
An Update Protocol for XML Documents in Distributed and Cooperative
Systems ∗

Yunhua Koglin † Giovanni Mella ‡ Elisa Bertino § Elena Ferrari ¶

Abstract

Securing data is becoming a crucial need for most
internet-based applications. Whereas the problem of data
confidentiality has been widely investigated, the problem
of how to ensure that data, when moving among different
parties, are modified only according to the stated policies
has been so far not deeply investigated. In this paper, we
propose an approach supporting parallel and distributed
secure updates to XML documents. The approach, based
on the use of a security region-object parallel flow (S-RPF)
graph protocol, is particularly suited for all environments
requiring cooperative updates to XML documents. It allows
different users to simultaneously update different portions of
the same document, according to the specified access con-
trol policies. Additionally, it supports a decentralized man-
agement of update operations in that a subject can exercise
its privileges and verify the correctness of the operations
performed so far on the document without interacting, in
most of the cases, with the document server.

1. Introduction

The widespread use of the Internet for exchanging and
managing data has pushed the need for techniques and
mechanisms that secure information when it flows across
the net. Confidentiality and integrity are two main security
properties that must be ensured to data or information in all
those distributed cooperative applications, such as collabo-

∗The work of Elisa Bertino and Yunhua Koglin is supported in part
by the National Science Foundation under the Project “Collaborative Re-
search: A Comprehensive Policy - Driven Framework For Online Privacy
Protection: Integrating IT, Human, Legal and Economic Perspectives”, by
an IBM Fellowship, and by the sponsors of CERIAS.

†Computer Science Department, Purdue University, West Lafayette,
IN, USA, luy@cs.purdue.edu

‡DICO, University of Milano, Via Comelico, 39/41, 20135 Milano,
Italy, mella@dico.unimi.it

§CERIAS and CS Department, Purdue University, West Lafayette, IN,
USA, bertino@cerias.purdue.edu

¶DSCFM, University of Insubria, Via Valleggio, 11, 22100 Como,
Italy, Elena.Ferrari@uninsubria.it

rative e-commerce [7], distance learning, telemedicine and
e-government. Confidentiality means that data can only be
accessed by subjects who are authorized by the stated ac-
cess control policies. Integrity means that data can only be
modified by authorized subjects. It is, however, crucial that
security be achieved with reasonable performance.

Confidentiality has been widely investigated and several
access control mechanisms, specifically tailored to the man-
agement of web documents [4, 5, 6], have been proposed.
By contrast, the problem of integrity has not been much in-
vestigated, even though it is a common requirement in many
application environments that not all parties be authorized
to modify any data that is exchanged. This is one major
limitation of the previous research. Another limitation is
that most previous access control mechanisms heavily rely
on a server to mediate access to data. We are interested in
reducing the server overhead, as it is particularly important
for performance; also, it is a basic requirement in some con-
texts, such as real-time adaptive content delivery or mobile
ad-hoc networks.

Several issues need to be addressed to support decen-
tralized and cooperative document updates over the Web.
A first requirement, that we investigated in a previous pa-
per [3] is the development of a high level language for the
specification of flow policies, that is, policies regulating the
set of subjects that must receive a document during the up-
date process. Starting from these policies, the server can
determine the path that the document must follow. The sec-
ond previous contribution [1, 2] is the development of an
infrastructure and related algorithms to enforce confiden-
tiality and integrity during the process of distributed and
collaborative document updates. A major limitation of our
previous approach is that it does not exploit possible paral-
lelism that is inherent in data relationships and in the access
control policies.

In this paper, we address such limitation. In particular,
we propose the use of a protocol that we refer to as secu-
rity region-object parallel flow (S-RPF) graph protocol in
the update process. The most innovative feature of S-RPF
is that it supports parallel updates on documents, and at
the same time enforces confidentiality and integrity require-

1



ments. Thus S-RPF ensures a high degree of efficiency. To
the best of our knowledge this is the first approach which
supports secure and parallel updates of documents.

We cast our protocol in the framework of XML [8] 1 be-
cause of the widespread adoption of such a standard in a
large variety of application environments. Also, XML or-
ganizes data according to hierarchical nested structures thus
facilitating the update parallelization. However, the tech-
niques we present in this paper can be easily adapted to
other hierarchical document formats.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some preliminary notions which are needed
throughout the paper. Section 3 presents a general overview
of our approach. Section 4 presents the server and subject
protocols. Section 5 discusses the complexity of S-RPF, and
compares it with a centralized system. Finally, Section 6
concludes the paper and outlines future research directions.

2. Preliminaries

2.1. Flow and access control policies

Flow policies explicitly define the order according to
which subjects have to receive the document, whereas ac-
cess control policies specify each subject’s privileges over
the document. These privileges include update and read.
Update privileges allow a subject to modify, insert or delete
certain portion(s) of a document. Read privileges allow a
subject to browse only certain portion(s) of the document.
These portions could be attribute(s), or element(s) of a doc-
ument, as we will explain later.

In the following, we denote with the term Policy
Base (PB) the set of flow and access control poli-
cies apply to the set of documents managed by a
document server (DS). The flow path of the doc-
ument among the subjects is denoted as Path =〈
subject0, subject1, . . . , subjectN , subject(N+1)

〉
,

where subject0 = subject(N+1) is DS. Thus we assume
that the server is always the first and the last subject in the
path. A subject can appear more than one time in Path and
its privileges over the document may not be the same every
time.

