
Virtual Leashing: Internet-Based Software Piracy Protection

Ori Dvir
Computer Science Department

Tel Aviv University
Ramat Aviv 69978, Israel

oridvir@hotmail.com

Maurice Herlihy
Computer Science Department

Brown University
Providence, RI 02912, USA

herlihy@cs.brown.edu

Nir N. Shavit
Computer Science Department

Tel Aviv University
Ramat Aviv 69978, Israel

shanir@cs.tau.ac.il

Abstract

Software-splitting is a technique for protecting software
from piracy by removing code fragments from an appli-
cation and placing them on a remote trusted server. The
server provides the missing functionality but never the miss-
ing code. As long as the missing functionality is hard to
reverse-engineer, the application cannot run without vali-
dating itself to the server.

Current software-splitting techniques scale poorly to the
Internet because interactions with the remote server are
synchronous: the application must frequently block waiting
for a response from the server. Perceptible delays due to
network latency are unacceptable for many kinds of highly-
reactive applications, such as games or graphics applica-
tions.

This paper introducesvirtual leashing, the first non-
blockingsoftware-splitting technique. Virtual leashing en-
sures that the application and the server communicate asyn-
chronously, so the application’s performance is indepen-
dent (within reason) of large or variable network latencies.
Experiments show that virtual leashing makes only modest
demands on communication bandwidth, space, and compu-
tation.

1 Introduction

Software piracy is an enormous economic problem,
reaching by some estimates a worldwide level of 40% in
2001 [1]. More importantly, piracy is a key obstacle in the
way of electronic distribution of software, especially mod-
els such as software rental, secure try-before-buy, and so
on. Existing technologies for protecting and controlling
software using tamper-resistant hardware and software are
based on a variety of cryptographic means, from wrapping
(encrypting) parts of the code, to planting calls to crypto-
graphic authentication modules. While these technologies
protect against casual piracy, they are fundamentally inse-
cure. Software must be unwrapped before it can be exe-

cuted, and can then be captured, and cryptographic tests can
be removed using widely-available tools.

Software-splitting[11] is a conceptually simple and ap-
pealing technique for protecting software from piracy. Re-
move small but essential components from the application
and place them on a secure server, either on a secure co-
processor or across the Internet. The server provides the
missing functionality, but never the missing components. If
reverse engineering the components from the functionality
is hard, the server will have absolute control over the con-
ditions under which the software can be used.

Simple as it sounds, the software-splitting approach to
security faces formidable technical obstacles. Perhaps the
most daunting challenge is overcomingcommunication la-
tency If application communicates with the trusted server
over a network, then network delays can be long and un-
predictable. Nevertheless, it is usually unacceptable for the
application to block waiting for a response from the server.
This non-blocking requirement is particularly compelling
for highly-reactive applications such as games and graphics
applications, where any perceptible delay will be unaccept-
able to users. (Communication latency is why most desktop
applications cannot be run on remote ASP servers). Simi-
lar arguments apply to on-board secure coprocessors, USB
devices, or smart cards, as their processors are likely to be
substantially slower than the main processor, and the need
to buffer data and to share a system bus with other activ-
ities (such as memory access) implies that communication
delays can be substantial and unpredictable.

In this paper, we propose the first non-blocking software-
splitting technique. We believe that this technique, called
virtual leashing, provides a practical and effective defense
against piracy of certain kinds of software (as discussed be-
low). Experiments show that it has surprisingly low com-
putation and communication costs.

1.1 Virtual Leashing

Applications typically perform two kinds of tasks:active
tasks must be executed immediately, whilelazy tasks may

1

be executed at any point within a reasonable duration. Vir-
tual Leashing splits an application into two new programs:
a largeclient program carries out the original application’s
active tasks, while a much smallerserverprogram carries
out lazy tasks. As the names suggest, the client program is
executed directly by the end-user, while the server program
is executed on a secure off-site platform or on a secure co-
processor.

The client and server programs communicate as follows.
Whenever the original application would execute a lazy
task, the client sends a message to the server, who executes
that task and returns the results to the client. Because the
offloaded tasks are lazy, the client is still able to react to in-
teractive demands, even in the presence of some latency in
the client-server communication.

