments show that most of the benefits of this opti-
mization are achieved starting from small buffering periods.

Finally, Figure 9(b) shows the effect of discretization on
the number of hops required for issuing subscriptions. The
different histograms correspond to a discretization interval
whose size is 1 (no discretization), 10% and 20% of the av-
erage range size. Both plots refer to mapping 3 with unicast,

9

0

5000

10000

15000

20000

25000

30000

35000

0,1 0,25 0,5 0,75 0,9

Notification Probability

N
o

ti
fy

 H
o

p
s

No Buffering, No Collecting

Buffering (1x Pub Rate), Collecting

Buffering (2x Pub Rate), Collecting

Buffering (5x Pub Rate), Collecting

Buffering (5x Pub Rate), No Collecting

(a)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1000 5000 10000 17500 25000
Subscriptions

S
u

b
sc

ri
p

ti
o

n
 h

o
p

s

No Discretization

Discretization (1% sub size)

Discretization (5% sub size)

(b)
Figure 9. Effects of optimizations

but the same results apply to other mappings with multicast.
Again, the positive effect of this optimization for a further
reduction of subscription hops is evident.

6 Concluding remarks and future work

In this work we have described a P2P architecture for
the content-based pub/sub paradigm, which relies on over-
lay network technologies. In particular, we described three
different methods for mapping pub/sub subscriptions and
events to overlay keys, analyzing their benefits and draw-
backs. To the best of our knowledge, the proposed solution
is unique in its self-configuration abilities and adaptiveness
to dynamic changes.

In order to increase the efficiency of the proposed solu-
tion, we have proposed to enrich the existing overlay net-
works with one-to-many primitives, as well as to extend
our infrastructure with notification buffering and range dis-
cretization capabilities. We have illustrated the feasibility
and scalability of our approach with experimental results
obtained from simulations.

References

[1] R. Baldoni, M. Contenti, and A. Virgillito. The Evolution
of Publish/Subscribe Systems. In Future Trends in Distrib-
uted Computing, Research and Position Papers, volume 2584.
Springer, 2003.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evalu-
ation of a Wide-Area Notification Service. ACM Transactions
on Computer Systems, 3(19):332–383, Aug 2001.

[3] M. Castro, P. Druschel, A. Kermarrec, and A. Rowston.
Scribe: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in Com-
munications, 20(8), October 2002.

[4] G. Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-
based infrastructure to develop complex distributed systems.
In Proceedings of ICSE ’98, April 1998.

[5] S. El-Ansary, L. Alima, P. Brand, and S. Haridi. Efficient
Broadcast in Structured P2P Networks. In Proc. IPTPS, 2003.

[6] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering algorithms and implementation for very
fast publish/subscribe. In Proceedings of SIGMOD 2001.

[7] R. Friedman and R. van Renesse. Packing Messages as a Tool
for Boosting the Performance of Total Ordering Protocols. In
Proceedings of HPDC 1997, 1997.

[8] Gryphon Web Site. http://www.research.ibm.com/gryphon/.
[9] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Megh-

doot: Content-Based Publish/Subscribe over P2P Networks. In
Proceedings of Middleware 2004, 2004.

[10] P. Pietzuch and J. Bacon. Peer-to-peer overlay broker net-
works in an event-based middleware. In Proc. DEBS, 2003.

[11] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. LNCS, 2233:14–34, 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In Proceedings of Middleware ’01, 2001.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. of SIGCOMM, 2001.

[14] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann. A peer-to-peer approach to content-based pub-
lish/subscribe. In Proceedings of DEBS’03, 2003.

[15] P. Triantafillou and I. Aekaterinidis. Content-based Publish/-
Subscribe over Structured P2P Networks. In DEBS, 2004.

[16] Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J.
Wang. Subscription Partitioning and Routing in Content-based
Publish/Subscribe Networks. In DISC’02, 2002.

[17] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. Tapestry: A Resilient Global-scale Over-
lay for Service Deployment. IEEE Journal on Selected Areas
in Communications, 2003.

[18] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Ku-
biatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In Int. Workshop on
Network and OS Support for Digital Audio and Video, 2001.

10