To enforce authenticity/integrity, public-key algorithms,
such as RSA, are used for digitally signing the documents.
We assume that DS knows the public keys of the subjects in-
volved in the update process and that all subjects know the
public key of DS. Thus the path a document must follow
can also be specified in terms of the public keys of the sub-
jects that must receive the document. More precisely, Path
=

〈
pubk0, pubk1, . . . , pubkN , pubk(N+1)

〉
denotes the path

that the document must follow, where pubk0 = pubk(N+1)

1Therefore in the following we use the terms data and documents as
synonyms.

is the public key of DS, and pubki is the public key of the
ith subject in the document flow sequence.

2.2. Atomic elements and document regions

An XML document [8, 9] is formed by tagged elements.
A tagged element may have one or more sub-elements, and
one or more attributes. Elements can be nested. Because of
this feature, an XML document may be represented accord-
ing to a graph structure [1] as illustrated by Figure 1.

S

S

</leader>1S

</report>
</leader>S<leader>

<leader>

</report>

<leader>
<report>

</business>

<business>

<leader>

<report>

<report>

<report>
</R&D>

<R&D>
</manufacture>

</leader>

10/01/2004

&11&8

dcdcdc dc

S4S1

(b)

reportleaderreportleader

&1

&5

R&D

manufacture
market

business

date

(a)

<manufacture>

&12 &13&3

&2

&4

3

4

</leader>

</report>

2

</report>

</market>

<market>

</annual_report>

<annual_report date="10/1/2004">

Figure 1. (a) An example of XML document
and (b) its corresponding graph representa-
tion

An atomic element (AE) is either an attribute or the start-
ing and ending tags of an element. An atomic region (AR)
is a set of atomic elements to which the same access con-
trol policies apply. We assume that each region be uniquely
identified.

A region can be either modifiable or non-modifiable. A
region is non-modifiable by a subject if this subject can only
read it. A region is modifiable by a subject if this subject
possesses the authorization to modify it, according to the
access control policies.

Based on the above definitions, we introduce the follow-
ing notations:

Let D = {ae1, ae2, . . . , aem} be a document to be ex-
changed, consisting of a set of atomic elements each of them
individually identified by an identifier. Document D is par-
titioned into a set of regions {R1, R2, . . . , RK} such that
each region consists of a region identifier (i) assigned by
DS and of a set of atomic elements. We denotes a region
as Ri = (i, {aeji

1
, aeji

2
, . . . , aeji

r
} where i ∈ {1, . . . , K}

and for any t ∈ {ji
1, ..., j

i
r}, 1 ≤ t ≤ m. Atomic ele-

ments within the same region are distinct and atomic ele-
ments within disjoint regions are distinct.

Each document in our approach has an associated
access control information structure (ACIS). Let D be
a document, the corresponding ACIS is defined as
{ar0, . . . , arN , ar(N+1)} such that:

2



• ari = (mod, non-mod)
Access regions are split into modifiable and non-
modifiable regions.

• mod ⊆ {1, . . . , K}, non-mod ⊆ {1, . . . , K}
The modifiable region set and non-modifiable region
set are subsets of the entire regions.

• mod ∩ non-mod = ∅
If a region is modifiable for a subject, it cannot be in
the non-modifiable set of this subject and viceversa.

All regions are considered modifiable by DS.
A region object O is an instance of the information in

a region. A region object is associated with the region
identifier, the subject who authors it, and the time when
the subject authors it. Time is not a concern with respect
to integrity; so we denote a region object O with a tuple
(r, pubkey), where r ∈ {1, . . . , K} and pubkey is the pub-
lic key of the subject who generates this region informa-
tion. If a region Ri is authored by two different subjects,
with public key of pubkl and pubkm, there will be two dif-
ferent region objects, one is (Ri, pubkl) and another one is
(Ri, pubkm), even though the information in region Ri may
be the same. In XML, a region object can be expressed as
an element and the tag denotes the region identifier.

All subjects participating in the update process use the
same one-way hash function for integrity. When a sub-
ject subj updates a region Ri, it generates one-way hash
of the region object Oi it has authored. It then encrypts the
hash with its private key, thereby signing this region object.
The signed hash will flow together with the region object
to which it corresponds. When a receiver s checks if Oi

is authored by subj, s generates a one-way hash of Oi and
decrypts the signed hash with subj’s public key that s re-
ceived from DS in the control information. If the signed
hash matches the hash value that s generated, the region ob-
ject Oi is valid.

A package exchanged among subjects contains one or
more region objects. Each package starts with sid which
denotes that this package is for the receiver who is the ith

subject in the Path. Following sid there are region objects.
Each region object includes an attribute of hash which is
the encrypted hash from the subject who authored this re-
gion object.

3. General Overview

The goal of the S-RPF protocol is to efficiently support
updates in distributed and cooperative systems, and at the
same time, to enforce flow and security policies.

