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Abstract

Techniques for sampling Internet traffic are very important to
understand the traffic characteristics of the Internet [14, 8]. In
spite of all the research efforts on packet sampling, none has taken
into account of self-similarity of Internet traffic in devising sam-
pling strategies. In this paper, we perform an in-depth, analytical
study of three sampling techniques for self-similar Internet traffic,
namely static systematic sampling, stratified random sampling and
simple random sampling. We show that while all three sampling
techniques can accurately capture the Hurst parameter (second or-
der statistics) of Internet traffic, they fail to capture the mean (first
order statistics) faithfully. We also show that static systematic sam-
pling renders the smallest variation of sampling results in different
instances of sampling (i.e., it gives sampling results of high fidelity).
Based on an important observation, we then devise a new variation
of static systematic sampling, called biased systematic sampling
(BSS), that gives much more accurate estimates of the mean, while
keeping the sampling overhead low. Both the analysis on the three
sampling techniques and the evaluation of BSS are performed on
synthetic and real Internet traffic traces. Our performance study
shows that BSS gives a performance improvement of 40% and 20%
(in terms of efficiency) as compared to static systematic and simple
random sampling.

1 Introduction

Techniques for sampling Internet traffic are very important to un-
derstand traffic characteristics of the Internet [14, 8]. If the sampled
results faithfully represent Internet traffic, they can be utilized on a
short-term basis for hot spot and DDoS attack detection [19], or on
a long-term basis for traffic engineering [14] and accounting [9]. As
such, packet sampling approaches have been suggested by the IETF
working groups IPFIX [16] and PSAMP [17]. Tools such as Net-
Flow [4] employ a naive 1-out-of-N sampling strategy in the router
design.

The major challenge in employing sampling techniques is scal-
ability. Logging/inspecting each individual packet for an origin-
destination (OD) flow or sampling at a very high rate is obviously
not scalable, due to the large volume of samples to be kept. On
the other hand, if the sampling rate is inadequately low, the sam-
pled results may not characterize faithfully actual traffic. What
makes the problem even more difficult is the bursty nature of Inter-
net traffic. As indicated in a number of recent empirical studies of
traffic measurement from a variety of operational packet networks

[20, 12, 22, 23], the Internet traffic is self-similar or long-range de-
pendent (second order statistics, LRD) in nature. This implies the
existence of concentrated periods of high activities (peaks) and low
activities (valleys), i.e., burstiness, at a wide range of time scales.
In the context of packet sampling, this implies that either the sam-
pling rate must be high enough or the sampling strategy has to be
judiciously devised so as to capture all the peaks and valleys in the
traffic. As sampling at a high rate increases the memory require-
ments for off-board measurement devices, and has the danger of
making the sampling method unscalable, the latter approach (devis-
ing a sampling strategy that is able to capture the traffic characteris-
tics) is preferred.

Several research efforts have been made to investigate the effec-
tiveness of sampling techniques in measuring network traffic. Three
commonly used sampling techniques, i.e., static systematic1, strat-
ified random and simple random, have been studied by Claffy et
al. [3]. In particular, they explored various time-driven and event-
driven sampling approaches with both random and deterministic se-
lection patterns at a variety of time granularities. The results showed
that event-driven techniques outperform time-driven ones, while the
differences within each class are small. Cozzani and Giordano [6]
used the simple random sampling technique to evaluate the ATM
end-to-end delay. Estan and Varghese [13] proposed a random sam-
pling algorithm to identify large flows, in which the sampling proba-
bility is determined according to the inspected packet size. Duffield
et al. [9] focused on the issue of reducing the bandwidth needed for
transmitting traffic measurements to a back-office system for later
analysis, and devised a size-dependent flow sampling method. Choi
et al. [2] proposed the notion of adjusting the sampling density upon
detection of traffic changes in order to meet certain constraints on
the estimation accuracy. Finally, Duffield et al. [11, 10] investigated
the issue of inferring stochastic properties of original flows (specif-
ically the mean flow length, and the flow length distribution) from
the sampled flow statistics.

In spite of all the research efforts, none has taken into account
of self-similarity of Internet traffic in devising sampling strategies.
Three of the most important parameters for a self-similar process
are the mean (first order statistics), the Hurst parameter (second or-
der statistics), and the average variance of the sampling results. The
mean gives the most direct value of the traffic attribute to be mea-
sured. The Hurst parameter characterizes the second order statistics
for a self-similar/LRD process, and is crucial for queuing analysis.
The average variance of the sampling results is defined as follows.
Let X̄ be the real mean of the parameter of interest in the origi-
nal process, and Xi the sampled result in the ith sampling process

1In what follows, we omit “static” and simply name it systematic.
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(i.e., the ith experiment). The average variance is then defined as
E(V ) = E[E[(Xi − X̄)2]], where the inner expectation is taken
over all the samples in one sampling process, and the outer expecta-
tion is taken over all the sampling instances (For example, different
starting sampling points in systematic sampling give different sam-
pling instances). The average variance is an index of the fidelity of
the sampling results.

