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Abstract

In secure group communications, there are both rekey and
data traffic. We propose to use application-layer multicast
to support concurrent rekey and data transport. Rekey traf-
fic is bursty and requires fast delivery. It is desired to re-
duce rekey bandwidth overhead as much as possible since
it competes for bandwidth with data traffic. Towards this
goal, we propose a multicast scheme that exploits proxim-
ity in the underlying network. We further propose a rekey
message splitting scheme to significantly reduce rekey band-
width overhead at each user access link and network link.
We formulate and prove correctness properties for the mul-
ticast scheme and rekey message splitting scheme. We have
conducted extensive simulations to evaluate our approach.
Our simulation results show that our approach can reduce
rekey bandwidth overhead from several thousand encrypted
new keys (encryptions, in short) to less than ten encryptions
for more than 90% of users in a group of 1024 users.

1. Introduction

Many emerging Internet applications, such as grid comput-
ing, teleconferences, pay-per-view, multi-party games, and
distributed interactive simulations will benefit from using
a secure group communications model [8]. In this model,
members of a group share a symmetric key, called group
key, which is known only to group users and a key server.
Each user is an end host. The group key can be used for en-
crypting data traffic between group members or restricting
access to resources intended for group members only. The
group key is distributed by a group key management system,
which changes the group key from time to time (called group
rekeying).

There have been extensive research results on the design
of group key management in recent years [21, 22, 6, 2, 24,
26]. In particular, the key tree approach [21, 22] reduces the
server processing time complexity of group rekeying from
O(N) to O(log, (N)) where N is the group size and d is
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the key tree degree. This approach was shown to be opti-
mal in terms of server communication cost per user join or
leave [20].

To further reduce server processing and bandwidth over-
heads, periodic batch rekeying was proposed [18, 24, 12, 26].
In batch rekeying, the key server processes the join and leave
requests during a rekey interval as a batch, and generates a
single rekey message at the end of the rekey interval. The
rekey message is then sent to all users immediately, and it
requires fast delivery to achieve tight group access control.
As aresult, rekey traffic is bursty.

Existing rekey transport protocols [24, 3, 19, 26, 25] are
based on IP multicast, which has not been widely deployed.
In this paper, we propose to use application-layer multicast
(ALM) to support concurrent rekey and data transport. To
our best knowledge, this paper is the first attempt on how to
efficiently support both rekey and data transport over ALM.

Using ALM to support both rekey and data transport cre-
ates new challenges. In particular, bursty rekey traffic com-
petes for available bandwidth with data traffic, and thus con-
siderably increases the load of bandwidth-limited links, such
as the access links of users that are close to the root of the
ALM tree. Congestion at such an access link causes data
losses for many downstream users. Therefore, it is desired
to reduce rekey bandwidth overhead as much as possible.

Using ALM to support group rekeying also offers new
opportunities to do naming and routing. In our approach,
each user in the group is assigned a unique ID that is a string
of D digits. All the user IDs and their prefixes are orga-
nized into a tree structure, referred to as ID tree. In addition,
each user maintains a neighbor table that supports hypercube
routing [14, 16, 28, 13, 10, 11]. The neighbor tables embed
multicast trees rooted at the key server and each user. There-
fore, the key server or any user can send a message to every
one else via multicast. We propose a multicast scheme using
the neighbor tables for both rekey and data transport.

To provide fast delivery of rekey messages, we propose a
distributed user ID assignment scheme to exploit proximity
in the underlying network. By virtue of this scheme, each
multicast tree embedded in the neighbor tables tends to be
topology-aware. That is, users in the same multicast subtree



tend to be in the same topological region. As a result, when
a message is forwarded from its multicast source towards a
user during multicast, it tends to be always forwarded in the
direction towards the user, rather than being forwarded over
links that may go back and forth across continents.

To reduce rekey bandwidth overhead, we observe that in
each rekey interval, each user needs only a small subset of
encrypted new keys (encryptions, in short) generated by the
key server [24, 26]. Therefore, it is desired to let each user
receive only the encryptions needed by itself or its down-
stream users. The challenging issue is how each user knows
who are its downstream users and which encryptions are
needed by these users.

To address this issue, we propose to modify the key tree
to make its structure match that of the ID tree. We then
propose an identification scheme to identify each key and
encryption. With this scheme, a user can easily determine
whether an encryption is needed by itself or its downstream
users by checking the encryption’s ID. We further propose
a message splitting scheme to let each user receive only the
encryptions needed by itself or its downstream users. The
splitting scheme can significantly reduce rekey bandwidth
overhead at each user access link and network link.

It is possible to perform rekey message splitting on top of
an existing ALM scheme such as the ones in [7, 4, 29, 17, 15,
9]. If we use an existing ALM scheme to replace our mul-
ticast scheme, however, it incurs a large maintenance cost
at users, and the efficiency of the splitting scheme would be
reduced. In our approach, each user does not need to main-
tain states for its downstream users to perform rekey mes-
sage splitting. We defer a detailed discussion of this issue to
Section 2.6.

We formulate and prove correctness properties for the
multicast scheme and rekey message splitting scheme. We
conducted extensive simulations to evaluate our approach.
Simulation results show that for 78% of users in a group of
226 users, the latency from a sender to each of these users
over the multicast paths is less than twice the unicast de-
lay between the sender and such user. Furthermore, with
the rekey message splitting scheme, more than 90% of users
in a group of 1024 users can reduce their rekey bandwidth
overhead from several thousand encryptions to less than ten
encryptions.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our system design. In Section 3, we
present the protocol for each joining user to determine its
ID, and discuss user joins, leaves, and failure recovery. We
evaluate our approach through simulations in Section 4, and
conclude in Section 5.