Before starting the update process, DS determines a path
P that the document must follow. DS also generates an
access control information structure for each subject ac-
cording to the security and flow policies for each subject

(see Figure 2). From P and ACIS, DS constructs a S-RPF
graph and then derives the control information (CI) for each
subject from the graph. This control information specifies
which regions a subject will receive and how the subject can
check the integrity of each region object it receives. After
DS sends out the control information for each subject, the
update process starts.

XML ACIS

S−RPF

Document

Path

CI

PB

Figure 2. Document pre-procssing

During the update process, each subject decrypts the
package it receives; then it uses the control information
from DS to check the integrity of and to authenticate the
received package. After passing these checks, the subject
may execute operation(s) on region(s) of the document over
which it possesses privileges. Once the update operations
are completed, the subject signs the region object(s) which
it is authorized to update with its private key, also in the
case in which it does not alter the region information. Fi-
nally, the subject enciphers the packages according to the
control information and sends them to the next receivers.

4. S-RPF protocols

In this section, we illustrate the two protocols on which
our approach relies, that is, the server protocol, executed by
DS, and the subject protocol, which is executed by a subject
upon receiving a document package. Before doing that, we
state the assumptions on which they rely.

4.1. Assumptions

We make the following assumptions for XML document
updates:

• The subjects participating in the updates are coopera-
tive. The completion of the update depends on each
subject. If one subject cheats more than twice, a re-
ceiver will notify DS and DS may broadcast that the
updates failed and aborted. A recovery mechanism is
detailed in Section 4.6.

• DS has access to the flow policies and to the security
policies of the document. The DS is a trusted entity.
It determines these policies before the update process

3



starts. Then these policies are enforced and are not
modified during the execution of the update process.

• There is no collusion among the subjects. Each subject
does not share information with other subjects.

4.2. Server protocol

The server protocol includes the following steps: (1)
construct the S-RPF graph, (2) generate and send each sub-
ject its own control information, and (3) send to the first
subject(s) the encrypted package(s). In the following, we
illustrate all such steps.

4.3. S-RPF construction

S-RPF is a directed graph G (see Figure 3(b)), where
each node represents an element in the flow path, and an arc
between si and sj denotes that sj has to access a document
region after si has accessed it. The arc is labeled with the
name of the corresponding region and with the id of the last
subject that modifies it.

S1

{}{R1, R2}
{R4}{}

S4

DS

S3
S2

S1 <(R2,S1)>

<(
R

1,
S3

),(
R

3,
S3

)>

<(
R

1,
D

S)
>

<(
R4,

S4
)>

<(R
2,S1)>

S2

(b)

{}
{R1,R2,R3,R4}

{}
mod

(a)

non−mod
{R1,R2,R3,R4}

{R2}
{R2}
{R1}

{R1, R3}

DSS4S3

<(R
1,D

S),(R
3,D

S)>

DS

DS <(R4,DS)>

<(R2,S1)>
<(R1,DS),(R

2,DS)>

Figure 3. (a) An example of Path and ACIS, (b)
the corresponding S-RPF graph

DS builds the S-RPF according to the following rule:
S-RPF Rule: Each region object, which is accessed by

a subject that does not author it, flows only once out of
the subject who authors it.

This rule enforces the correctness of the protocol (see
Section 5.1). The algorithm in Figure 4 is used to construct
the S-RPF graph. It aims at maximizing the parallelism of
the process enabling the maximum number of subjects to
work concurrently. This feature reduces the total amount of
time required to accomplish the update process. The algo-
rithm is organized according to the following main phases:

1. - Initialization. A node in the graph represents an ele-
ment in the flow path (since a subject may appear more than
once in the flow path, in the graph, subjecti and subjectj
may be the same subject). We also store in each node the

Algorithm Construct-RPF
Input: Path, ACIS
Output: G = (V, E)

1. for each i = 0 to N + 1 :
add node subjecti and
subjecti.pred = ∅
subjecti.suc = ∅
subjecti.reg = ∅

2. for each i = 1 to K :
Reg[i].s = Path.pubk0

for each i = 1 to N + 1
R = ACIS.ari

for each r ∈ R
add (r, Reg[r].s) to subjecti.reg
if r ∈ R.mod

Reg[r].s = subjecti.pubkey
3. AddEdges(Path, ACIS, G)
4. for each i = 1 to N

R = ACIS.ari

for each (r, s) ∈ subjecti.reg
if s = Path.pubki

j =delete-pred(i, r)
delete-succ(j, i, r)
if r ∈ R.non-mod

for each su ∈ subjecti.succ
if r ∈ su.reg

delete-succ(i, su.sid, r)
t = delete-pred(su.sid,r)
add-pred(j, r, su.sid)
add-succ(su.sid, r, j)

Figure 4. Algorithm for S-RPF construction

necessary information that we will use for generating con-
trol information for each node. This step initializes each
node’s predecessors (pred), successors (succ) and regions
(reg) which this subject is authorized to access. See Figure
6 for the definitions of pred and succ.

2. - Labeling regions. For each subject in the graph,
this step labels each region that this subject is authorized to
access with the public key of the subject who authored this
region. We use array Regi to store the public key of the
last subject that authored region i and a structure ari that
contains the accessible regions for the ith subject in Path.

3. - Adding edges. The procedure AddEdges, reported
in Figure 5, updates G by inserting edges for each subject
in G, according to Path and ACIS.