To make software-splitting practical, we must identify a
class of lazy tasks present in a wide variety of applications.
There must be an effective way to split the application into
client and server components without a detailed understand-
ing of the application itself. Moreover, it must be difficult
for a pirate to reverse-engineer the missing tasks by inspect-
ing the client program, and by eavesdropping or tampering
with the client/server message traffic. Finally, executing the
missing tasks at the server should place modest demands on
server computation and client/server bandwidth.

One task common to a wide range of applications isdy-
namic memory management. Allocating memory is an ea-
ger task: an application that callsmalloc() needs that
memory immediately. By contrast, freeing memory is lazy:
an application that callsfree() will not block if there is
a reasonable delay between thefree() call and the time
when that memory actually becomes available for reuse.
This asymmetry lies at the heart of virtual leashing1

Virtual leashing splits the original application’s mem-
ory management activities between the client and server.
Where the original application would have allocated a mem-
ory block, the client also allocates the block, but sends a
message to the server. Where the original application would
have freed a memory block, the client simply sends a mes-
sage to the server. The client also sends the server a large
number of “decoy” messages, ignored by the server, that
are indistinguishable from the allocation and free messages.
The server maintains an image of which parts of the client’s
memory are in use, and periodically sends the client a mes-
sage releasing unused memory. As long as the client and
server remain in communication, the client will be able to
allocate memory without delay. Without such communica-
tion, however, the client program will quickly run out of
memory.

The key to leashing’s security is the practical difficulty of

1We focus here on applications that manage memory explicitly (such
C andC + + programs). We consider garbage-collected languages such
as Java in the conclusion.

figuring out when memory can be freed. (We are all familiar
with stories of programmers who spend inordinate amounts
of effort fixing memory leaks in programs they themselves
devised.) We will argue that even though one can disassem-
ble the client code, eavesdrop on client-server message traf-
fic, and even tamper with that traffic, in the end, a would-be
pirate faces the problem of building a memory-reclamation
algorithm for an application whose dynamic memory struc-
ture is not just unknown, but possibly designed to frustrate
“conservative” collectors.

We now give a schematic description of how virtual
leashing makesfree() calls hidden from the client but
made known to the server (a more detailed description ap-
pears below). The key idea is that as we augment and re-
place native memory management calls with message trans-
missions, we construct a table on the side that records the
meaning of each message. This table is then encrypted off-
line using a key known only to the server2. When a leashed
application starts up, it sends the encrypted leashing table
to the server. This encrypted table is the unique key pro-
tecting the application’s security. This technique is secure
because the client never sees the decrypted table. It is also
scalable, because the table is small (a few thousand bytes),
and because the server does not need to maintain a database
of leashing tables.

Every call of the form

p = malloc(size)

is replaced by

p = malloc(size);
...
send(m);

Sometime after themalloc() call, the client sends a
messagem containing only the current line number and
a randomly-permuted list of local variable values that in-
cludesp and size . (If the size is constant, then it can
be included directly in the table, and need not be sent in
the message.) When the server receives the message, its
leashing table indicates that the message number reports a
malloc() call, and indicates which arguments are rele-
vant.

Next, everyfree() call is replacedby a send(m)
call, wheremis a message, indistinguishable from the oth-
ers, containing only the current line number and a permuted
list of local variable values. When the server receives the
message, its leashing table indicates that the message num-
ber reports afree() call, and indicates which arguments
are relevant.

2Either symmetric or asymmetric (public-key) encryption can be used,
although asymmetric encryption protects the server against corrupt leash-
ing programmers who might leak a symmetric key.

We can identify an important and useful class of mem-
ory allocation calls, which we callstatic allocations. A
free() call is static if it always frees the address most
recently allocated by a particularmalloc() call. A
malloc() call is static if all its correspondingfree()
calls are static. (As discussed in the Appendix, static calls
can be detected by profiling.) The leashing table indicates
whichmalloc() calls are static, and whichfree() calls
correspond to thatmalloc() call. Staticfree() calls
are attractive because the address being freed does not need
to appear anywhere in the message.

Finally, we adddecoymessage transmissions to the pro-
gram. These messages are indistinguishable from the mal-
loc and free messages: each has a line number and a list
of local variable values. Their leashing table entries instruct
the server to ignore them. Decoy messages providestegano-
graphicprotection for the free messages, making it difficult
for a pirate intent on traffic analysis to distinguish between
real and decoy messages.