2. System design

In this section, we present our system design. We assume
a fixed group of N users in this section. User joins and

symbol description
B base of each digit in user ID
D number of digits in user ID

F-percentile | ajoining user computes F'-percentile of the RTTs

measured for users in its (¢, j)-ID subtree

K maximum number of neighbors in each neighbor
table entry
N total number of users in a group
P a joining user collects P users from (%, 7)-ID subtree
R; RTT thresholds, i = 1,2,...,D — 1
u.lD user u’s ID
u.IDJi ith digitof u./D,0<i< D —1

w.IDI[0: 4] | firste + 1 digits of w.ID. Itis a null string if s < 0

leaves are discussed in Section 3. Please see our technical
report [27] for proofs of the lemmas and theorems. Notation
used in this paper is defined in Table 1.

2.1. ID tree

Each user in the group is assigned a unique ID that is a string
of D digits of base B, where D > 0 and B > 0. We count
digits from left to right and call the leftmost digit the Oth
digit. We use D = 5 and B = 256 in the simulations pre-
sented in this paper. All the user IDs and their prefixes are
organized into a tree structure, referred to as ID tree, as de-
fined below. Note that an ID is a prefix of itself, and a null
string is a prefix of any ID.

Definition 1 Given a group of users, the corresponding ID
tree is defined as follows:
e Atlevel 0, there is a single node, the tree root, whose 1D
is a null string, denoted by “[ ]”.
o Atleveli, 1 <1i < D, each node has a unique ID that is
a string of i digits. A node with ID x exists at level i if
there exists a user u in the group such that x is a prefix
of u.ID. The node with ID x at level i is a child of the
node at level © — 1 whose ID is a prefix of x.

In an ID tree, a subtree is said to be a level-: ID subtree if it
is rooted at a node of level 7, 0 < ¢ < D. The ID of a subtree
is defined to be the ID of the subtree root. Hereafter, we say
that a user belongs to an ID subtree if the ID subtree has the
leaf node whose ID equals the user’s ID.

Definition 2 Given a user u and an ID tree, a level-(i +
1) ID subtree is said to be the (i, j)-ID subtree of u if the
parent node (at level i) of the subtree root is an ancestor of
the leaf node whose ID equals u.I D, and the last digit of the
subtree’sIDis j,0<i< D —1and0<j < B-—1.

By definition 2, for each user w that belongs to u’s (4, j)-ID
subtree, w.I D must share the the first ¢ digits with u.ID,
and the ith digit of w.I D (that is, w.I D[i]) is j.

Fig. 1 illustrates the ID tree for a group of five users with
the IDs “[0,0]”, “[0,177, “[2,0]", “[2,1]”, and “[2,2]", respec-
tively. In the ID tree, users us, u4, and us belong to uq’s
(0,2)-ID subtree, and ug belongs to u;’s (1,1)-ID subtree.
Note that an ID tree is not a data structure maintained by the
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key server or any user. It is defined as a conceptual structure
to guide us in protocol design.

Our user ID assignment scheme exploits proximity in the
underlying network. More specifically, user IDs are assigned
such that the round-trip-time (RTT) between any two users
belonging to the same level-i ID subtree tends to be less than
or equal to a delay threshold R;, fori =1,2,...,D —2. Asa
result, all the users belonging to the same level-i ID subtree
tend to be in the same topological region with one-way delay
diameter R;/2. These users are partitioned to multiple child
level-(i+1) ID subtrees of the level-i ID subtree, such that all
the users belonging to the same level-(i + 1) ID subtree tend
to be in the same topological sub-region with delay diameter
Ri+1/2, where R; 1 < R;. In Section 3.1, we discuss how
a joining user determines its ID.

We further define the ID of the key server to be a null
string, denoted by “[ ]”. By definition, the key server belongs
to the level-0 ID subtree.

2.2. Neighbor tables

Each user in the group maintains a neighbor table. Similar
neighbor tables were used to support hypercube routing [14,
16,28, 13, 10, 11].

A neighbor table has D rows and each row has B entries.
The jth entry at the ith row is referred to as (i, j)-entry,
0<i<D-1and0 < j < B-—1. The (4,j)-entry of a
user’s neighbor table contains user records and performance
measures of some other users, referred to as (4, j)-neighbors.
Each (4, j)-neighbor of user u must be a user that belongs to
the (4, j)-ID subtree of u. The first neighbor in each entry is
referred to as the primary neighbor of that entry. Each user
record contains the IP, ID, and some other information of
a particular neighbor. For rekey transport, the performance
measure of a neighbor is the RTT between the neighbor and
the owner of the table. All the neighbors in the same entry
are arranged in increasing order of their RTTs.

Definition 3 Given a group of users, each with a unique
ID of D digits, their neighbor tables are said to be
K-consistent, K > 1, if for any user w in the group, each
(i,j)-entry, 0 < i < D—-1and 0 < j < B-—1,inits
neighbor table satisfies the following conditions:

(1) If j = w.IDIJi], then the (i, j)-entry is empty.

FORWARD (msg)
> The sender should set msg.forward_-level to be 0
before calling this routine.
>msg: the message to multicast if the caller (who calls the routine) is
the sender; otherwise, it is the message received by the caller.

1 level «— msg.forward_level

2 if level = D then return

3 if the caller is the key server then > level = 0 in this case

4  msg.forward_level « level + 1

5 send a copy of msg to each (0, j)-primary neighbor, 0 < j < B

6 else for i < level to D — 1 do

8 msg.forward-level «— i+ 1

9 send a copy of msg to each (¢, j)-primary neighbor, 0 < j < B
(2) If 5 # w.IDI[i|, then the (i,j)-entry contains

min(K,m) (i,j)-neighbors, where m denotes the to-
tal number of users belonging to the (i, j)-ID subtree

of u.