4. - Application of the S-RPF rule. If a region object
O is to be received later by the subject subj who authored
it, we remove it from subj’s incoming edges. If subj only
has read access to O later and needs to send O to another
subject subs, then the predecessor which is supposed to send
O back to subj will send O to subs.

Procedure AddEdges (Figure 5) works according to the
following strategy: a subject that has modified a region R
sends it to the first subsequent subject s in Path that can
access (read or modify) it. If s can only read this region,
it forwards the region to all subsequent subjects S in the

4



Procedure AddEdges
Input: Path, ACIS, G
Output: G

1. ACIS = ACIS

AR = ACIS.ar0
for each r ∈ AR

for j = 1 to N + 1

if r ∈ ACIS.arj.mod
add-pred(0, r, j)
add-succ(j, r, 0)
break

if r ∈ ACIS.arj.no-mod
add-pred(0, r, j)
add-succ(j, r, 0)
ACIS.arj.non-mod= ACIS.arj.non-mod \{r}
continue;

2. for each i = 1 to N

AR = ACIS.ari

2.a for each r ∈ AR.mod
for j = i + 1 to N + 1

if r ∈ (ACIS.arj .mod ∪ ACIS.arj .non-mod)
and Path.pubkj �= Path.pubki

add-pred(i, r, j)
add-succ(j, r, i)
break

if r ∈ ACIS.arj .mod and Path.pubkj = Path.pubki

break
if r ∈ ACIS.arj .non-mod and Path.pubkj = Path.pubki

ACIS.arj.non-mod = ACIS.arj.non-mod \{r}
continue;

2.b for each r ∈ AR.non-mod
for j = i + 1 to N + 1

if r ∈ ACIS.arj .mod
add-pred(i, r, j)
add-succ(j, r, i)
break

if r ∈ ACIS.arj .non-mod
add-pred(i, r, j)
add-succ(j, r, i)
ACIS.arj.non-mod = ACIS.arj.non-mod \{r}
continue

Figure 5. Procedure AddEdges

path that can only read R until a subject m is found that can
modify R. Also m will receive from s the region. All sub-
jects in S will not send out R to anyone. Thus the subject
that has generated a region object cannot distribute different
versions of the same region to different subsequent subjects
because they have to receive that region object from another
subject.

The main phases in the procedure AddEdges are as fol-
lowed:

1. - Generating the outgoing regions for DS. This phase
also adds incoming region for subjects in Path. A region
will be received by all the subjects that can only read that
region, following DS and preceding the first subject in Path
that can modify the region. Also this last subject will re-
ceive this region from DS.

2. - Generating the outgoing regions for all subjects.
This phase also adds incoming regions for subjects in Path

and DS. We analyze, in order, for each subject in Path the
following:

2.a - Modifiable regions. A region will be received only
by the first subsequent receiver that can access (read or
modify) the region. As a subject may appear in Path several
times, this receiver must not be the current subject. A re-
gion object O will not appear in the flow if the next receiver
of O is the subject who authored it and the next receiver has
update privilege over it.

2.b - Non-modifiable regions. A region will be received
by all the subjects that can only read that region, following
the current one and preceding the first subject in Path that
can modify the region. Also this last subject will receive
this region from the current subject.

If there is no element p ∈ subjectx.pred such that
p.pid = i, function add-pred(i, r, x) inserts in the set
subjectx.pred an element p where: (1) p.pid = i, (2)
p.sk = k and k is a symmetric key generated by DS (3)
p.reg = 〈t〉 where t is the tuple in subjecti.reg such that
t.r = r. Otherwise it appends t in p.reg.

If there is no element su ∈ subjecti.succ such that
su.sid = x, function add-succ(x, r, i) inserts in the set
subjecti.succ an element su where: (1) su.sid = x, (2)
su.sk = k and k = subjectx.pred.p.sk, (3) su.reg = 〈r〉.
Otherwise it appends r in su.reg.

delete-pred(i, r) function deletes r from p.reg such that
p ∈ subjecti.pred and r ∈ p.reg, and returns an index
p.pid. subjecti will not expect to receive a region r from
its predecessor subjectp.pid. If p.reg = ∅ , then delete p
from subjecti.pred.

delete-succ(j, i, r) function deletes r from su.reg such
that (1) su ∈ subjectj.succ, (2) su.sid = i, (3) r ∈
su.reg. subjectj will not send region r to its succes-
sor subjecti. If su.reg = ∅, then delete su from
subjectj.succ.

So it is possible that different subsets of all non-
modifiable regions are sent to different subjects, and the
same region object can be sent to different receivers by the
same subject. According to the algorithm for the construc-
tion of S-RPF, a given region of the document cannot be
updated by more than one subject at a time.

From above, the S-RPF graph that DS generated has the
following properties:

• If no subject has access rights to a region R, then no
region object O such that O.r = R will appear in the
flow of the S-RPF graph.

• If a region object is modified by a subject subj, then
this region object will not flow out from subj and a
new region object will start at subj.

• A region object may have several copies flowing in the
graph at the same time.

5



• No region object flows back to the subject who au-
thored it.

• If no subject has update rights on a region R, but at
least one subject has access to this region, then a region
object O, such that O.r = R, will start its flow at DS
and its author will be DS.