Although it has been reported in [21] that in sampling self-
similar processes with the three commonly used sampling tech-
niques, the sampled mean is always smaller than the actual mean
(i.e., the sampling techniques under-estimate the mean), no solution
has been proposed to address this problem. The issues of whether
the various sampling techniques accurately capture the Hurst pa-
rameter and/or render a small average variance have not been stud-
ied either. In this paper we close the gap and

T1. Investigate whether or not the three commonly used sampling
techniques accurately capture the Hurst parameter. We pro-
vide a sufficient and necessary condition (SNC) that a sampling
strategy must satisfy in order to maintain the autocorrelation
structure of the original process. Our derivation indicates that
all the three methods satisfy the SNC.

T2. Verify whether or not the three commonly used sampling tech-
niques render small average variances (and hence give high
fidelity) by leveraging the results reported in [5]. Our research
finding is that the systematic sampling method outperforms the
other two.

T3. Demonstrate all three methods cannot accurately estimate the
mean for self-similar Internet traffic, especially when the sam-
pling rate is small. We then propose, based on an important
observation, a revised version of systematic sampling, called
biased systematic sampling (BSS), that gives much more ac-
curate estimates of the mean, while keeping the sampling over-
head low. As BSS is a variation of systematic sampling, it
retains all the advantages of the latter.

Both the verification and validation in T1–T3, and the evalua-
tion of BSS, are performed on synthetic and real Internet traces. In
particular, the real Internet traces were obtained from Lucent Tech-
nologies Bell Labs [18], contain millions of packets, and provide
detailed packet level information for hundreds of pairs of end hosts.

Note that the traffic process f(t) considered in the paper is rather
general, and can be either an individual OD-flow or the aggregate
of several/all OD-flows that traverse a router. After f(t) is speci-
fied, the proposed sampling technique can be used to, for example,
estimate the mean of the aggregate traffic of several (selected) OD
flows between the west and east coasts in the States. Note also
that although it is feasible to log each and every individual packet
and record the entire flow time series f(t), the process of collect-
ing such an enormous amount of samples can only be carried out at
a small number of ISP routers that are equipped with DAG packet
collection cards and large memory. The large amount of data is
then analyzed off-line to better understand the traffic characteris-
tics. Sampling remains as an effective and economical technique to
on-line collect/estimate parameters that characterize the traffic.

The rest of the paper is organized as follows. After providing the
background material in Section 2, we analyze in Section 3 whether
or not the three sampling techniques accurately capture the Hurst
parameter of the process to be measured, and provide a SNC that
a sampling strategy must satisfy in order to retain the second order

statistics (and hence Hurst parameter) of the original process. Then,
we compare in Section 4 the average variance of the sampling re-
sults obtained by the three techniques. Following that, we demon-
strate in Section 5 with both synthesized and real Internet traces that
all three techniques fail to capture the real mean of Internet traffic,
and elaborate on BSS. Finally we present in Section 6 a perfor-
mance study (based on both synthesized and real traces). The paper
concludes with Section 7.

2 Background

In this section, we introduce self-similar processes and the three
commonly used sampling techniques, and set the stage for subse-
quent derivation and discussion.

2.1 Self-Similar and Heavy-tailed Distribution

Let {f(t), t ∈ Z+} be a time series which represents the traffic
process measured at some fixed time granularity. As mentioned in
Section 1, the traffic process can be an individual OD-flow or an
aggregation of several/all OD-flows that traverse a router. To define
self-similarity, we further define the aggregated series f (m)(τ) as

f (m)(τ) =
1
m

τm∑
i=(τ−1)m+1

f(i). (1)

f (m)(τ) can be interpreted as follows: the time axis is divided into
blocks of length m and the average value for each block is used to
represent the aggregated process. The parameter τ is the index of
the aggregated process, i.e., the τ th block.

Let R(τ) and R(m)(τ) denote the autocorrelation functions of
f(t) and f (m)(i), respectively. f(t) is (asymptotically second-
order) self-similar, if the following conditions hold:

R(τ) ∼ const · τ−β , (2)

R(m)(τ) ∼ R(τ), (3)

for large values of τ and m where 0 < β < 1. That is, f(t) is self-
similar in the sense that the correlation structure is preserved with
respect to time aggregation (Eq. (3)) and R(τ) behaves hyperboli-
cally with

∑∞
τ=0 R(τ) = ∞ (Eq. (2)). The latter property is also

referred to as long range dependency (LRD).
Since self-similarity is closely related to heavy-tailed distribu-

tions, i.e., distributions whose tails decline via a power law with
a small exponent (less than 2), we give a succinct summary of
heavy-tailed distributions. The most commonly used heavy-tailed
distribution is the Pareto distribution. A random variable X follows
the Pareto distribution if its complementary cumulative distribution
function (CCDF) follows:

Pr(X > x) ∼ (k/x)α, x ≥ k,

where α is the shape parameter and determines the decreasing rate
of its tail distribution, and k is the scale parameter and is the smallest
value X can take.

An important parameter that characterizes self-similarity/LRD is
the Hurst parameter, defined as H = 1 − β/2.
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Figure 1. An illustration of the three sampling tech-
niques.

2.2 Three Commonly Used Sampling Techniques

Three categories of sampling techniques have been commonly
used in measuring Internet traffic: systematic sampling, stratified
random sampling, and simple random sampling (Figure 1). In sys-
tematic sampling, every Cth element (e.g., packet) of the parent pro-
cess is deterministically selected for sampling, starting from some
starting sampling point. In stratified random sampling, the time axis
is divided into intervals of length C, and one sample is randomly se-
lected in each interval. In simple random sampling, N packets are
randomly selected from the entire population.