The concept of K -consistency was proposed in [11, 10]. K-
consistency implies 1-consistency. If all the users in the
group maintain 1-consistent neighbor tables, then a message
is guaranteed to reach every user via multicast, as proved in
Section 2.3. It is desired to let K > 1 for resilience [11, 10].

The key server also maintains a neighbor table, which has
a single row. The row contains B entries, each referred to as
(0,4)-entry, j = 0,1,..., B — 1. Among all the users whose
IDs have the prefix “[4]”, the key server chooses the K (or
all, if the total number of such users is less than K) users
who have the smallest RTTs to the key server as its (0, j)-
neighbors.

2.3. Multicast scheme: T-mesh

Given a group of users with their neighbor tables, the neigh-
bor tables embed multicast trees rooted at the key server and
each user. Therefore, the key server or any user can send a
message to every one else via multicast by using their neigh-
bor tables. A multicast session consists of a sender, a set of
receivers, and a message to multicast. The sender is the mul-
ticast source. In a multicast session for rekey transport, the
key server is the sender, and all the users in the group are re-
ceivers. In a multicast session for data transport, a particular
user who has data to multicast is the sender, and all the other
users are receivers. Hereafter, we use “member” to refer to
the key server or a user in the group.

We propose a multicast scheme, referred to as T-mesh, for
both rekey and data transport. In the multicast scheme, each
message to multicast contains a forward_level field.
This field specifies the forwarding level of each user, as de-
fined below. Each user is at a unique forwarding level in a
multicast session since each one receives a single copy of the
multicast message, as stated in Theorem 1.

Definition 4 In a multicast session, the sender’s forwarding
level is defined to be 0. A user u is said to be at forwarding
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level 1 if it receives a message with the forward_level
field equal toi, 1 < i < D.

To multicast a message, the sender first sets the message’s
forward_level field to be 0, and then executes routine
FORWARD specified in Fig. 2. When a user receives the
message, it also executes this routine. We can see that each
member can determine who are the next hops by looking up
its neighbor table according to the forward_level field
of the multicast message.

Fig. 3 illustrates an example rekey multicast tree for the
group of five users defined in Fig. 1. Intuitively, a copy of
the multicast message first enters each level-1 ID subtree,
and then enters each level-2 ID subtree, and so on. It is not
surprising to find out that the IDs of a member and its down-
stream users satisfy a specific relationship, as stated below.

Lemma 1 /n a multicast session, suppose member u is at
forwarding level i, 0 < ¢ < D. Then the IDs of u and all its
downstream users have the common prefix u.ID[0 : i — 1].
Furthermore, u and its downstream users belong to the same
level-i ID subtree.

Recall that all the users belonging to the same ID subtree
tend to be in the same topological region by virtue of our
user ID assignment scheme.

Lemma 2 [n a multicast session, suppose member u is at
forwarding level i, 0 < i < D. Then for any other member
w whose ID has the prefix u.I1D[0 : i — 1], w can only be a
downstream user of u.

A direct implication of Lemmas 1 and 2 is that each
multicast tree embedded in the neighbor tables tends to be
topology-aware. That is, in a multicast session, only a single
copy of the multicast message is forwarded to each topolog-
ical region; once the message with forward_level = §
enters a region (which corresponds to a level-i ID subtree),
it is forwarded only to its sub-regions (each corresponds to
a child level-(i + 1) ID subtree), and not be sent out of the
region anymore. As a result, the message goes through each
long-latency link that connects remote regions only once.
This helps to reduce delivery latency as well as link stress.
Here, stress of a physical link is defined as the number of
identical copies of the message carried by a physical link
during multicast.

The correctness of the multicast scheme is stated below.

group key 15 [] k-node
(change to k1-4)
ili k-nodes
alli);:/l: v [0] (change to k34) €& (2]
individual o
ul u3 u3 u4 us
[0,1] [0.2] [2,0] [21] [22]

Theorem 1 In a multicast session, assume every user in the
group has I-consistent neighbor table. Then following the
multicast scheme specified in Fig. 2, each member (except
the sender) will receive a single copy of the multicast mes-
sage.

T-mesh also provides fast failure recovery and quick
adaptation to network dynamics if X > 1. Once a mem-
ber detects the failure of a next hop, or detects congestion on
the path to a next hop by observing burst losses, it can simply
forward messages to another neighbor in the same table en-
try as the failed or congested neighbor. At the same time, the
user needs to look for more neighbors to replace the failed or
congested one.

2.4. Modified key tree

The key server maintains a key tree. To support efficient
rekey message splitting, the key tree used in this paper is
different from the original approach [21, 22, 24, 26]. The
original key tree has a fixed tree degree, and the tree grows
vertically when users join. Our modified key tree has a fixed
height, and it grows in a horizontal direction when users join.
Hereafter, unless otherwise stated, we use “key tree” to refer
to the modified key tree.

A key tree is a rooted tree with the group key as root. A
key tree contains two types of nodes: u-nodes and k-nodes.
Each u-node corresponds to a particular user, and it contains
the user’s individual key. A user shares its individual key
only with the key server. A k-node contains the group key or
an auxiliary key. A user in the group is given the individual
key contained in its corresponding u-node as well as the keys
contained in the k-nodes on the path from its corresponding
u-node to the root.

To facilitate rekey message splitting, the key server makes
the structure of the key tree match exactly that of the ID tree.
Each u-node in the key tree that contains user «’s individual
key corresponds to the leaf node in the ID tree whose ID
equals u.ID. Fig. 4 shows the key tree that corresponds to
the example ID tree shown in Fig. 1.