From above, we can easily derive the following property:
Property 1: The flow of each region object among the

subjects in the update process is acyclic.
Based on this feature, the S-RPF protocol could allow

any static update policy. For example, during the update
process a region can be modified more than once by a sub-
ject, or a region could be updated by a subject, and later on,
read by the subject. Even though the original path may con-
tain cycles among all subjects, based on the algorithm we
presented in this paper, each region object flows among all
subjects in an acylic way.

4.4. Control information

The Control Information (CI) contains, for each subject
in the path, the corresponding incoming package templates
and outgoing package templates. Figure 6 details the struc-
ture of CI.

An incoming package template contains the symmetric
key for the receiver to decrypt an incoming package; it also
includes the sequence of regions the incoming package will
contain, and for each region the public key of the last subject
who authored this region. The goal of an incoming package
template is to help a receiver to verify that the package it
receives is from a specified sender and to verify that the
content of the package is correct up to that point. Different
subjects will receive different incoming templates from DS.
An outgoing package template includes the symmetric key
for the sender to encrypt the package and the sequence of
regions to be sent in this package, so the sender can organize
a package for its successor with the correct content.

After building the S-RPF graph G, it is easy for DS
to generate control information for each subject. DS just
copies G.subjecti.pred and G.subjecti.succ to CIi.pred
and CIi.succ, then sends to each subject its control infor-
mation.

Example 1 Suppose that S5 receives R1, R2, R3, R4 from S1,
S2, S3, and S4, respectively and that R1, R2, R3, R4 are updated
by S1, S2, S3, and S4, respectively (Figure 7). The instructions
from DS to S5 are: to read R1 and send it to DS (no one will
access R1 anymore), to form a new package which consists of
three regions, R2, R3 and R4 and to send it to S6. If Path
=〈pubk0, pubk1, pubk2, pubk3, pubk4, pubk5, pubk6, pubk7〉,
where pubk0 and pubk7 is the public key of DS and pubki is
the public key of Si, then the control information for S5 will be
expressed as following:

CI5 = (5, pred, succ) where

CI = {CI0, CI1, . . . , CIN , CI(N+1)} and
CIi =(i, pred, succ) is the control information generated

for ith subject in Path
pred = {pP1 , . . . , pPi

}: set of incoming package templates
px = (pid, skxi, reg): an incoming template from xth subject in Path, where

1. pid = x and x ∈ {P1, . . . , Pi}
reg = 〈rs1, . . . , rsH(x)〉
rsj = (r, s), j ∈ {1, . . . , H(x)}
r ∈ {1, . . . , K}, s is the public key of the last P-proxy that modified r
pid is the sender’s position generated according to Path
skxi is the symmetric key for encrypting/decrypting the package
sending from subjx to subji , where subjt is the tth subject in Path

2. ∀j, w ∈ {1, . . . , H(x)}: j �= w ⇒ rsj .r �= rsw.r
a region must appear only once in the sequence of regions
from a predecessor.

3. ∀j, q ∈ {1, . . . , P(i)}: j �= q ⇒ skji �= skqi

component pred contains distinct predecessor subjects
4. ∀j, q ∈ {1, . . . , P(i)}, j �= q, x ∈ {1, . . . , H(j)},

y ∈ {1, . . . , H(q)} : pj .rsx.r �= pq.rsy.r
an accessible region must be received only from one predecessor.

succ = {suS1, . . . , suSi}: set of outgoing package templates
suy = (sid, skiy , reg) this is an outgoing template, where

1. sid = y and y ∈ {S1, . . . , Si}
sid is the position of the receiver of this package according
to Path.
skiy is the symmetric key as defined before
reg = 〈r1, . . . , rW (y)〉: sequence of regions sent to
successor who is at the yth position in Path.
rf ∈ {1, . . . , K}, f ∈ {1, . . . , W(y)}
∀j, g ∈ {1, . . . , W(y)}: j �= g ⇒ rj �= rg

A region must appear only once in the sequence of region objects
to be sent to a successor.

2. ∀j, x ∈ {S1, . . . , Si}: j �= x ⇒ suj .skij �= sux.skix

successors are distinct.

Figure 6. Control information specification

• pred = {(1, sk15, < (1, pubk1) >), (2, sk25, <
(2, pubk2) >), (3, sk35, < (3, pubk3) >), (4, sk45, <
(4, pubk4 >)}

• succ = {(7, sk57, < 1 >), (6, sk56, < 2, 3, 4 >)}.

S1 S2 S3 S4

S5 S6

R2

R2,R3,R4

R1

R1 R3 R4

R3 R4R1 R2

DS

Figure 7. Generating control information for
S5

Control information is signed by DS and enciphered with
the recipient’s public key so that only the designated sub-
ject can see the information. The designated subject can

6



verify that the message is from DS. Control information ex-
change could also be performed by opening an SSL session
in which a symmetric session key is generated and used dur-
ing the communication. Thus a secure channel is built be-
tween a subject and DS.