The application’smalloc() calls are still present in
the leashed executable, but itsfree() calls have been re-
moved and replaced with message transmission calls. The
leashed client is unable to free memory by itself, so in-
stead, it listens for messages from the server that instruct
the client which blocks of memory to free. The server tracks
the client’s memory usage, and releases enough memory to
keep the server running. We discuss the security aspects of
this arrangement in the sequel.

We have found virtual leashing a good match for elec-
tronic games (having leashed Quake I, Quake II, and oth-
ers). These games tend to be large, relatively unstructured
C programs, that make extensive use of dynamic memory
management, and that must react quickly to user input (so
more conventional kinds of software splitting are unlikely
to perform well).

2 Client and Server Prototypes

Both the client and the server represent the leashed heap
as askiplist [7], where each list element contains a block’s
size and starting address. The client-side interface provides
the client an allocation call (which takes a size and returns
an address), and it provides the server areleasecall (which
takes a starting address and a size). Not all memory man-
agement calls must be leashed.

The skiplist representation makes it easy for the client
to locate the block containing an arbitrary address. For ex-
ample, the client might allocate 1000 bytes starting at ad-
dress 100, and the server might later instruct the client to
release 900 blocks starting at location 200. In a similar way,
when the client sends afree message, it can send any ad-
dress within the block being freed, and the server knows to
free the block containing that address.

To ensure that the interactions between the application
and the server are asynchronous, the client runs in a thread
parallel to the application’s main thread (all applications we
have leashed are single-threaded). The client thread and
server communicate over a TCP connection. When a client
creates a new connection, the server creates a new thread to
handle it. The client and the server threads execute a simple
handshake in which the client sends the encrypted leashing
table to the client. All malloc, free, and decoy messages
are 32 bytes. The first word is the offset of that message’s
entry in the leashing table, and the other seven are the per-
muted message arguments. (This size was chosen arbitrar-
ily; longer messages with more arguments enhance security
while consuming more bandwidth.)

The server keeps track of memory that the client has im-
plicitly freed, but that has not yet been explicitly released
to the client. When that amount exceeds a threshold, the
server sends the client an 8-bytereleasemessage contain-
ing the addresses and size of the memory to be released. To
conserve bandwidth, the server merges adjacent free blocks.

3 Security

Our goal is to ensure that that an adversary cannot recon-
struct the missing memory management code by observing
the program’s run-time behavior.

3.1 Direct Attacks

Perhaps the most direct attack is simply to avoid ever
having to free allocated memory. For example, run the
application with enough physical memory so that it never
needs to free anything. (Note that this attack is limited by
the size of the physical memory, not the virtual memory,
since the application will start to thrash once its working set
substantially exceeds physical memory.)

In the short term, we canchurnthe application’s memory
usage. One simple way is to overallocate memory for short-
lived objects. Another is to move stack objects into the
heap, allocating them when a procedure is called, and free-
ing them asynchronously after the procedure returns (these
allocations are static, so the corresponding messages con-
tain no meaningful addresses).

We nevertheless discovered that with simple profiling
tools, we can tune the application to consume memory at
a rate that guarantees that the application will exhaust the
resources on an ordinary machine quickly enough to render
the adversary’s experience unsatisfactory, but not so quickly
that the leashing server cannot keep up. Of course, a pirate
willing to pay for an extraordinary amount of memory will
be able to run longer, but such piracy is expensive, and does
not affect the security of the application on standard ma-
chines. Eventually, of course, falling memory prices will

lower the barrier to this kind of attack. Nevertheless, the
value of the protected software is falling as well. By the
time memory prices have fallen enough that a pirate can af-
ford to run the application long enough to be usable, the
software itself may well no longer be worth protecting.

Another attack is to add a memory management sys-
tem based on a conservative garbage collector (for exam-
ple, [2]). In a leashed application one would first rip out
the native memory management and then add the conser-
vative collector. Conservative collectors, however, assume
that both the programmer and the program behave them-
selves. The programmer should not “hide” pointers, and the
program should leave around few pointers to “dead” mem-
ory. The open-source programs we leashed (discussed be-
low) did pointer arithmetic and had pointers to the middle of
data structures, and other practices incompatible with con-
servative collectors.

It is also a simple matter to overallocate long-lived mem-
ory blocks, and have the server later return the excess. Such
a technique makes it difficult for a collector to be sure how
much of a large block is actually in use.