At the end of each rekey interval, the key server changes
all the keys on the path from each newly joined or departed
u-node to the root (see technical report [27] for a detailed
description). Then the key server uses the key in each child
node of the updated k-node to encrypt the new key in the
updated k-node. Each encrypted new key is referred to as



REKEY-MESSAGE-SPLIT (msg, ws,j, S)
>msg: it is the original rekey message if the caller is the key
server; otherwise, it is the message received by the caller.
> ws, j: the (s, j)-primary neighbor of the caller, 0 < j < B.
> s: it equals O if the caller is the key server; otherwise, we have
msg.forward_level < s < D.
1 msg’ « an empty message with forward_level = s+ 1
2 for each encryption e contained in msg do
3 if e.ID is a prefix of w.IDI[0 : s] or
wg, ;.1 D0 : s] is a prefix of e.].D then
4 copy e into msg’
5 send msg’ to w,_ ; via unicast

an encryption. For example, suppose us leaves the group
in Fig. 4. The key server needs to change the keys that
us knows: change ki_5 to ki_4, and change ksy5 to ks3q4.
Then the key server generates four encryptions: {k1_4}k,,»
{k1—4}ksys {k34}ks, and {kss}r,. Here {k'}; denotes key
k' encrypted by key k. All the encryptions are put in a single
rekey message. Each user needs only a small subset of en-
cryptions in the rekey message. For example, u; needs only
{k1-atri,-

We propose an identification scheme to identify each key
and encryption. We define the ID of a key in the key tree to
be the ID of its corresponding node in the ID tree. The ID of
an encryption is defined to be the ID of the encrypting key.
The ID is attached to each encryption. With this identifica-
tion scheme, a user can easily determine whether it needs a
given encryption by checking the encryption’s ID, as stated
below.

Lemma 3 Given an encryption, a user needs the key en-
crypted in the encryption if and only if the ID of the encryp-
tion is a prefix of the user’s ID.

2.5. Rekey message splitting scheme

To send new keys to users after rekeying, a straightforward
approach is to mulitcast all the encryptions to each user, and
let each user extract the encryptions that it needs. The bursty
rekey traffic, however, may cause congestion at bandwidth-
limited links, especially at user access links. Congestion
at an access link causes rekey and data message losses for
all the downstream users. Therefore, it is desired to reduce
rekey bandwidth overhead as much as possible.

To reduce rekey bandwidth overhead, we propose a rekey
message splitting scheme. In this scheme, each member
sends or forwards an encryption to its downstream users if
and only if the encryption is needed by at least one down-
stream user. To achieve this purpose, the key server com-
poses a separate message for each (0, j)-primary neighbor
by executing routine REKEY-MESSAGE-SPLIT specified
in Fig. 5, j = 0,1,..., B — 1. Each user at forwarding
level 7, 0 < ¢ < D — 1, also composes a separate message
for each (s, j)-primary neighbor by executing the routine,
s=1t,i+1,...,D—1andj = 1,2,..., B— 1. The routine in

Fig. 5 is called at lines 5 and 9 of routine FORWARD speci-
fied in Fig. 2. The correctness of the rekey message splitting
scheme is stated below.

Theorem 2 In a multicast session for rekey transport, sup-
pose that member u is at forwarding level 1, 0 < i < D — 1.
Let w be any (s, j)-primary neighbor of u, where s = 0 if
u is the key server, s = 1,1 + 1,...,D — 1 if u is a user,
and j = 0,1,....,B — 1. Let set V contain w and all the
downstream users of w. Then given an encryption e, the en-
cryption is required by at least one user in V' if and only if
e.ID is a prefix of w.IDI0 : s], or w.ID|0 : s] is a prefix of
elD.

Corollary 1 In a multicast session for rekey transport, as-
sume every user in the group has I-consistent neighbor ta-
ble. Following the multicast scheme and the rekey message
splitting scheme specified in Figs. 2 and 5, respectively, for
any user u in the group and any encryption e that is gener-
ated by the key server, u receives a single copy of e if and
only if e is needed by u or by at least one downstream user

of u.

2.6. Discussion

In our rekey message splitting scheme, each user can eas-
ily determine whether an encryption is needed by its down-
stream users by checking the encryption’s ID. Therefore,
there is no need for each user to maintain states for its down-
stream users. However, if we use an existing ALM scheme
such as the ones in [7, 4, 29, 17, 15, 9] to replace T-mesh,
or use the original key tree [21, 22, 24, 26] to replace the
modified key, then in order to perform rekey message split-
ting, each user has to keep track of who are its downstream
users and which encryptions are needed by them. In the orig-
inal key tree approach, the IDs of a user’s required keys keep
changing for each rekey interval even when no downstream
users join or leave. Therefore, each user has to keep track
of such changes for itself and all its downstream users. As
a result, it incurs a large maintenance cost for the users who
are close to the root of the ALM tree since each of them has
O(N) downstream users.

Furthermore, our splitting scheme is more effective in
reducing rekey bandwidth overhead than what could be
achieved with the existing ALM schemes. In T-mesh, be-
cause of the exact structure match between the modified key
tree and the ID tree, all the users sharing a common encryp-
tion belong to the same level-i ID subtree, where ¢ is the
number of digits contained in the encryption’s ID. As a re-
sult, only a single copy of the encryption is forwarded when
the forwarding level is less than or equal to ¢. It is then dupli-
cated to users who need it at subsequent forwarding levels.
In contrast, if we use an existing ALM scheme to replace T-
mesh, it becomes hard to make the structure of the key tree
match that of the ALM tree. As a result, users sharing a com-
mon encryption have random positions in the ALM tree. In



this case, the shared encryption may have to be duplicated at
early forwarding levels.