4.5. Subject protocol

During document updates, each subject executes the fol-
lowing steps: (i) it performs integrity check according to in-
coming package templates received from DS; (ii) it executes
operations on the document according to its privileges; (iii)
it forms packages according to outgoing package templates
received from DS, and sends out these packages. We detail
these steps in the following:

1. Upon receiving a package P , the receiver by using the
control information CIi, verifies (1) if there has been
any transmission error; if there is any error, asks the
sender to send the document again; (2) that the pack-
age has been sent by one of its predecessors. Sup-
pose the receiver deciphers P with the symmetric key
k such that k = px.sk and px ∈ CIi.pred. If
P.sid 	= CIi.id, the package is discarded. (3) the in-
tegrity and authorization of each region according to
the incoming package template. For each R in px.reg,
the receiver checks if the region object in the package
starts with a region identifier equal to R.r. If so, the
receiver generates a hash value using one-way hash
function, deciphers the hash in the package with R.s
and checks if these two values are equal. If there is
any error, it asks the sender to recover

2. The receiver performs operations on the document ac-
cording to its privileges. After correctly receiving a
package from each predecessor, the receiver executes
its privileges on the documents. If it has update priv-
ileges on some regions, it updates the regions, calcu-
lates the hash value for each region it updated, and ci-
phers this value with its private key for future autho-
rization checking.

3. The receiver generates the new package(s). For each
su ∈ CIi.succ, the receiver forms an outgoing pack-
age U such that U.sid = su.sid. For each r ∈ su.reg,
fills hash and region object in U . After this, the sub-
ject encrypts U with su.sk and sends it to the sidth

subject. The receiver should also keep a copy for later
recovery.

4.6. Recovery protocol

If a subject receives a package which fails the verifica-
tion, the subject asks the sender to recover the package. If
a receiver cannot get an error-free package according to the

control information twice, it will send both packages it be-
lieves are incorrect to DS and the sender.

DS then first checks if the malicious sender m of the er-
roneous region has only read access to this region. If not,
DS decides to abort the update, because we assume that the
completion of update depends on each subject correctly up-
dating their corresponding regions. If m only has read ac-
cess, DS asks all the receivers who received this region from
m. If any one has a correct version, DS sends this correct
version to all the senders who did not receive a corrected
version from m. If no one has a correct version, DS asks
the subject who authored this region to send DS a copy, DS
then acts in the role of m, checking the integrity and send-
ing to all the receivers to whom m was supposed to send
this region.

5. Analysis and discussions

5.1. Correctness analysis

From Section 4.3, we can conclude that the S-RPF built
by DS enforces flow policies related to an XML document.
If subject Sa updates region R before subject Sb in the flow
policy, the flow of R in the S-RPF built by DS will also have
this order. Moreover if a subject Sc reads region R after Sa

has modified it, then this order is preserved in S-RPF.

Theorem 1 Protocol S-RPF is secure with respect to in-
tegrity.

Proof: We need to prove that a subject m cannot update a
region over which it does not have update privilege. There
are two cases.

(1) m modifies a region object which is not authored by
itself. In this case, integrity is enforced in the protocol by
digital signature. If a region R is modified by a subject i, i
will sign the hash that it calculated from R with its private
key. If a subject j has read privileges on R, j will receive
control information from DS, which contains an incoming
template. The incoming template includes the public key of
i for deciphering the hash. j will calculate the hash of the
region and check the signature. m cannot modify region R
before it reaches j, since m does not know i’s private key.

If m receives two region objects authored by the same
subject i, it cannot switch the information in these two re-
gions. As a region object represented in XML has a region
identifier in its tag.

Thus no subject can modify a region object which has
not been authored by itself.

(2) A subject modifies a region object authored by itself,
even though it does not has update privilege over it later.
This is avoided by the S-RPF rule. Suppose region R1 is
updated by A, then flows to B for read, and then back to

7



A for read (A cannot update R1 this time) and then ends
at C for read. In this case, A could not send to C a region
object which is different from the one it sends to B. In S-
RPF graph, B will send a copy to C instead of A. S-RPF
ensures that C receive the region object that A authored at
the beginning. Thus the integrity of the whole document is
enforced. �

Theorem 2 Protocol S-RPF is secure with respect to confi-
dentiality.

Proof: We need to prove that if a subject not authorized to
access a region, it can not read it. This is enforced by the
use of symmetric keys to encipher/decipher a package that
only designated receiver can see it. When a subject receives
a package, it can use the received control information from
DS to decipher the package. If a subject does not have such
information, it cannot decipher the package. S-RPF gen-
eration ensures that a subject only receives the parts of the
document which it is authorized to access. Thus S-RPF is
secure with respect to confidentiality. �

We now discuss the amount of information which could
be revealed and check if confidentiality and integrity are vi-
olated. With this approach, a receiver could partially know
the access rights of its predecessor(s) or successor(s). In
Example 1, S6 knows that S5 has access rights to at least
R2, R3 and R4. S5 knows that S6 has access rights to at
least R2, R3 and R4. Other than that, no other information
can be derived. This will not violate confidentiality and in-
tegrity as defined previously, because these definitions con-
centrate on the contents of a document.

5.2. Complexity analysis

We now analyze the complexity with respect to temporal
complexity and communication complexity. The latter is
evaluated in terms of number of exchanged messages. We
also compare our approach against a centralized approach.