Finally, when allocating a leashed object, it is easy to
add a few pointer fields to other recently-allocated objects,
ensuring that every object ever allocated remains reachable.
It is also easy to displace pointers, to XOR pointers with
other values, and so on. In the end, we think that any such
attack would be prohibitively expensive, because each small
incremental defense on the part of the leasher will require a
much larger incremental response on the part of the pirate.

3.2 Attacks on Leashing

We now review ways a pirate might analyze and tamper
with message traffic and contents of a leashed application.
Recall that a malloc message contains the address and size
of the block being allocated (although a constant-size mal-
loc can store the size in the leashing table). A dynamic free
message contains the address of the block being freed, or at
least a pointer into that block. (Note however, that any such
pointer will most likely also appear as a decoy argument
in other messages) A static free message does not typically
include the address of the block being freed (the server re-
constructs that address from the encrypted leashing table
and the history of malloc messages). Note that it would not
be difficult to combine two or more logical messages into a
single physical message.

3.2.1 Program and Traffic Analysis

The first class of attack tries to identify when memory be-
comes free by using a debugger to single-step through the
application, eavesdropping on client/server message traffic.

Can we exploit server-to-client traffic? The server “ages”
memory before releasing it, making it difficult to correlate

the server-to-client release message with any prior client-
to-server message. The server never releases more than a
fixed percent of its free memory, to guard against an attack
where the pirate pretends to be low on memory. Finally,
the order in which the server releases memory is unrelated
to the order in which that memory was either allocated or
freed.

Recording andreplaying the server’s messages will not
help a pirate because any application complex enough to be
valuable will behave differently each time it is run, espe-
cially an interactive application, and there will easily be an
exponential number of such possible combinations.

One näıve attack is to trace when an address is allo-
cated, trace when it is released by the server, and to insert
a free() call in the line of code being executed at the
time the release message is received. Since the message is
received asynchronously, however, this choice is no better
than a guess, and there is no guarantee that the same address
will actually be free the next time that particular statement
is executed.

Here is the most effective attack we have been able to
devise. Given two statements:

p = malloc(size);
...
send(m);

we can test the hypothesis that the message transmission re-
places the callfree(p) by inserting afree(p) call im-
mediately after the message transmission, and then exhaus-
tively testing the application. If it ever crashes, the hypothe-
sis is wrong. If it does not crash, the hypothesis is probably
correct (assuming the effectiveness of your test suite).

Naturally, testing any single message transmission is
not enough. For eachmalloc() , the would-be pirate
must identifyall matchingfree() calls, because allocated
memory must be freed in all possible executions along all
control paths. Givenm malloc() calls andn message
transmission calls, this attack requiresm·n exhaustive tests,
a formidable barrier. For example, given an application with
100malloc() calls and 300 message transmission calls,
the pirates will have to run 30,000 exhaustive tests. If each
test takes a half-hour, then running the tests will take about
two years.

This attack, expensive as it is, does not detectdynamic
malloc() calls in which the address being freed is a func-
tion of the execution. For these messages, we can insert a
malloc() call for each of the message arguments, requir-
ing anotherO(n) exhaustive tests.

3.2.2 Tampering Attacks

A pirate might attempt to gain information by tampering
with the client/server message traffic. For example, a pirate

might omit a message containing a particular address, and
then watch to see if that address is freed. If that address is
not freed, then the missing message may be a free message.
This kind of attack faces the same kind of computational
barrier as the attacks we have already considered. In fact,
tampering attacks are weaker yet, because they can often be
detected. Once tampering is detected, the server can mis-
lead the pirate. For example, the server could ignore a later
free() message, misleading the pirate into thinking that
the omitted message was one of the ignoredfree() mes-
sages. Even if the server can detect only some tampering,
the pirate can never be sure whether the server’s reaction to
a message is real or misleading.

Some tampering can be detected easily. For example, if
the client tries to free an address that was never allocated,
then we can deduce that the client omitted the malloc mes-
sage. We have devised other ways of introducing depen-
dencies among messages in a way that ensures probabilis-
tically that the server is likely to detect omitted or spurious
messages. The same arguments apply to attacks in which
message contents are altered.