3 Hurst Parameter of the Sampled Process

In this Section, we first investigate whether or not the three sam-
pling techniques accurately capture the Hurst parameter of Internet
traffic. This is done by deriving the autocorrelation function of the
sampled process obtained from the three sampling techniques. Then
we derive a SNC that a sampling technique has to satisfy in order to
retain the autocorrelation structure of the original process.

3.1 Systematic Sampling

Let f(t) and g(t) denote, respectively, the original and sampled
processes. Also, let Rf (τ) and Rg(τ) denote the autocorrelation
function of f(t) and g(t), and F (t) and G(t) the CDF of f(t) and
g(t), and Hf and Hg the Hurst parameter of f(t) and g(t), respec-
tively. Without loss of generality, let t be discretized to be integers:
0, 1, 2, 3.... For systematic sampling, let C be the sampling interval.
Then we have2

g(t) = f(Ct), t = 0, 1, 2, .... (4)

Also,

Rg(τ) = E(g(t)g(t − τ)) = E(f(Ct)f(Ct − Cτ))

=
∫

f(Ct)f(Ct − Cτ)dF (t). (5)

Let Ct = u. Then Eq. (5) can be re-written as

Rg(τ) =
∫

f(u)f(u − τ)C−1dF (t)

= C−1 · Rf (τ). (6)

Hence Rg(τ) = C−1Rf (τ) ∼ Aτ−β as τ → ∞, where A is a
constant. Also, we have Hg = Hf = 2−β

2 , where 0 < β < 1. The

2Without loss of generality, we denote the starting point of systematic sampling
to be t = 0.

above derivation implies that the sampled process obtained by the
static systematic sampling technique has the same Hurst parameter
as the original process.

3.2 Stratified Random Sampling

Recall that in stratified random sampling, the time axis is divided
into interval of length C, and one sample is randomly taken in each
interval. Using the same notation as in Section 3.1, we have

Rg(τ) = E(g(t)g(t − τ))
= E(f(Ct + τ1)f(Ct − Cτ + τ2)),

where τ1 and τ2 are random variables that represent the time lags
after the beginning of the tth and (t − τ)th interval respectively.
Rg(τ) can be further written as

Rg(τ) = E(E(f(Ct + τ1)f(Ct − Cτ + τ2)|τ1, τ2))

= E(C−H−1Rf (τ +
τ1 − τ2

C
))

= E(C−H−1Rf (τ + τ ′)),

where τ ′ = τ1−τ2
C .

By Eq. (3), we have

Rg(τ) ∼ E(D · (τ + τ ′)−β)

=
∫

D · (τ + τ ′)−βfτ ′dτ ′,

where D is a constant related to C, and fτ ′ is the probability density
function (pdf) of τ ′. As both τ1 and τ2 are uniformly distributed in
[0, C], we have

fτ ′(x) =
{

1 + x, if −1 ≤ x ≤ 0,
1 − x, if 0 ≤ x ≤ 1,

(7)

and hence

Rg(τ) ∼
∫ 1

−1

D · (τ + τ ′)−βfτ ′dτ ′

∼ Dτ−β

∫ 1

−1

(1 − β
τ ′

τ
)fτ ′dτ ′

= D · τ−βas τ → ∞. (8)

The last equality results from the fact that E(τ ′) = 0. By Eq. (8),
we conclude that the sampled process obtained by the stratified ran-
dom sampling technique has the same Hurst parameter as the origi-
nal process.

3.3 Simple Random Sampling

In simple random sampling, N samples are randomly selected
from the entire population of M samples. That is, with probability
ρ = N/M a sample is selected. Let t0 denote the sampling point in
f(t) corresponding to the tth sample g(t). Then we have

Rg(τ) = E(g(t)g(t + τ))
= E(f(t0)f(t0 + a)) = Rf (a),

where a ≥ τ is a random variable. Since

Pr(a = τ + i) =
(

τ + i − 1
i

)
ρτ (1 − ρ)i, i = 0, 1, 2.., (9)
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we have

Rg(τ) =
∞∑

a=τ

Rf (a) · Pr(a)

=
∞∑

i=0

Rf (τ + i)
(

τ + i − 1
i

)
ρτ (1 − ρ)i

∼
∞∑

a=τ

Γa−β

(
a − 1
a − τ

)
ρτ (1 − ρ)a−τ

∼
∞∑

a=τ

Γa−β (a − 1)!
(a − τ)!(τ − 1)!

ρτ (1 − ρ)a−τ , (10)

where Γ is a constant. Using the Sterling equation, we can further
approximate Eq. (10) as

Rg(τ) ≈ Γρτ√
2π(τ − 1)(τ − 1)τ−1e−(τ−1)

∞∑
a=τ

a−β(a − 1)a−1/2e−(a−1)

(a − τ)a−τ+1/2e−(a−τ)
· (1 − ρ)a−τ

=
Γρτ (1 − ρ)−τ

√
2π(τ − 1)τ−1/2

∞∑
a=τ

a−β(a − 1)a−1/2(1 − ρ)a

(a − τ)a−τ+1/2

�
= Γ̂

∞∑
a=τ

a−β(a − 1)a−1/2(1 − ρ)a

(a − τ)a−τ+1/2
, (11)

where Γ̂ =
Γ( ρ

1−ρ )τ

√
2π(τ−1)τ−1/2 .