In particular, under a centralized approach, DS sends
each subject in Path a package containing only the contents
of a document to which the subject has access privileges.
After executing operations on it, the subject sends back to
DS only the parts that it has updated. When DS correctly re-
ceives it, that is, there are no transmission errors, DS sends
another package to the next subject in Path. Otherwise, DS
sends the subject the package again and asks for recovery.
A centralized system accomplishes the same function as our
protocol. It also uses symmetric key to allow DS securely
communicate with each subject. However, in a centralized
approach, no hash function is needed and subjects do not
need to sign the region objects they authored, since DS com-
municates with each subject securely and knows each sub-
ject’s access control information structure.

There are two types of errors that require a recovery.
They are as following:

1. Subject-will-recover error: This includes transmission
errors, and any other errors occuring in a centralized
approach that require DS to ask a subject recovery.

2. Malicious-subject-intentional error: A malicious sub-
ject illegally modifies a region object and refuses to
send the correct version to a receiver.

Only the first type of errors can happen in the centralized
approach. In S-RPF, DS is needed for the second type error
recovery.

In the following analysis, all communications before the
start of the updates are ignored. As in a centralized sys-
tem, DS also needs to communicate with all subjects to set
up secure communication channels before starting the up-
date process. In order to simplify our analysis, we will not
consider the size of hash value in a package.

We compare the following cases for communication
cost:

1. No recovery:

In this case, the total number of packages PK and total
size of messages M are as following:

• for the centralized approach

– PK = 2N

– M =
∑i=N

i=1 Ai +
∑i=N

i=1 Ui

• for S-RPF protocol

– PK =
∑i=N

i=1 Prsi + PrDS

– M =
∑i=N

i=1 Ai + u

Where:

N is the number of elements in the path, not including
DS;

Ai is the size of the package that DS sends to subjecti
in centralized approach;

Ui is the size of the package subjecti sends back to
DS. This package only contains updated regions
by subjecti.

Pri is the number of predecessors of subjecti in S-
RPF graph.

u is the sum of the size of packages DS received in
S-RPF graph. (u ≤ ∑i=N

i=1 Ui)

2. Recovery:

If the recovery has to be executed because of the first
type of error, the extra packages caused by the recovery
in the centralized system is equal to that in S-RPF. As
in S-RPF, a receiver will act the same as DS in the
centralized system, asking the sender to recover.

8



If the recovery has to be executed because of the sec-
ond type of error, S-RPF will incur extra cost which
will not appear in the centralized approach. In this
case, DS in S-RPF may need to ask up to N − 2 sub-
jects for a correct version.

From above, we can see that when all subjects are co-
operative and a region is updated often (for example, Case
B in Figure 8), S-RPF reduces the number of packages (in
case B, only N + 1 packages) and the total size of mes-
sages (in case B,

∑i=N
i=1 Ai + UN ). However, S-RPF could

also possible generate O(N2) packages. The total num-
ber of packages in S-RPF is equal to the number of edges
in S-RPF graph. In congested networks and uncooperative
systems, S-RPF may not perform better than the centralized
approach.

S NS

NS1S

DS

DSDS

1 2 NSS S

1

Case DCase B

Case C

Case A

DS 2S

S

DS

DS

N DS

DS

2+N/2S1+N/2S

1S 2S N/2S

Figure 8. Case study for the total time to com-
plete the update

Next, we analyze the efficiency of the protocol by com-
paring the time needed to complete the update. The pa-
rameters we used in analysis are listed in Table 1. The
total time needed to complete the update is formulated as
T ≤ ∑i=7

i=1 Ti.

1. No recovery. We can easily estimate the time for the
centralized system. For the S-RPF, the time varies. We
study the cases in Figure 8 which represent a high-
level parallel updates (Case A and Case C) and low-
level parallel updates (Case B). Table 2 reports the time
complexity.

From Table 2, we can see that when N > 1 the S-RPF
for Case B takes more time than Case C:

TB − TC = (N − 1)(h + U)

Also, Case B takes more time than Case A:

TB − TA =
(N − 2)(D + E + H + 2h + 2U)

2

The best time for S-RPF to complete the update is hard
to find. For example, TC − TA = (N−2)(D+E+H)

2 −

Table 1. Notations for efficiency analysis

DS
T1 Total time for deciphering and enciphering packages
T2 Total time for calculating hash values and encrypting them
T3 Total time for integrity check of received packages

Subjects

T4 Total time for deciphering and enciphering packages
T5 Total time for integrity checking
T6 Total time for executing operations (read, update)
T7 Total time for calculating hash values and encrypting them

N Number of subjects in the path, not including DS
E Average time for enciphering a package
D Average time for deciphering a package
H Average time for checking integrity of regions in a received

package
U Average time for a subject in Path executing opera-

tions(read/update)
h Average time for a subject or DS in Path calculating the hash

values for the region objects that it authored and encrypting them

(h+U). If the average time for an object executing op-
eration takes longer time than the time of N(D+E+H)

2 ,
then Case C is better than Case A. If N is large and the
average time for a subject finishing operations is fast,
then Case A can be better than Case C.