The efficiency of our splitting scheme also benefits from
our topology-aware user ID assignment scheme. Since all
the users sharing a common encryption belong to the same
ID subtree, they tend to be in the same topological region
by virtue of the user ID assignment scheme. As a result,
only a single copy of the shared encryption is forwarded un-
til it enters the region. It is then duplicated and forwarded
to multiple sub-regions. In contrast, if each user randomly
chooses its ID, then each user has a random position in the
ID tree. For example, users from the same LAN could be-
long to different level-0 ID subtrees. In this case, their shared
encryptions have to be duplicated once the multicast starts,
and multiple copies of the shared encryptions traverse the
Internet and enter the same LAN.

In short, the efficiency of our rekey message splitting
scheme comes from a careful integration of the other sys-
tem components, that is, the user ID assignment scheme, the
multicast scheme T-mesh, and the modified key tree. If any
of these components is replaced by an existing scheme, the
efficiency of the splitting scheme would be reduced. This is
confirmed by our simulation results presented in Section 4.

3. Protocol description

In this section, we present the protocol for a user to deter-
mine its ID. We also discuss the issues related to a user’s
join, leave, and recovery from neighbor failures.

3.1. User ID assignment

To join a group, a user, say u, first contacts the key server (or
a separate registrar server [23]) and mutually authenticates
each other using a protocol such as SSL. If authenticated and
accepted into the group, u receives its individual key and the
current group key. From now on, all the communications be-
tween u and the key server are encrypted with the individual
key, and all the communications between u and other users
in the group are encrypted with the group key.'

If w is the first join in the group, the key server assigns its
user ID as D digits of “0”. The key server then sends u a
message via unicast that contains u’s ID and all the keys on
the path from u’s corresponding u-node to the root in the key
tree.

If u is not the first join, the key server gives u the user
record of another user already in the group. Then u needs to
determine its ID digit by digit, starting with the Oth digit. To
determine the ith digit, 0 < ¢ < D — 2, u’s actions consist of
four steps. (We assume 1 is fixed in the following discussion
and in Sections 3.1.1, 3.1.2, and 3.1.3.)

IThe key server needs to send u the new group key via unicast if u
cannot finish constructing its neighbor table before the end of the current
rekey interval.

In the first step, u collects the records of users who be-
long to its (i + 1, 7)-ID subtree (see Definition 2), for j =
0,1, ..., B—1. These users tend to be in the same topological
region, and each one’s ID shares the first ¢ digits with «’s ID.
(User u already determines the first ¢ digits, u.ID[0 : ¢ — 1],
of its ID so far.) In the second step, © measures the RTTs be-
tween itself and the users it collected. According to the mea-
surement results, u determines the value of u.ID[i] in the
third step. More specifically, if u predicts that it is “close” to
the users belonging to a particular ID subtree, say (¢ + 1,b)-
ID subtree, then u sets u.ID[i] tobe b, 0 < b < B — 1.
As a result, u’s ID shares one more digit with the users in
the (i + 1, b)-ID subtree, and u itself becomes a user belong-
ing to this ID subtree. We thus achieve the effect that users
close to each other belong to the same ID subtree. In the last
step, u notifies the key server its determined ID digits. We
describe each step in detail below.

3.1.1. Step 1: collecting user records

For u to know which users belong to its (i + 1, 7)-ID subtree,
7 =20,1,..., B — 1, a straightforward approach is to let the
key server provide such information. This however increases
the key server’s bandwidth overhead. Therefore, we let u
collect the information by querying other users.

For 7 = 0, u sends a query to the user whose record is
provided to u by the key server. For 7 > 0, since u already
determines the first ¢ digits of its ID so far, it knows at least
one user that belongs to u’s (i, 0)-ID subtree to (i, B — 1)-
ID subtree. User u sends a query to such a user. The query
specifies a target ID prefix as u.ID[0 : ¢ — 1]. Upon receiv-
ing the query, the receiver looks up its neighbor table, and
returns the user records of all the neighbors whose IDs have
the target ID prefix. In this way, u collects one or more users
from its (7 + 1, j)-ID subtree if the subtree is not empty, for
7=0,1,..,B—-1

For each j, 7 = 0,1,..., B — 1, to collect more users
from its (i + 1, j)-ID subtree, u keeps querying the users it
collected from the ID subtree until it collects P users from
the subtree, or it has queried all the users it collected from
the subtree. In each query, u specifies the target ID prefix as
u.ID|0 : i — 1] appended with digit j. We set P = 10 for all
the simulations in this paper.

3.1.2. Step 2: measuring RTTs

In this step, u estimates whether it is close to the users it
collected from its (i+1, j)-ID subtree, for j = 0,1, ..., B—1.
For this purpose, u measures the RTT between the first-hop
and last-hop routers (referred to as gateway routers) on the
path from w to w, for each user w it collected. Let r(u, w)
denote the RTT between u and w’s gateway routers. Let
h(u,w) denote the RTT between the two end hosts v and w.
In our protocol, u uses 7(u, w) instead of h(u, w) to estimate
whether it is close to w topologically. The rational is that two



end hosts tend to be topologically close to each other even if
their access links have long latency.”

User u can easily derive r(u, w) if it knows h(u, w), the
RTT between u and its gateway router, and the RTT be-
tween w and its gateway router. For this purpose, u esti-
mates h(u, w) by using ping messages. And each user mea-
sures the RTT between itself and its gateway router using the
traceroute utility. The value of the RTT between a user
and its gateway router is stored in each copy of the user’s
corresponding user records so that others can know it.

3.1.3. Step 3: determining u.I D[]

In this step, for each j, j = 0,1, ..., B — 1, user u computes
the F'-percentile of the RTTs measured for all the users it col-
lected from its (i + 1, j)-ID subtree. (Each RTT used in this
step is the one between two gateway routers.) Here F'is a
system parameter. In order to tolerate the estimation error of
RTTs, we did not use 100-percentile. Instead, 70-percentile
is used in all the simulations in this paper. Suppose the RTTs
of the users that u collected from its (i + 1,b)-ID subtree,
0 < b < B — 1, produces the smallest F'-percentile value,
denoted by fi41 . User u then compares f;; 1, with the de-
lay threshold R; 41, and the comparison results in two cases.