3.3 Summary

Leashing is secure even if the leashing protocol is com-
pletely public. All that matters is the correspondence be-
tween messages andfree() calls, a correspondence that
appears only in the leashing table. The leashing table itself
is encrypted with a key known only to the server, and com-
piled into the application . In this way, virtual leashing is
scalable because servers do not need a database of leash-
ing tables. Moreover, an application can be leashed by any
server, either across the Internet or on a secure coprocessor.

Virtual leashing provides “defense in depth”. Even if
a pirate learns somehow that a particular message corre-
sponds to a free statement, that knowledge does not make
it any easier to locate other missing free statements in that
application. Even if a pirate is able to crack one applica-
tion (say, by stealing the leashing table from the developer),
that knowledge does not make it any easier to crack other
applications.

4 Leashed Applications

To evaluate the performance implications of virtual
leashing, we leashed three sample applications from dif-
ferent domains: Quake II3, a popular game, Abiword4, a
word-processing program similar to Microsoft Word, and
Mozilla5, a browser. We chose Quake II because it is an

3http://www.idsoftware.com
4http://www.abisource.com
5http://www.mozilla.org

ideal target for leashing: it has complex memory usage pat-
terns, and requires quick reactions. We included the other
two (which are unlikely targets of piracy) simply to ex-
plore the performance aspects of leashing other kinds of
software. All three are written in C or C++, and are avail-
able in open-source releases. Our discussion here focuses
on performance and resource use. Security itself is hard to
test empirically, especially when the programs at hand are
open-source.

Figure 1 shows the numbers of calls expressed in terms
of source code lines, and Figure 2 shows how frequently
they were executed (some columns fail to add up to
100% because of rounding errors). We leashed almost
all the memory calls in Abiword and Quake, but only the
Javascript engine of Mozilla (a much larger program). The
number and frequency of decoy messages was chosen more-
or-less arbitrarily to illustrate the effects of small, medium,
and large frequencies.

We tested each leashed application against a server run-
ning on the same machine (at 127.0.0.1), and against a
server running on a remote workstation accessed over the
Internet. The remote server was located on a 1GHz machine
at Brown University, accessed through an institutional fire-
wall. Abiword and Mozilla were tested on a 660Mhz ma-
chine at Tel-Aviv University (ping 170ms) while Quake was
tested from a 400Mhz home workstation in Boston, about
fifty miles away from the server in Providence (DSL line,
ping 28ms). None of the applications is compute-bound.
Leashing itself is not computationally demanding: profil-
ing shows that when Abiword is actively being leashed, the
leashing client consumes no more than 5% of the CPU cy-
cles, some of which would have been consumed anyway by
native memory management.

4.1 Bandwidth

Mean Max
Abiword local 36.5 418.3
Abiword remote 36.2 294.4
Mozilla local 30.9 262.7
Mozilla remote 30.1 260.1
Quake II local 43.3 445.2
Quake II remote 36.5 181.6

Figure 4. Bandwidth in Kbits/second

Testing each application against a local server reveals
how leashing works when available bandwidth is maxi-
mized, while testing against a remote server reveals be-
havior when bandwidth is limited. Figure 3 contrasts the
memory use for Quake II running against the local and re-
mote servers. Figure 4 shows maximum and mean band-

Static malloc Static free Dynamic malloc Dynamic free Decoys
Abiword 35 36 41 61 24
Mozilla 13 12 20 20 9
Quake II 13 17 12 11 8

Figure 1. Numbers of source statements

Static malloc Static free Dynamic malloc Dynamic free Decoys
Abiword 1 1 33 48 14
Mozilla 3 3 44 41 9
Quake II 3 3 3 0 89

Figure 2. Percentage of run-time traffic

50

100

150

200

250

300

 0 500 1000 1500 2000 2500 3000

K
B

its

Seconds

50

100

150

200

250

300

 0 200 400 600 800 1000 1200 1400 1600 1800

K
B

its

Seconds

Figure 3. Bandwidth consumed by Quake II, local (left) and remote (right) servers

width consumption for local and remote servers as evalu-
ated through the trace files. For each application, the mean
bandwidth consumed is essentially the same for both the
local and remote servers, while the maximum bandwidth
differs substantially for Abiword and Quake. These ob-
servations suggest that the asynchronous nature of leash-
ing allows peak bandwidth demand to be smoothed out
over time. The application is not delayed when the band-
width demanded exceeds the bandwidth available because
the client runs in its own parallel thread. The application’s
pool of unused memory provides a cushion against the ef-
fects of message latency. In all cases, the average bandwidth
demands could be met by a dial-up connection.