The worst case for S-RPF is when DS sends a pack-
age to each subject and each subject sends a package
to everyone following it (Case D). However, the time
to complete the update is far less than

∑i=7
i=1 Ti in Ta-

ble 2. As S1 is deciphering the package and executing
integrity checking, all other subjects following it will
also check integrity of the packages they received from
DS. So the worst time of the S-PRF is

T ≤ E × N2 + 3N × E

2
+(N+1)(D+h+H)+N×U

The time difference between the centralized approach
with the S-RPF Case B is N(D +E −h−H)− (D +
E + H + h). Since D ≈ E and h ≈ H in Case B, it
can be simplified as N(2D − 2H) − 2D − 2H . This
means that, if deciphering a package takes similar time
as integrity checking a package, then the centralized
approach has similar time as S-RPF case B.

Next we compare a centralized approach with S-RPF
Case A, where subjects can execute parallel operations
on the document. Since normally D ≈ E and h ≤ H :

3N ×D + N ×U ≥ N × H

2
+ 4D + 3h + 2U + 2H

=⇒ U ≥ H

2
− 3D +

6H − 2D

N − 2

Under the situation that D ≥ 2H
N−2 , when the average

time for a subject executing operation is longer than
half time of integrity checking, then S-RPF in this case

9



Table 2. Time analysis in the case of no recovery
Centralized S-RPF (Fig 8)
approach Case A Case B Case C Case D

T1 N × (D + E)
N×(D+E)

2
D + E N × (D + E) N × (D + E)

T2 0 h h h h

T3 0 N×H
2

H N × H N × H

T4 N × (D + E) 2(D + E) N × (D + E) D + E
N×(1+N)(D+E)

2

T5 0 2H N × H H
N×(N+1)H

2

T6 N × U 2U N × U U N × U

T7 0 2h N × h h N × h

requires less time to complete update than the central-
ized approach.

2. Recovery: If a recovery has to be executed because of
the first type of error, for the centralized system, the
extra time is 2D + 2E; for n recoveries, the extra time
increases linearly, that is, n(2E + 2D). For the S-RPF
protocol, the extra time varies. It depends on the S-
RPF graph computed by DS and the location of the
recovery. It may even not increase the total time due to
the parallel operations among all participants.

If the recovery has to be executed because of the sec-
ond type of error, no extra time is required for the cen-
tralized approach. For S-RPF, the additional incurred
time varies. If the number of subjects involved in the
recovery is very small, then the overall completion
time may not increase. If many subjects are involved in
the recovery, the extra time may increase substantially.

Since encipher and decipher operations can be very fast,
while human interactions are in most cases involved in the
update, S-RPF can complete the update faster than central-
ized approach if subjects are cooperative. When more sub-
jects are involved, even if U ≤ H , S-RPF could be still
more efficient than centralized systems.

6. Conclusion and future work

In this paper, we have proposed a protocol for distributed
document update in cooperative systems.The protocol en-
forces both flow and security policies of a document and
simultaneous updates on different parts of a document can
be executed. In a cooperative system, when several sub-
jects update a large document, S-RPF can reduce the time
to complete the update, especially when human beings are
involved in update process. If the recovery is not due to ma-
licious subjects, the frequency of recovery to be executed
by DS is low. However, if a malicious subject is detected,
the recovery can be expensive.

Flow policies and access control policies can be static
or dynamic. Subjects involved in static flow policies will

not change and their order of receiving a document is pre-
fixed. In static access control policies, each subject’s privi-
lege over a document will not change during the update pro-
cess. By contrast, in dynamic flow policies, a subject may
join in or drop out of during the update. The privilege of
a subject over a document may also change. This protocol
applies to static flow and access control policies. It can also
be extended to certain dynamic security policies; however,
due to space limits, we do not detail such extensions here.
Future work includes to test our protocol’s performance in
real systems.

References

[1] E. Bertino, E. Ferrari and G. Mella, “An Approach
to Cooperative Updates of XML Documents in Dis-
tributed Systems”, Technical Report, DICO, University
of Milano, Italy, 2003.

[2] E. Bertino, G. Correndo, E. Ferrari and G. Mella, “An
Infrastructure for Managing Secure Update Operations
on XML Data”, in SACMAT’03, Como, Italy, 2003.

[3] E. Bertino, E. Ferrari and G. Mella, “An XML-based
Approach to Document Flow Verification”, in Proceed-
ings of 7th International Conference on Information Se-
curity(ISC04), Palo Alto, CA, USA, 2004.

[4] C. Pollmann. The XML Security Page. Avail-
able at http://www.nue.et-inf.uni-siegen.de/ geuer-
pollmann/xml security.html.

[5] W. Fan, C. Chan and M. Garofalakis, “Secure XML
Querying with Security Views”, in SIGMOD 2004,
Paris, France, 2004.

[6] G. Miklau and D. Suciu, “Controlling Access to Pub-
lished Data Using Cryptography”, in Proceedings of the
29th VLDB Conference, Berlin, Germany, 2003.

[7] B. Thuraisingham, A. Gupta, E. Bertino and E. Fer-
rari, “Collaborative Commerce and Knowledge Man-
agement”, in Knowledge and Process Management,
9(1):43-53(2002).

[8] Extensible Markup Language (XML). Available at:
http://www.w3.org/XML/.

[9] W3C XML Schema. Available at:
http://www.w3.org/XML/Schema.

10