In the first case, f;11,5 is less than or equal to R;;. User
u then predicts that it is topologically close to the users be-
longing to its (¢ + 1, b)-ID subtree, and thus assigns u.I D|i]
as b. User u then continues to determine the next digit
u.ID[i + 1] of its ID if the next digit is not the last digit.
That is, u increases the value of ¢ by 1, and goes back to step
1. If the next digit is the last one, u goes to step 4 and asks
the key server to assign the last digit to make sure that every
user in the group has a unique ID.

In the second case, f;11, is larger than R;y;. User u
then predicts that it is not close enough to the users in any
(i + 1,45)-ID subtree, j = 0,1,...,B — 1. In this case, u
goes to step 4 and asks the key server to assign the ¢th digit
to the last digit of its ID, that is, u.I D[é], u.ID[i +1], ..., and
w.ID[D —1].

3.1.4. Step 4: notifying the key server

In this step, u sends the key server a message that contains
its determined ID digits. Suppose u already determines the
first [ digits, u.ID[0 : [ — 1], of its ID, 0 < I < D — 1. The
key server then assigns the /th digit to the last digit of u’s ID,
such that none of the other users in the group shares the first
I+ 1 digits with uwl Consequently, in the ID tree, u becomes
a user in a new level-(/ + 1) subtree to which none of the
other users in the group belong. After that, the key server
sends u a message that contains u’s complete ID and all the

ZNote that the latency stored for each neighbor in a neighbor table is the
RTT between two end hosts.

3In an extreme case, the key server may not be able to find a unique
value for u.IDI0 : []. See technical report [27] for a solution.

keys on the path from u’s corresponding u-node to the root
in the key tree.

Our technical report [27] presents the analysis of the com-
munication cost for a joining user to determine its ID. The
main result is that if each non-leaf node in the ID tree has
the same outgoing degree, then the costis O(P - In N') when
D=1InN.

3.2. Join, leave, and failure recovery

After its ID is determined, u needs to build its neighbor ta-
ble.* It also needs to contact some other users to have its user
record inserted in their neighbor tables. The join protocol
presented in the Silk system [13, 10] is used to accomplish
this task. The join protocol is proved to construct consistent
neighbor tables after an arbitrary number of joins if messages
are delivered reliably and there are no user leaves or failures.
After its joining process terminates, u sends the key server a
notification message.

When u decides to leave the group, it needs to contact
other users to have its user record deleted from their neigh-
bor tables. The leave protocol presented in Silk is used to
accomplish this task. After that, u sends a leave request to
the key server.

User u detects the failure of a neighbor if the neighbor
does not respond to consecutive ping messages. Upon de-
tecting the failure of a neighbor, u sends the key server a
notification message. It also needs to contact some other
users to look for appropriate users to replace the failed one.
We refer interested readers to [11] for sophisticated failure
recovery strategies.

4. Performance evaluation

We evaluate the performance of our approach in this section.
We first study whether T-mesh can provide low delivery la-
tency. We then study the modified key tree by the size of the
rekey message. Next, we examine whether the rekey mes-
sage splitting scheme can significantly reduce rekey band-
width overhead. Finally, we investigate the impact of differ-
ent values of the delay thresholds R;,i =1,2,...,D — 1, 0n
the latency performance of T-mesh.

For efficiency, we wrote our own discrete event-driven
simulator. We simulate the sending and the reception of a
message as events. The following two topologies are used in
the simulations:

e PlanetLab topology — We measured the RTT between
each pair of 227 hosts on the PlanetLab infrastruc-
ture [1] using a single probe message on August 12,
2004.5 In our simulator, we let each member (a user or

4All the user records collected by u while it determines its ID could be
used to fill its neighbor table.

SWe also used the minimum value of 20 RTT samples measured for
each pair of PlanetLab hosts, and repeated each simulation presented in
Section 4.1. The relative performance of T-mesh and NICE (the multicast



the key server) correspond to a PlanetLab host, and set
the RTT between each pair of members to be the same
as the RTT between the corresponding two PlanetLab
hosts. We set one-way delay between two members to
be half of their RTT.

e GT-ITM topology — This is a transit-stub topology
based on the GT-ITM topology models [S]. The topol-
ogy consists of 5000 routers and 13000 network links.
Each member is attached to a randomly selected router.
We abstract away queueing delays in the simulations.
See technical report [27] for the parameter settings of
the topology.

In the simulations, we compare the performance of T-
mesh with NICE [4], one of the state-of-the-art ALM
schemes.® In our simulation of NICE, a user will not join
or leave the group until the previous join or leave terminates.
In NICE, the ALM tree constructed by such sequential joins
and leaves is expected to have better (at least not worse) per-
formance than the tree constructed by concurrent joins. In all
the simulations (except the ones in Section 4.2) for T-mesh,
we use concurrent joins and leaves. The join and leave pro-
tocols of T-mesh are based on the Silk protocols, but sim-
plified to improve simulation efficiency. For each run of a
simulation, users follow the same join and leave order in T-
mesh and NICE. In all the simulations of T-mesh, we set
D=5 Ry =150ms, R, = 30ms, R3 = 9ms, Ry =3
ms, B = 256, and K = 4, unless otherwise stated. In all
the simulations of NICE, each cluster contains three to eight
users [4].