Since no closed form result can be obtained from Eq. (11), We
use matlab to find the relation between Rg(τ) and τ . Specifically,

We fit the value of Rg(τ) (calculated from Eq. (11)) to const · τ β̂

and depict the estimated value β̂ and the real value of β in Fig. 2. As
shown in Fig. 2, we fit the calculated result of Rg(τ) (after taking
log2 on both τ and R(τ)) to a line with slope β̂ = −0.08, where the
real value is β = 0.1. By changing the real value of β from 0.1 to
0.8, we perform the same operation and find that the estimated value
of β matches the real value very well, i.e., the sampled process can
keep the autocorrelation structure of the original process.

3.4 Sufficient and Necessary Condition for Accurately
Capturing the Hurst Parameter

In Section 3.1–3.3, we have shown that the sampled process gen-
erated by all three sampling techniques has the same Hurst parame-
ter as the original process. A more general question is then: given a
sampling technique, how do we check if the sampled process gener-
ated by this technique has the same Hurst parameter as the original
process? To answer the question, we derive a sufficient and neces-
sary condition (SNC) which a sampling technique has to satisfy in
order to preserve the same second order statistics (and therefore the
Hurst parameter) in the thinned process.

We generalize the sampled process generated by a sampling
method to be a point process Zn, n = 1, 2, 3..., which represents the
series of sampling points. The intervals between any two consecu-
tive sampling points are defined as Ti = Zi+1 − Zi, i = 1, 2, ....
Ti’s are i.i.d random variables with the probability density func-
tion h(x) for the continuous case and the probability mass function
H(x) for the discrete case. Note that Zn is a renewal process with
the renewal interval distribution h or H . A sampling method (and
hence the sampled process generated by the sampling method) is
fully characterized by h or H . For example, the function H for sys-
tematic sampling is H(C) = Pr(Ti = C) = 1 and H(x) = 0 for
x 	= C, while the function h for stratified random sampling method
is

h(x) =
{

1
C2 x, if 0 ≤ x ≤ C,
2
C − 1

C2 x, if C ≤ x ≤ 2C,
(12)

where C is the length of each sampling interval. For the simple
random sampling technique with the sampling probability r, H can
be expressed as

H(i) = Pr(Ti = i) = (1 − r)i−1r. (13)

Under the assumption that the process f(t) is wide sense stationary,
we have

Rg(τ) = E (g(t)g(t − τ))
= E (f(t + t0)f(t + t0 − u))
= E (f(t)f(t − u))
= E (E (f(t)f(t − u)|u))

=
∞∑

u=0

Rf (u)p(u), (14)

where u =
∑τ

i=1 Ti and p(u) is the probability mass function of
u. Note that p(u) is the τ th order convolution of H(u), which we
denote as k(u, τ) (as it is a function of both u and τ ). Now we are
in a position to derive the sufficient and necessary condition.

Theorem 1 Given any wide sense stationary (WSS) process f(t),
the sampled process g(t) obtained from a sampling technique with
h or H has the same second order statistics as the original process
asymptotically if and only if the following condition holds

∞∑
u=0

Rf (u)k(u, τ) ∼ Rf (τ), (15)

where k(u, τ) is the τ th order convolution of H(u).
Proof: By Eq. (14) we know that g(t) retains the same second order
statistics of f(t) asymptotically, if and only if Rg(τ) ∼ Rf (τ), as
τ → ∞, and hence the conclusion.
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4 The Average Variance of Sampling Methods

Due to the randomness nature of stratified random sampling and
simple random sampling, sampling results vary from one sampling
instance to another, even if multiple instances of sampling are taken
simultaneously and the same sampling rate is used in each instance.
Here by “instance,” we mean an experiment carried out to take sam-
ples for a period of time. Even for systematic sampling, different
starting sampling points may lead to different sampling results. If
the variance of sampling results obtained from multiple instances
is large, then one cannot rely on a single sampling instance to in-
fer the entire process. To evaluate different sampling techniques in
this aspect, we use the average variance of sampling results E(V )
as the index. Recall that E(V ) is defined in Section 1 as: let X̄
be the real mean of the parameter of interest in the original pro-
cess, and Xi be the sampled result in the ith instance of sampling
(i.e., the ith experiment). Then the average variance is defined as
E(V ) = E[E[(Xi − X̄)2]].

Let Vsy , Vrs and Vran denote, respectively, the variance of sam-
pling results of systematic, stratified random and simple random
sampling. To compare the three sampling techniques with respect
to the average variance of sampling results, we leverage the results
from [5] (Theorem 8.6):

Theorem 2 For a random process f(t), with mean µ, variance σ2,
and autocorrelation function R(τ), if the following condition holds,

δτ = R(τ + 1) + R(τ − 1) − 2R(τ) ≥ 0, (16)

we have E(Vsy) ≤ E(Vrs) ≤ E(Vran).

