
On the Possibility of Consensus in Asynchronous Systems with Finite Average
Response Times

Christof FETZER Ulrich SCHMID Martin SÜSSKRAUT

Computer Science Dept. TU Wien Computer Science Dept.
TU Dresden Treitlstraße 3 TU Dresden

D-01062 Dresden, Germany A-1040 Vienna, Austria D-01062 Dresden, Germany
christof.fetzer@inf.tu-dresden.de s@ecs.tuwien.ac.at ms67@inf.tu-dresden.de

Abstract

It has long been known that the consensus problem can-
not be solved deterministically in completely asynchronous
distributed systems, i.e., systems (1) without assumptions on
communication delays and relative speed of processes and
(2) without access to real-time clocks. In this paper1 we de-
fine a new asynchronous system model: Instead of assuming
reliable channels with finite transmission delays, we assume
stubborn channels with a finite average response time (if
neither the sender nor the receiver crashes), and we assume
that there exists some unknown physical bound on how fast
an integer can be incremented. Note that there is no limit
on how slow a program can be executed or how fast other
statements can be executed. Also, there exists no upper or
lower bound on the transmission delay of messages or the
relative speed of processes. The are no additional assump-
tions about clocks, failure detectors, etc. that would aid in
solving consensus either. We show that consensus can nev-
ertheless be solved deterministically in this asynchronous
system model.

Keywords: impossibility, consensus, asynchronous systems,
eventually perfect failure detector.

1 Introduction

The consensus problem is a fundamental problem in the
area of distributed computing and has therefore been very
thoroughly investigated over the last two decades (e.g., see
[17, 9, 12, 11, 29]). The consensus problem is defined as
follows:

1A brief announcement appeared in the proceedings of PODC’04. The
first author is supported by a Heinz-Nixdorf endowment. The work of the
second author has been supported by the Austrian START-project Y41-
MAT.

(Agreement) All processes that decide, decide on
the same value.

(Validity) The value a process decides is the
initial value of some process.

(Termination) Every correct process eventually
decides.

It has been shown in [17] that one cannot deterministi-
cally solve the consensus problem in completely asynchro-
nous systems, which are characterized by the following prop-
erties (see [17], p.375):

• no assumptions on the relative speed of processes,

• no assumptions on the delay time of delivering mes-
sages, and

• no synchronized or bounded-drift clocks.

In this paper we introduce a new asynchronous system
model (we call it the Finite Average Response time model
or FAR model) that

• does not bound the relative speed of processes or min-
imum speed of processes,

• does not postulate upper or lower bounds on the mes-
sages delivery times,

• does not assume that the system stabilizes, and

• does not assume clocks, failure detectors, or other ex-
tensions of the model.

Rather, it assumes an unknown finite average response
time and an unknown finite maximum speed for increment-
ing an integer. Despite of those weak assumptions, the FAR
model permits a deterministic solution of the consensus prob-
lem. Note that there is a difference between a bounded av-
erage response time and a finite average response time. If
we would assume a bounded average response time, there

would exist a finite constant B such that the average re-
sponse time in all runs is at most B. However, by only as-
suming a finite average response time, we can find for any
finite constant B a run in which the average response time
is above B. Also note that a finite average response time
does not bound individual response times - neither a priori
nor a posteriori. In particular, we can find runs in which for
each given constant D there exists a response time that is
greater than D (example below).

The FAR model makes the following non-standard as-
sumptions:

• Incrementing an integer takes some unknown time ≥
G > 0.

In solving consensus, we will need to prevent the situ-
ation that a process is continuously getting faster over
time. While it is difficult to enforce a minimum speed
of a process, programs have naturally a finite speed
because they are executed by a physical CPU. For ex-
ample, the speed of incrementing an integer cannot
become infinitely fast – even if one would constantly
be upgrading the underlying hardware. Eventually,
the speed of incrementing an integer will reach some
physical or economic limit (e.g., speed of light and
lower bounds on the area/volume needed to store a
bit) that will prevent us from further increasing the
speed of incrementing an integer. For convenience,
we chose that incrementing an integer has a finite
speed. Note the existence of one operation with a
finite speed would be sufficient.