4.1. Delivery latency

We evaluate the delivery latency of a rekey message when the
key server multicasts it in T-mesh and NICE, respectively.
Given a particular user, we define three performance metrics:

e User stress — The total number of messages the user
forwards in a multicast session.

e Application-layer delay (in milliseconds) — The latency
from the time that the sender sends a message to the
time that the user receives a copy of the message.

e Relative delay penalty (RDP) — The ratio of the user’s
application-layer delay to the one-way unicast delay
from the sender to the user.

Note that there is no notation of the key server in NICE.
To multicast a rekey message in NICE, we let the key server
unicast the message to the root of the NICE tree, which is
the topological center of all the users in the group [4]. The
message then traverses the tree in a top-down fashion.

scheme for comparison) does not change.

%We did not choose Narada [7] for comparison because the structure of
Narada mesh keeps changing for self-improving purposes even when there
are no user joins or leaves. This incurs significant communication cost for
each user to keep track of its downstream users in order to perform rekey
message splitting.

We ran simulations on the PlanetLab topology with 226
user joins. Each user joins the group at a random time be-
tween 0 and 452 seconds. After all the joins terminate, the
key server multicasts a message.

Fig. 6 plots the inverse cumulative distribution of user
stress, application-layer delay, and RDP. Each point with co-
ordinates (z,y) in Fig. 6 (a) can be interpreted as: x fraction
of users have an average user stress less than or equal to y.
Each average value is computed based on 100 runs. For each
run, we changed user joining times, and started a rekey mul-
ticast session in T-mesh and NICE, respectively. We then
ranked the users in increasing order of their stresses. For
each rank, we computed the average user stress of the users
with this particular rank across all runs. The vertical bars
show the 5 to 95-percentile values. Figs. 6 (b) and (c) can be
interpreted similarly.

From Fig. 6, we observe that the distributions of user
stress in T-mesh and NICE are comparable; however, the
users have much smaller application-layer delay and RDP
in T-mesh than those in NICE. The application-layer delay
in T-mesh is about half of that in NICE for the majority of
users. In T-mesh, 78% of users have an RDP less than 2, and
95% of users less than 3. In NICE only 23% of users have
an RDP less than 2, and 47% of users less than 3.

From Fig. 6, we also observe that in different runs the
distributions of application-layer delay and RDP have much
smaller variations in T-mesh than those in NICE. This im-
plies that the latency performance of T-mesh is less sensitive
to different user joining orders than that of NICE.

We repeated these simulations on the GT-ITM topology
for 256 and 1024 user joins, respectively. We also conducted
simulations on both the PlanetLab and GT-ITM topologies to
evaluate delivery latency of a data message when it is mul-
ticast by a user. The simulation results (see technical re-
port [27]) showed that in these simulations the relative per-
formance of T-mesh and NICE is similar to that in Fig. 6.

Note that it is not appropriate to conclude that T-mesh is
better than NICE for data transport in general. NICE is de-
signed for scalable group communications, and has no notion
of the key server. In NICE, to determine its position in the
tree, each joining user probes smaller number of users than
a joining user in T-mesh does.

4.2. Rekey message size

In this subsection, we study the modified key tree by the size
of the rekey message. We define rekey cost as the number
of encryptions contained in a rekey message. All the simula-
tions in this subsection are performed on the GT-ITM topol-
ogy. In each simulation, 1024 users join the group each at
a random time between 0 and 2048 seconds. After all the
joins terminate, the key server processes J join and L leave
requests, 0 < J, L < 1024, in one rekey interval, and gener-
ates one rekey message. For efficiency, we use a centralized
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controller to simulate the J joins and L leaves in that rekey
interval.

Fig. 7 (a) plots the average rekey cost of the modified key
tree as a function of number of joins and leaves. Each aver-
age value is computed based on 20 runs. Fig. 7 (b) plots the
rekey cost of the modified key tree minus that of the original
key tree. The original key tree is based on the Wong-Gouda-
Lam key tree [22] with degree 4 and the batch rekeying algo-
rithm proposed in [26]. A degree of 4 is proved to be optimal
in terms of rekey cost per join or leave [22].

We propose a cluster rekeying heuristic to reduce the
rekey cost of the modified key tree. In the heuristic, all the
users belonging to the same level-(D — 1) ID subtree are
referred to as a bottom cluster. For each bottom cluster a
user is selected as the leader. The leader has all the keys
on the path from its corresponding u-node to the root in the
modified key tree. A non-leader user has only three keys:
the group key, the user’s individual key, and a pairwise key
shared with its cluster leader. When a leader receives a new
group key, it unicasts a copy of the group key to each user in
its cluster by first encrypting the group key with the receiv-
ing user’s pairwise key. With this heuristic, only the join and
leave of a leader incurs group rekeying. Please see technical
report [27] for a detailed description of the heuristic.

Fig. 7 (c) plots the average rekey cost of the modified key
tree with the cluster rekeying heuristic applied minus that of
the original key tree. We observe that with the heuristic, the
rekey cost of the modified key tree becomes even smaller
than that of the original key tree when the fraction of leaving
users is small.

4.3. Rekey bandwidth overhead

We now evaluate whether the rekey message splitting
scheme can significantly reduce rekey bandwidth overhead.
We use the GT-ITM topology for all the simulations in this
subsection. In each simulation, 1024 users join the group
each at a random time between 0 and 2048 seconds. After
all the joins terminate, the key server processes 256 joins
and 256 leaves in one rekey interval of 512 seconds, and
generates one rekey message. Each of the 256 joins and 256

protocol key tree multicast cluster rekey msg
approach | scheme rekeying | splitting
P original NICE n/a no
P| original NICE n/a yes
Py modified T-mesh no no
P} modified | T-mesh no yes
P3 modified | T-mesh yes no
Pl modified | T-mesh yes yes
Py original IP multicast | n/a no

leaves starts at a random time of the rekey interval. Such
a large number of joins and leaves is not typical in prac-
tice; however, it represents a challenging scenario. If the
splitting scheme works well in this scenario, then we expect
that rekey transport has little interference with data transport
when users join and leave less frequently.