The result in Theorem 2 is actually quite intuitive. For system-
atic sampling, as the sampling interval remains unchanged among
different sampling instances, the same second order statistic struc-
ture (e.g., the autocorrelation function) is retained. For the other
two sampling techniques, different sampling instances have differ-
ent second order statistic structures, although in the long run, they
follow the same decreasing rule.

Theorem 2 gives a sufficient condition (Eq. (16)) in evaluating
the three sampling techniques with respect to E(V ), given that the
original process has finite mean and variance. To leverage Theo-
rem 2, we first check whether the condition in Eq. (16) holds for a
self-similar process. Using the fact that R(τ) ∼ const · τ−β , it is
easy to check that the condition in Eq. (16) holds.

In applying Theorem 2 we also need to verify if the process has
finite mean and variance. A self-similar process (with α ∈ (1, 2))
has finite mean, but its variance tends to infinity as time goes to in-
finity. However, since we only consider the process in finite time
periods in practice, we conjecture the above condition is still valid.
To validate the conjecture, we carry out experiments on both syn-
thetic and real Internet traffic and measure the average variance of
sampling results (under the three techniques). Specifically, we gen-
erate in ns-2 self-similar traffic with the Hurst parameter equal to
0.80 using the on-off model, where the on/off periods have heavy-
tailed distributions with shape parameter α = β + 1, 1 ≤ α ≤ 2.
We also use real Internet traces from Lucent Technologies Bell Labs
[18]. The set of traces was obtained on March 8, 2000, is in the
tcpdump format, and contains detailed packet level information for
hundreds of pairs of end hosts. The traces last for about 40 minutes
and contains millions of packets. Fig. 3 gives the average variance

of sampling results under the three sampling techniques. Note that
Fig. 3 (b) gives the result for the real Internet trace set with Hurst pa-
rameter 0.62. Results for the other sets (that correspond to different
servers) show similar trends and are not shown here. As shown in
Fig. 3, systematic sampling does give the smallest average variance.

Although systematic sampling does capture the Hurst parame-
ter and provide sampling results of small variance, we show in in
Section 5 that it provides very biased estimates of the real mean for
a self-similar process. To remedy this deficiency, we then devise
a new variation of systematic sampling to improve the accuracy of
sampling results, while retaining its good properties. In the subse-
quent discussion, we will focus on systematic and simple random
sampling, as stratified random sampling is a variation of systematic
sampling.

5 Biased Systematic Sampling for Heavy-Tailed
Traffic

In this Section, we first show that both systematic sampling and
simple random sampling fail to provide a good estimate of the ac-
tual mean for a self-similar process (e.g., Internet traffic). Then
based on an important observation on self-similar processes (vali-
dated through experiments), we propose a new extension of system-
atic sampling.

5.1 Problem with Sampling a Self-Similar Process

It is well known that as the number of samples goes to infinity,
both simple random sampling and systematic sampling provide an
un-biased estimator of the real mean for stationary processes with fi-
nite mean and variance. (In practice, a moderate number of samples
suffice to provide a relatively good estimate of the real mean.) On
the other hand, if the original process has infinite variance, e.g., a
self-similar process, the law of large numbers cannot be readily ap-
plied, and the sampled mean approaches the real mean slowly as the
number of samples increases. This is because while a major portion
of a self-similar process consists of “small values,” a small portion
of “extremely large values” contribute to the majority volume of the
entire process. As these extremely large values do not occur very
often, it is difficult to capture them (unless the process is sampled
at an extremely high rate) and yet their effect on the estimate of the
mean is enormously large. Similar observations have been made in
the literatures [7, 21], but no effective solution has been proposed
to counter this problem. In particular, as shown in [7], in order
to achieve two-digit accuracy in the mean, the number of samples
needed is up to 1022 for the case of α = 1.2 (which corresponds to
H = 0.9). Even for mild cases where α = 1.5 (H = 0.75), still a
million samples is required to achieve the desirable accuracy.

We carry out experiments to demonstrate the problem in the con-
text of Internet traffic. In the experiments, we use the same set
of synthetic and real Internet traffic traces used in Section 4. We
change the sampling rate from 10−5 to 0.1 for synthetic traces, and
from 10−5 to 10−3 for real Internet traces. (The reason why we used
a smaller sampling rate for real Internet traces is due to the large vol-
ume of Internet traces. In fact, a sampling rate of 10−3 is considered
high, given the fact that tera-bytes of traffic are generated per day.)
As shown in Fig. 4, in the case of synthetic traffic traces, the dis-
crepancy between the real mean and the sampled mean (obtained
even with a sampling rate of 0.1) is quite notable. The discrepancy
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Figure 3. The average variance of sampling results (under systematic, stratified random, and simple random
sampling) on both synthetic and real Internet traffic.

becomes even more pronounced in the case of real Internet traces:
the sampled mean obtained with a sampling rate of a 10−3 is ap-
proximately 2

3 of the real mean, although in both cases the sampled
mean increases steadily but slowly.

5.2 An Important Observation

As mentioned above, the reason why the sampled mean is al-
ways far less than the real mean for a self-similar process is that the
major portion of a self-similar process consists of “small values,”
while a small portion of “extremely large values,” albeit occurring
less often, contributes to the majority volume of the entire process.
Without use of a sufficiently high sampling rate, the large values are
less likely to be sampled and hence the sampled mean is always less
than the real mean. If one could instrument the sampling method to
capture these extremely large values, the discrepancy between the
sampled mean and the real mean can be reduced.