• The average response time is finite, i.e., the average
time until the acknowledgment of a message sent be-
tween two correct processes arrives is finite. While
it is difficult to design programs that guarantee real-
time deadlines, the response times of well architected
distributed systems do not continuously increase. In a
badly designed system, the response time of a process
can go up continously if other processes can flood this
process with messages. In reality, most distributed
applications are TCP-based and TCP provides some
basic flow control. In the FAR model we make the
following assumption:

• The system enforces some basic flow control. The
system only guarantees to deliver a message to a cor-
rect process q if the process p that sent the message
waits for an acknowledgment before sending the next
message. Note in systems with reliable channels and
without an application-level flow control mechanism,
processes can exhibit longer and longer response times
because “fast” processes can overload “slower” pro-
cesses (see Section 6). Since our model has to be
independent of the application behavior, we enforce
some basic flow control.

The FLP model [17] requires that messages are eventu-
ally delivered, i.e., that the transmission delay is finite (this
also implies that the response time is finite). In the FAR
model, we assume instead that the average response time
is finite. To illustrate the difference, the FLP model per-
mits that the transmission delay of any subsequence of the
messages sent via a reliable channel to be monotonically in-
creasing, e.g., 1, 2, 3, This is not allowed in the FAR
model. Note however that such a behavior is allowed for
infinite subsequences of messages sent via a link as long
as there are sufficiently many faster messages sent via the
same link that compensate for the increasingly slow mes-
sages, thereby, ensuring that the average stays finite. For
example, the response time of all messages sent via a link
might be 1, 2, 1, 3, 1 , 1, 4, 1, 1, 1, 5, Note that in sys-
tems in which the response times are bounded, the average
response time converges and is finite. As we have demon-
strated, a finite average response time does not mean that
response times are bounded.

We show in this paper that one can solve consensus de-
terministically in the FAR model. Instead of describing a
consensus protocol, we show how to implement an even-
tually perfect failure detector [6]. Our failure detector can
be used with an already published consensus protocol [20]
that works with stubborn channels to solve the consensus
problem.

An eventually perfect failure detector has the following
properties:

• Completeness: Eventually, all correct processes sus-
pect all crashed processes.

• Eventual Strong Accuracy: Eventually, no correct
process suspects any correct process.

Our eventually perfect failure detector (EA-FD) is based
on the following idea. We can continuously increment a
counter to establish a very weak notion of the passage of
time. This notion of time is sufficient to implement a clock
that provides a “subjective” notion of slow and fast mes-
sages: The acknowledgment of a slow message m arrives
after the timeout for m expired and the acknowledgment of
a fast message n arrives before the timeout for n expires.
The timeout for messages is dynamically adapted accord-
ing to the classification of earlier messages. However, un-
like most other timeout-based failure detectors, a process
increases the time-out when it receives a fast message but
might decrease the timeout when it receives a slow message.
We show that this strategy ensures that the failure detector
will eventually be perfect.

Advantages: The commonly employed partially synchro-
nous system model of [6] is not a panacea for solving con-
sensus. Assuming that the response times in large scale sys-
tems are eventually bounded is, for example, questionable

in the presence denial of service attacks. We believe that
response times can increase proportionally to the duration
of an attack. Even when using defense mechanisms in the
Internet backbone, the duration of an attack can be arbitrar-
ily prolonged by using a sufficiently large attack network.
The advantage of the FAR model is that it permits to de-
scribe systems that can be attacked for arbitrary periods as
long as the “gaps” between attacks periods are sufficiently
large. Attackers need resources to mount an attack. Assum-
ing that the attackers have finite resources, the gaps between
increasing attacks need to increase too.

Based on the above discussion, we expect that the gaps
between attacks will stay sufficiently large. Also in practice,
in the “arms race” between the attackers and the defenders,
the defenders appear to keep systems available “most of the
time” even though some hosts might be unresponsive for
a few hours or days during an attack. For example, even
for high profile targets like the SCO website, the gaps be-
tween attacks are apparently sufficiently large. According
to Netcraft, recent major attacks on SCO were in May 2003
(138 attack machines, 5:15 hours offline), in August 2003
(≥ 3 days offline), and December 2003 (≥ 8 hours offline)
and February 2004 (≥ 400000 attack machines, 12 days of-
fline). This means that even for such heavily attacked sys-
tems the FAR assumptions would be reasonable.