For comparison, we define seven rekey transport proto-
cols, as specified in Table 2. The IP multicast scheme used in
Py is based on the DVMRP multicast routing algorithm. As
pointed out in Section 2.6, to allow rekey message splitting
in Pj, users need to maintain states for O(N') downstream
users. In our evaluation of NICE, we did not count such
maintenance cost because the cost depends on the particular
maintenance protocol.

Figs. 8 (a), (b), and (c) plot the inverse cumulative distri-
bution of the number of encryptions received per user, for-
warded per user, and going through each of the 13000 net-
work links, respectively. Each curve in the figure is a typical
run where one rekey message is distributed. Note that the
y-axis is in log scale, and the z-axis starts from 0.9 or 0.96
since we are concerned with the most loaded users and links.

In Fig. 8, by comparing P to Py, Py to P,, and P} to
Ps5, we observe that rekey message splitting is very effective
in reducing rekey bandwidth overhead. In particular, in P
and Pj (using T-mesh), the rekey message splitting can re-
duce rekey bandwidth overhead for more than 90% of users
and links from several thousand encryptions to less than ten
encryptions. No users receive or forward more than 350 en-
cryptions in Pj and P4 (see Figs. 8 (a) and (b)). And only
a few links receive up to 1500 encryptions (see Fig. 8 (c)).
These links are on the paths from the key server to its (0, j)-



Average rekey cost

1400
1200
1000
800
600

400

506 200
J(# of Joins)

600
J (# of Joins)

(a) Rekey cost of the modified key tree. (b) Rekey cost of the modified key tree

minus that of the original key.

Avg. rekey cost of modified key tree minus that of the original

Avg. rekey cost of modified key tree minus that of the original

00555
J(# of Joins)

(c) Rekey cost after applying the cluster

rekeying heuristic to the modified key tree.

10000

100000

10000

1000 fo--ee

1000 ¢

Number of Encryptions per User
n
Number of Encryptions per User

1 L L L

100000

10000

1000

100

Number of Encryptions per Link

0.94
Fraction of Users
(b) Inverse cumulative distribution of the

L
0.94 0.96 0.98 1
Fraction of Users

(a) Inverse cumulative distribution of the

number of encryptions received per user.

primary neighbors, j = 0, 1., ., B—1. $1nce rekey transport o 02 ‘ ;éésgbég’ 7 5 ; 15(‘852'028" 7 —

and data transp(.)rt choose different multicast trees in T-mesh, £ .| (120,20.2.9 | st (o020 83

we expect that in Py and Pj rekey transport does not affect (150, 50, 30,9, 3) Q3 (150, 50, 30,9, 3) ]
0.1 A

data transport as long as the rekey bandwidth overhead at
most users and most links is very small.

In P] (using NICE), however, a few users still need to
forward 1000 to 10000 encryptions, and some links need
to transfer up to 4000 encryptions, as shown in Figs. 8 (b)
and (c), respectively. These users and links are close to the
root of the NICE tree. Congestion at these users or links can
cause data and rekey message losses for many downstream
users. Therefore, in P; the rekey bandwidth overhead of the
most loaded users and links is a big concern.

We conclude that rekey message splitting is very effective
in reducing rekey bandwidth overhead. Furthermore, it is
more effective to perform message splitting in P) and P}
(using T-mesh) than P (using NICE), especially for the most
loaded users and links. In addition, in Pj and P} each user
does not need to maintain states for its downstream users to
perform message splitting.

4.4. Delay thresholds

To determine its ID, a joining user needs to compare the
RTTs between itself and the users it collected with the de-
lay thresholds R;, i = 1,2,..., D — 1. To choose appropri-
ate values for R;, we use the following heuristic. First, we
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D
(R1,R2,...,Rp_1)

set Ry around one hundred milliseconds so that all the users
from the same continent could belong to the same level-0 ID
subtree. Second, we set Rp_1 to be in the order of several
milliseconds, so that all the users in a few closely located
LANSs could belong to the same level-(D — 1) ID subtree.
Last, we make the ratio of R;/R; 1 larger than or equal to
2, so that each level-i ID subtree contains several level-(i+1)
ID subtrees.

Fig. 9 plots the inverse cumulative distributions of
application-layer delay and RDP for various values of D and
(R1, Ra, ..., Rp_1) when the key server multicasts a rekey
message. The PlanetLab topology with 226 joins is used in
the simulations. Each curve in the figure is a typical run.



From the figure, we observe that the latency performance of
T-mesh is not sensitive to the various values of delay thresh-
olds that we chose.

5. Conclusion

In this paper, we proposed an application-layer multicast ap-
proach that supports concurrent rekey and data transport.
Our goal is to provide fast delivery of rekey messages and
reduce rekey bandwidth overhead as much as possible. Our
approach consists of a multicast scheme using neighbor ta-
bles, a modified key tree, and a rekey message splitting
scheme. These system components are integrated with a co-
herent scheme to identify each user, key, and encryption. By
virtue of the identification scheme, each user can determine
who are the next hops by looking up its neighbor tables in
a multicast session. Also each user can determine whether
an encryption is needed by its downstream users by check-
ing the encryption’s ID. Furthermore, our user ID assign-
ment scheme exploits proximity in the underlying network
such that each multicast tree embedded in the neighbor tables
tends to be topology-aware. Our simulation results showed
that our approach can achieve much smaller delivery latency
and rekey bandwidth overhead for almost all the users (and
links) than a representative existing ALM scheme.
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