To instrument a sampling method to capture extremely large val-
ues, the first step is to identify where they occur. For a self-similar
process f(t), we define another on-off process q(t) as:

q(t) =
{

1, if f(t) > ath,
0, otherwise,

(17)

where ath is a constant approximately of the same order of magni-
tude as the mean of f(t), Xr. The process q(t) consists of bursts
of 1s and 0s. The length of the 1-burst period is a random variable
(which we denote as B).

We conjecture that due to the self-similar properties of f(t), B
is heavy tailed. Intuitively this conjecture is made based on the
fact that a self-similar process contains concentrated periods of high
activities and low activities, and hence once the process goes beyond
ath, the time interval B during which it continuously remains above
ath is heavy-tailed. To validate the conjecture, we again carry out
experiments on both the synthetic and real Internet traces introduced
in Section 4. In the experiments, we set ath = Xr × ε, where ε is
called the normalized threshold and varies from 0.5 to 1.5. For each
fixed value of ε, we measure B and fit its CCDF to the most widely
used heavy tailed distribution, the Pareto distribution. Fig. 5 gives
the results for ε = 1.0. The fitted Pareto distribution has the shape
parameter α = 1.3 for the case of synthetic traces, and α = 1.65
for the case of real Internet traffic traces. For different values of ε,

the value of α changes mildly from 1.2 to 1.8, but the heavy-tailed
nature of B remains unchanged.

5.3 Detailed Description and Analysis of Biased System-
atic Sampling

In this section, we propose, based on the observation made in
Section 5.2 (i.e., B is heavy tailed), a new variation of systematic
sampling, called biased systematic sampling (BSS), that captures
extremely large values more faithfully. Specifically, BSS is essen-
tially systematic sampling with a sampling interval C, except that
when a sample is taken with the value greater than a threshold ath,
L extra samples are evenly taken in the current sampling interval C
(i.e., the sampling interval for these extra samples is C/L). Among
these extra samples, we only keep those that are greater than ath

(which we henceforth call qualified samples).

Analysis The rational behind BSS is as follows. A sample that
is greater than ath must fall in one of the 1-burst periods. Let the
1-burst period in which the sample falls be denoted as B. Suppose
the sample is taken τ time units after the beginning of the 1-burst
period B. We show that given B is heavily tailed, the probability
that the next sample taken under BSS also exceeds ath goes to 1 as
τ goes to infinity. In other words, once a sample is taken with the
value larger than ath, it is highly possible that the values thereafter
will still be larger than ath. Specifically, such a probability can be
expressed as

℘(τ) = Pr(q(τ + 1) = 1|q(t) = 1, 1 ≤ t ≤ τ)

= 1 − Pr(B = τ)
Pr(B ≥ τ)

. (18)

In the case that B is lightly tailed, e.g., the CCDF of B has an
exponential tail, or Pr(B > x) ∼ c1e

−c2x, where c1 and c2 are two
positive constants, Eq. (18) can be re-written as

℘(τ) ∼ 1 − c1e
−c2τ − c1e

−c2(τ+1)

c1e−c2τ
= e−c2 . (19)

That is, in the case that B is lightly tailed, the probability that the
samples taken exceed ath does not become larger conditioning on
the event that a sample has been identified to exceed ath. On the
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Figure 4. The sampled mean and the real mean of a self-similar process versus different sampling rates.

other hand, if B is heavily tailed, we have Pr(B > x) ∼ cx−α,
where 1 ≤ α ≤ 2 is the index of heavy-tailedness of the process,
and hence

℘(τ) ∼ 1 − cτ−α − c(τ + 1)−α

cτ−α
= (

τ

τ + 1
)α. (20)

That is, ℘(τ) → 1, as τ → ∞. This implies given that B is heav-
ily tailed, once a sample exceeds ath, with a high probability the
process will keep on large values. This lays the theoretical base for
BSS — very likely the extra samples taken contain extremely large
values.

Parameters setting in BSS To complete the design, we have to
determine the values of two important parameters used in BSS: the
on-set threshold ath and the number, L, of extra samples in each
sampling interval C. For clarity of description, we assume that the
original process f(t) follows a Pareto distribution with shape pa-
rameter α and scale parameter 
. (This assumption has been corrob-
orated by both the study in [1] and our own study [15]. For example,
we verified that the CCDF of f(t) can be fit into a Pareto distribu-
tion with shape parameter α = 1.5 and α = 1.71 for synthetic and
real traces, respectively.)

Let Xr, Xs, and Xbss denote, respectively, the real mean, the
sampled mean under systematic sampling, and the sampled mean
under BSS. By the property of the heavy tail distribution, Xr =
�α

α−1 , where 
 is the lowest value the original process can take. Also,
let the difference, η, between Xr and Xs be defined as

η = 1 − Xs

Xr
. (21)

Since the original process is self-similar, the sampled process is also
self-similar with the same shape parameter α (Section 3). As a re-
sult, the probability that a sample is greater than ath is (
/ath)α,
where 
 is the lowest value the original process can take. In other
words, approximately (
/ath)α × N samples exceeds the on-set
threshold, and trigger the operation of taking L extra samples. By a
similar line of reasoning, approximately (
/ath)α ×L samples (out
of the L extra samples) exceed the threshold ath, and are classified
as (qualified among all the extra samples taken). The sampled mean
of the set of qualified samples taken is approximately athα

α−1 .
Now the sampled mean, Xbss, under BSS can be expressed as

Xbss =
N · Xr + ( �

ath
)2α · N · athα

α−1 · L
N + L · ( �

ath
)2α · N . (22)

Figure 6. The relationship among L, ε and ξ in BSS.