4.2 Memory

Clearly, leashed applications will require more memory
than their unleashed counterparts. Leashing introduces a
delay between when memory becomes free and when that
memory becomes available for reuse. This delay shows up
as increased memory use. This phenomenon becomes par-
ticularly acute during an “allocation storm”, such as load-

mean max
Abiword local 1.39 1.42
Abiword remote 1.42 1.44
Mozilla local 1.76 2.07
Mozilla remote 1.67 2.12
Quake II local 1.97 2.09
Quake II remote 1.74 2.00

Figure 6. Memory Use Ratios

ing a complex web page, or entering a new game level. An
unleashed application frees a number of blocks and then al-
locates new blocks, resulting in a burst of activity, but little
or no additional memory consumption. A leashed appli-
cation, by contrast, sends a number of messages, and al-
locates the new memory before it can reuse the old mem-
ory, resulting in short-lived spikes in memory consump-
tion. While bandwidth demand spikes can be smoothed
over by asynchronous communication, memory consump-
tion spikes simply require more memory.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

 0 25000 50000 75000 100000

B
yt

es

Milliseconds

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

 0 25000 50000 75000 100000 125000

B
yt

es

Milliseconds

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

 0 500000 1E+06 1.5E+06 2E+06

B
yt

es

Milliseconds

Figure 5. Memory use comparison for Abiword (top left), Mozilla (top right) , and Quake (bottom),
using a remote server.

To evaluate the extra memory consumption induced by
leashing, we analyzed traces of leashed applications to com-
pute how much memory that tracewouldhave allocated had
it not been leashed. Specifically, we keep running leashed
and unleashed memory use totals. The unleashed total is
decreased immediately when a free message is sent, while
the leashed total is decreased only when the server releases
that memory.

Figure 5 shows the memory use curves for the three ap-
plications running against a remote server. In each case,
the leashed and unleashed curves start out the same, but the
server quickly establishes a distance between them.

More generally, Figure 6 displays the ratio of the max-
imum leashed memory allocation over the maximum un-
leashed memory allocation, and the mean leashed mem-
ory allocation over the mean unleashed memory allocation.
Leashed Abiword requires about one and a half times as
much memory, and the others need about twice as much.

Finally, Figure 7 shows the rate at which the applications
allocate memory, giving a rough idea how long they would
run disconnected from the server. These rates represent a
modest effort to churn the memory; a more aggressive effort
could drive the rates higher.

Abiword Mozilla Quake II
29.75MB 15.38MB 13.61MB

Figure 7. Allocation rate per minute

5 Related Work

Direct hardware support for copy protection include
XOM [5] and AEGIS [10].

The most popular industrial software protection schemes
are software wrappers [4, 8] and hardware-based dongles
such as HASP [3]. A number of techniques to break the
protection of any secured application in an automatic way,
are widely available on the Web.

Zhang and Gupta [11] describe how to use compiler tech-
nology to remove short segments of code from programs.
We are aware of two commercial software-splitting schemes
[6, 9]. Both algorithms explicitly remove code from the ap-
plication and emulate the missing instructions on the secure
server. Sospita uses a specialized OS sitting on a smartcard
[9], and Netquartz uses a server across the Internet [6]. All
these techniques, however, are blocking: the main program

must wait for a response each time it calls a remote code
fragment.

6 Conclusions

The principal contribution of this paper is simply the
observation that one can exploit the distinction between
lazy and eager tasks to provide piracy protection in asyn-
chronous networked environments. Soon, network connec-
tivity will be almost ubiquitous, and smart cards and USB
devices can fill in the few remaining gaps (such as airplanes
and space stations).

This work raises a number of open questions. Can we
exploit other resource management asymmetries, such as
buffer space, file ids, and so on? How can we leash applica-
tions written in garbage-collected languages such as Java?
(Perhaps by leashing the underlying virtual machine?) Can
we use leashing to protect copyrighted content, such as
films or songs?

References

[1] B. S. Alliance. Seventh annual BSA global software piracy
study. Inhttp://www.bsa.org/usa/policyres-
/admin/2002-06-10.130.pdf ,
2001.