Recall that Xr = �α
α−1 is the real mean, and hence Eq. (22) can be

rewritten as

Xbss =

α

α − 1
· 1 + L(
/ath)2α−1

1 + L(
/ath)2α

�
= Xr · ξ,

where

ξ =
1 + L(
/ath)2α−1

1 + L(
/ath)2α
(23)

is the bias parameter. If ξ = 1, then BSS is an unbiased sampling
method. Given the values of 
 and α, ξ is determined by L and ath.
In Fig. 6 we show the relationship between ξ L, and the normalized
threshold ε = ath/Xr. The intersection of the plane of ξ = 1
and the surface of ξ gives the set of parameters that makes BSS
unbiased. In particular, given any fixed value of L, there exists only
one intersection point along the ε axis: ε = α−1

α . This solution is,
however, not feasible in practice, because ε = α−1

α for 1 ≤ α ≤ 1.2
is very small and suggests extra samples be taken in virtually every
sampling interval. This translates to sampling at a very high rate.

A remedy to this problem is to allow BSS to be biased (ξ > 1).
A key step along this direction is to determine the value of ξ. Note
that Xbss = Xr · ξ (Eq. (23)) holds only when N → ∞. In the case
that N is finite, Xbss ≈ Xs · ξ. In order to have Xbss approach Xr

in the finite-N case, we set Xs · ξ = Xr or ξ = 1
1−η .

Tuning L and ath in the case that η is known: If η is known, we
can calculate ξ = 1

1−η and select appropriate values of L and ath by
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Figure 5. The CCDF of the 1-burst period B for the case of ε = 1.0, where ε determines the onset value, α, of the
1-burst period (ath = Xr × ε).
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intersecting the surface of ξ in Fig. 6 with the plane ξ = 1
1−η . Fig. 7

gives the contour of ξ. The label on each contour curve indicates
the value of ξ. Since all the points on the same contour curve render
the same value of ξ, we can set one of the two parameters first and
determine the other one accordingly.

Now to further determine the values of L and ath, we take into
account of the number of qualified samples, N · L · ( �

ath
)2α. This

can be considered as the overhead in BSS. L and ath should be so
chosen that the number of qualified samples is as few as possible.
That is, one should avoid the combination of a small value of ε and a
large value of L. In our performance evaluation study, we set ε = 1.

In summary, given the value of η, ξ can be calculated as 1
1−η .

Given the calculated ξ, the relation between ath and L can be de-
termined. Appropriate values of ath and L can then be determined
with the consideration of reducing the overhead of BSS as much as
possible.

Tuning L and ath without the knowledge of η In reality, as Xr

is not known a priori, η cannot be readily obtained. In what follows,
we discuss how to set the value of ath given the value of ε, without
the knowledge of Xr. Then we determine the value of L.

To determine the value of ath, we propose an on-line tuning
scheme. Before applying BSS, we first take Npre samples (which
we call pre-samples) from which we obtain an initial estimate of the
mean and set the value of ath accordingly. Then BSS commences,

and we set the value of ath as ath = E(Xbss,i) × ε, where Xbss,i

is the sampled mean of the sample set that contains all the samples
up to and including the ith regular sample (i.e., the set includes the
pre-samples, the i samples and all the qualified samples taken so
far). Note that during the course of taking extra qualified samples in
a sampling interval, the value of ath is not updated, since whether or
not to take extra samples in a sampling interval should be based on
the same threshold. Only by the end of a sampling interval when the
next regular sample is to be taken will the value of ath be updated
as E(Yi) × ε.

Given the value of ath, the value of η is needed to set an appro-
priate value of L. In the lack of the η value, we estimate it from
the sampling rate r as follows. As shown in [21] (Chapter 3), if we
define

Vn = N1−1/α(Xs − Xr), (24)

then
Vn → ϕα, in distribution, (25)

where ϕα is an α-stable distribution. That is, Vn converges in dis-
tribution for large values of N , i.e., |Xs − Xr| ∼ N1/α−1. Hence,

η =
|Xr − Xs|

Xr
∼ N1/α−1

Xr
. (26)

Let Ntotal be the total number of points in the original processes,
and r the systematic sampling rate. Then N = Ntotal · r, and

η ∼ Cs · r1/α−1, (27)

where Cs = N
1/α−1
total

Xr
is a constant less than 1 for 1 ≤ α ≤ 2. In our

experimental study, we find that for synthetic traces (α = 1.5), Cs ∈
(0.08, 0.15) while for real traces (α = 1.66), Cs ∈ (0.05, 0.1).

In summary, Eq. (27) is used to estimate the value of η. With the
value of η, one can obtain ξ = 1

1−η . By plugging in both the values
of ξ and ath in Eq. (23), one can obtain the value of L.