[2] D. Detlefs. Garbage collection and run-time typing as a c++
library. In C++ Conference, pages 37–56, 1992.

[3] A. Inc. HASP3 to HASP4 – whitepaper. In
ftp://ftp.ealaddin.com/pub/hasp/-
new releases/docs/hasp-3tohasp4.pdf ,
2003.

[4] M. Kaplan. IBM cryptolopes, superdistribution and digital
rights management. In
http://www.research.ibm.com/people/k-
/kaplan/cryptolope-docs/crypap.html ,
2003.

[5] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. InArchitectural
Support for Programming Languages and Operating
Systems, pages 168–177, 2000.

[6] NetQuartz. Easyplatform 2.0 technical overview. In
http://www.netquartz.com/ , 2003.

[7] W. Pugh. Skip lists: A probabilistic alternative to balanced
trees. InWorkshop on Algorithms and Data Structures,
pages 437–449, 1989.

[8] O. Sibert, D. Bernstein, and D. V. Wie. The DigiBox: A
self-protecting container for information commerce. InIn
Proc. 1st USENIX workshop on Electronic Commerce,
pages 171–183, 1995.

[9] Sospita. Schlumbergersema-sospita software protection. In
http://www.sospita.com/files-
/SchlumbergerSema Sospita WP.pdf ,
2003.

[10] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. aegis: Architecture for tamper-evident and
tamper-resistant processing, 2003.

[11] X. Zhang and R. Gupta. Hiding program slices for software
security. InProceedings of the international symposium on
Code generation and optimization, pages 325–336. IEEE
Computer Society, 2003.

A Appendix: How to Leash an Application

In this appendix we describe how to leash an application.
We focus on the problem of retrofitting virtual leashing to an
existing application for which we have the source code. Our
goal is to minimize the degree to which the leashing pro-
grammer must understand the application’s structure. This
problem is harder than leashing an application under devel-
opment (where the developers understand the application’s
structure in detail).

Our experience can be summarized as follows: a combi-
nation of extensive testing, tracing, and trace analysis can
alleviate the need for a deep understanding of the applica-
tion being leashed. Our methodology can be summarized as
follows.

• Profile the application to discover how it manages
memory. Identify the application’s allocate and free
calls, and wrap them with macros that record their ac-
tivities in a trace file. This step requires little expertise,
but much patience.

• Analyze the trace files (we use Perl scripts) and gen-
erate reports. These reports identify which memory
management calls to leash, as well as the most effec-
tive way to leash them. This step requires expertise in
leashing, but little or no specialized knowledge of the
application itself.

• Add decoymessages to the leashed application to frus-
trate traffic analysis. This step, too, requires expertise
in leashing (to maximize obfuscation while conserv-
ing bandwidth), but no specialized knowledge of the
application.

• Before deploying, debug and optimize the results of
the previous steps. This step, if needed, does require
some understanding of the application. As recounted
in Section 4, our experience leashing three unfamil-
iar applications yielded no non-trivial debugging prob-
lems, but did yield a few interesting technical and per-
formance problems. Solving these problems did re-
quire at most one person-day to “drill down” on spe-
cific aspects of the application source code, but did not
require any generalized understanding.

In our prototype, all trace file analysis, source prepro-
cessing, and source postprocessing were accomplished by
surprisingly uncomplicated Perl scripts.

A.1 Profile the Application

The first step is to understand how the application man-
ages free storage. Replace each of the application’s native
memory calls, and “wrap” each one in a macro that logs
each call in a trace file. Each log entry includes (1) the ac-
tual native call, (2) a timestamp, (3) the call’s source file
and line number, and (4) all arguments and results. Once
the native memory calls are traced, run the application long
enough to generate sufficiently complete trace files. This
step is similar to quality control testing: care should be
taken to exercise as many features and paths as possible.

Next, analyze the trace files to identify static and
constant-size allocations. It is important for the trace files to
be comprehensive enough to avoid identifying an allocation
as static when it is not. (We found no such “false positives”
in our examples.)

The Quake II application has a common special form of
static allocation calledtaggedallocation. The caller pro-
vides an integertag argument when allocating a block, and
all blocks allocated with the same tag can be freed by a
single tagged free call. Tagged allocation is useful for load-
ing and unloading DLLs, and for entering and leaving game
levels.

The trace file analysis guides leashing the application.
Some memory calls should not be leashed. For example,
Mozilla sometimes goes into a frenzy of allocating lots of
very small strings with very short lifetimes. Clearly, there
is little value to leashing such calls.

At each step, the profiling report identifies matching al-
location and free calls. It is worth emphasizing that it is
not uncommon for amalloc() call to match multiple
free() calls, and vice-versa. When leashing an applica-
tion incrementally, it is, of course, necessary to replace all
matching calls in a single step. (The existence of multiple
matchings also adds complexity to the analysis task facing
a would-be pirate.)

For example, we can replace the following matching
calls:

p = malloc(size);
...
free(p);

by something like

p = malloc(size);
VL_SEND_MALLOC(p, size);
...
VL_SEND_FREE(p);

The VL SENDMALLOCexpression accompanies the allo-
cation call, while theVL SENDFREEexpression replaces
the free call. These expressions arenot function calls; in-
stead they are expanded by a preprocessor into message

transmission calls, as described below. The programmer
in charge of leashing the code may provide optionaldecoy
message arguments to help disguise which arguments are
real. (Otherwise, decoy arguments are chosen by the pre-
processor.)

As a common-sense measure, common idioms such as:

if (p) {
free(p);
p = NULL;

}

should be transformed to

VL_SEND_FREE(p);
...
p = NULL;

Such a transformation, while not essential, is a nuisance for
an aspiring pirate. It works because the server sensibly ig-
nores requests to freeNULLpointers. Note that settingp to
NULLdoes not need to happen immediately after the mes-
sage transmission.

Static allocations are important, and deserve special
treatment.

p = malloc(size);
...
free(p);

becomes

p = malloc(size);
...
VL_STATIC_MALLOC(p, size, TAG);
...
VL_STATIC_FREE(TAG);

Here,TAGis a unique string recognized by the preproces-
sor, not a program variable.

Static allocations have two properties that are essential
for understanding the security of virtual leashing as a whole.
First, at run-time, static allocations are indistinguishable
from regular allocations. Second, the message that reports
a static free need not (and should not) contain the address
being freed. (Tagged allocations are treated essentially the
same, with some minor technical differences.)

A.2 Debugging Build

In the next step, the file is preprocessed to yield two
outputs: a C (or C++)-language file in which the virtual
leashing expressions are replaced by tracing and message-
transmission calls, and a table fragment that identifies the
meaning of each call. If we compile and link the prepro-
cessed files, the result is a running program in which some

free calls have been replaced with message transmissions
to the server. As part of the compilation process, the table
fragments are combined, encrypted, and compiled into the
application.

Although the essential leashing functionality is present,
the modified application is not ready for deployment, as it
lacks decoy messages and the memory consumption rate
has not yet been fine-tuned. The application also gener-
ates detailed trace information describing message traffic
and memory usage.

Client-to-server messages are 8 words (32 bytes) long.
The first word is a message id, which is actually the offset
of its entry in the application’s leashing table. In our pro-
totype, each message has seven argument slots, containing
both actual and decoy arguments. The arguments are ran-
domly permuted. Some or all of the decoy arguments may
be provided explicitly by the leashing programmer, and the
remaining decoy arguments are chosen at random by the
preprocessor from a pool of recently-allocated addresses.
Each message’s type and permutation are recorded only in
the encrypted leashing table, and appear nowhere in the ap-
plication code itself.

A.3 Tuning

The next phase is to add decoy messages and to fine-tune
the rate at which memory is allocated. This phase requires
some expertise in leashing, but does not require any detailed
understanding of the application.

Decoy messages make it harder to guess which messages
correspond tofree() calls. They provide a kind of “body-
guard of lies” making it difficult for pirates to separate sig-
nal from noise. Here, one can apply common-sense rules:
to maximize protection, the number of decoy message calls
should be at least as much as the number of free and malloc
calls, and similarly for their frequency. We think that there
are intriguing research problems figuring out how best to
seed an application with decoy messages. For our proto-
types, we just did the best we could.

A.4 Production Build

Once we are satisfied that the leashed application has a
good ratio of decoy-to-free messages, that the bandwidth
consumption is not too high, and the memory consumption
rate is not too low, then we can build the production version
simply by disabling tracing.