6 Performance evaluation

To evaluate the performance of BSS, we have carried out sev-
eral sets of experiments on both synthetic and real Internet traces.
As BSS achieves its accuracy by sampling more “biased” samples of
larger values, we use the following three metrics to evaluate BSS:
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Figure 8. The sampled mean obtained by systematic sampling, simple random, and BSS ((a)), and and the
sampling overhead incurred in BSS ((b)) for real Internet traces.

(1) the sampled mean (accuracy); (2) the sampling overhead, de-
fined as the ratio of the number of qualified samples to the number
of samples taken by systematic sampling; and (3) the efficiency e,
defined as e = 1−η

log(Nbss) and Nbss is the total number of samples
(including both the samples normally taken in systematic sampling
and the qualified samples taken in BSS).

The performance evaluation is made by comparing BSS against
systematic and simple random sampling. As stratified random sam-
pling is a variation of systematic sampling and yields similar per-
formance as the latter, we do not include it in the comparison study.

Performance w.r.t. Sampled Mean, Overhead and Efficiency
We use the same traces given in Section 4. For synthetic traces, we
set the shape parameter of the on/off periods to be α ∈ (1.2, 1.6).
Figures 9–8 give the sampled mean obtained by systematic sam-
pling, simple random sampling, and BSS ((a)), and the sampling
overhead incurred in BSS ((b)) for both synthetic and real Inter-
net traces. Note that the result shown in Fig. 9 is for the synthetic
trace with α = 1.3 and mean value 5.68 kbytes/second, while that
in Fig. 8 is for the Internet trace with the real mean rate 1.21 × 104

bytes/second and the (measured) Hurst parameter 0.62. (Results for
the other traces exhibit similar trends and hence are not shown here.)
As shown in Fig. 9 (a), BSS generates much more accurate sampled
means than the other two sampling techniques. The performance
improvement is especially pronounced when the sampling rate is as
small as 10−4. As shown in Fig. 9 (b), the overhead is below 0.2 for
larger sampling rates (≥ 10−4) and below 0.5 for smaller sampling
rates, while 1− η (Section 5.3) is 0.922 for BSS and 0.66 and 0.81
for systematic sampling and simple random sampling, respectively.
Similar conclusions can be made in Fig. 8, except that the sampling
overhead is around 0.2.

Fig. 10 compares BSS against systematic sampling and sim-
ple random sampling with respect to the efficiency e for synthetic
traces. BSS achieves higher efficiency than the other two sampling
techniques. The average value of e for BSS is 0.36, while that
for systematic and simple random sampling is 0.26 and 0.3, respec-
tively, i.e., BSS achieves a performance gain of 40% and 20%, re-
spectively, as compared to systematic and simple random sampling.

Performance w.r.t. Hurst Parameter and Average Variance In
addition to the above three metrics, we also verify whether the sam-
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Figure 10. The efficiency of systematic sampling,
simple random, and BSS for synthetic traffic.

pled process has the same Hurst parameter as the original process
and calculate its average variance. However, due to the space limit,
we cannot include the experimental results, but refer the interested
reader to [15] for a detailed account. As a synopsis of all the experi-
mental results, the BSS can retain the Hurst parameter of the origi-
nal process and achieve the same average variance as the systematic
sampling method. This is not surprising, as BSS is a variation of
static systematic sampling and the extra samples taken in each sam-
pling interval are also taken in a systematic sampling fashion in each
interval C.

7 Conclusion

In this paper, we have investigated several important issues in
employing sampling techniques for measuring Internet traffic. We
show that while all three sampling techniques can accurately capture
the Hurst parameter (second order statistics) of Internet traffic, they
fail to capture the mean (first order statistics) faithfully, due to the
bursty nature of Internet traffic. We also show that static systematic
sampling renders the smallest variation of sampling results in dif-
ferent instances of sampling (i.e., it gives sampling results of high
fidelity). Based on an important observation, we then devise a new
variation of systematic sampling, called biased systematic sampling
(BSS), that gives much more accurate estimates of the mean, while
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Figure 9. The sampled mean obtained by systematic sampling, simple random, and BSS ((a)), and and the
sampling overhead incurred in BSS ((b)) for synthetic traces.

keeping the sampling overhead low. Both the analysis on the three
sampling techniques and the evaluation of BSS are performed on
both synthetic and real Internet traffic traces. The performance eval-
uation shows that BSS gives a performance improvement of 40%
and 20% (in terms of efficiency) as compared to static systematic
and simple random sampling.

An important lesson learned from the work is that although un-
biased sampling methods are usually preferred for processes with
finite means and variances (where the law of large numbers guaran-
tees that the sampled mean approaches the real mean exponentially
fast as the number of samples increases), it may not be the case for
a process with an infinite variance (e.g., self-similar Internet traf-
fic with the Hurst parameter larger than 0.5). Due to the heavy-
tailedness inherited in the self-similar process, the speed for the
sampled mean to converge to the real mean is extremely slow, and
therefore un-based sampling techniques often render un-satisfactory
results. In this case, a biased sampling method is actually desirable.
By biasing toward the large values of the process, one can reduce
the discrepancy between the sampled mean and the real mean. In
this paper we make a case where a biased sampling method outper-
forms un-biased ones.
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