Also, very large systems (like P2P systems) might never
stabilize completely. Ensuring and/or justifying “global”
assumptions that response times are eventually bounded is
in such systems intrinsically difficult. By contrast, in the
FAR model, we only make the “local” assumption that the
average response time for messages sent between a pair
of correct processes is finite. This is much easier to en-
force and/or justify; we typically only have to make sure
that failed links are eventually repaired.

It might appear to some readers that the FAR model im-
plies that a system will always stabilize for ”sufficiently
long periods, i.e., that the distance between two new max-
imum response times in the system would get further and
further away from each other (because two successive max-
ima of a link need to be further and further away to keep
the average response time finite and there are only a finite
number of links). However, this is not true and one can con-
struct runs in which the system never stabilizes. Consider
a system consisting of two processes p and q connected by
two links L (for requests from p to q and associated replies)
and L′ (for requests from q to p and associated replies).
Say, p sent a request R to q via link L that has a longer
response time than any previous request over L (i.e., a new
maximum). During the period in which R is “in transit” the
model permits q to exchange a sufficient number of requests
via link L′ to save up enough “credit” of a new maximum.
As soon as p receives a reply/acknowledgment for R, there
exists a request R′ sent via L′ which also will result in a new

maximum. In turn, while R′ is in transit, a sufficient num-
ber of requests can be exchanged via L to save up credit for
the next new maximum. Even though there is always a new
maximum request in transit, the average response time of all
links stay finite. In particular, the system will never stabi-
lize – which is required in the partially synchronous models
like [12, 6]. Note that in such a run, the eventually perfect
failure detectors that have been proposed for partially syn-
chronous models will never become perfect!

The advantage of our failure detector is that given the as-
sumptions of the FAR model, one can prove that algorithms
like the consensus algorithm of [20] are correct and in par-
ticular, will always terminate. The price to pay for correct-
ness are potentially very long detection delays because cor-
rect processes can be very slow. However, we show how the
EA-FD failure detector can be “fused” with other timeout-
based failure detectors to increase the chances of an earlier
termination (for “single-shot” algorithms [18] like consen-
sus) without sacrificing the guaranteed termination.
Outline: We introduce the FAR model in Section 2 and de-
scribe a new eventually perfect failure detector EA-FD in
Section 3. We discuss some practical aspects like combin-
ing EA-FD with an adaptive but not necessarily eventually
perfect failure detector in Section 4. Section 5 discusses
related work and Section 6 describes our performance mea-
surements. Section 7 concludes the paper.

2 Finite Average Response Time Model

This section presents our new asynchronous system mo-
del (FAR model). In this model there are no assumptions on
the transmission delay of messages, on the relative speeds
of processes, and there are no additional entities like clocks
or failure detectors.

Instead of using reliable channels, our system model is
based on fixed-size stubborn channels which are a slight
variant of the stubborn channels introduced in [20]. Note
that stubborn channels do not strengthen our model in com-
parison to the FLP model2. The main advantage of stubborn
channels over reliable channels is that they enforce some
basic flow control and can be implemented atop of unre-
liable channels with a bounded amount of memory and a
bounded number of messages in transit at any time.

Before we can define the FAR model in Section 2.2, we
introduce a few basic definitions in Section 2.1. Note that
while we use real time in the definition of the FAR model,
none of the processes of a FAR system has access to a real-
time clock.

2 We show in [16] that stubborn channels can be implemented using
reliable channels.

2.1 Definitions

An execution of a protocol consists of a sequence of ac-
tions. To simplify the paper, we do not introduce a formal
notion of a run. Note however that some definitions (like
correctp) are defined with respect to an implicitly given
run.

Definition 1 (correct). We define that predicate correctp
is true iff p does not crash in the entire execution.

Definition 2 (acknowledged stubborn channel). If a cor-
rect process p sends a message m of size ≤ S to a correct
process q via an acknowledged stubborn channel and p de-
lays sending any other message to q until it receives an ac-
knowledgment for m, then eventually m will be delivered to
q and p will receive an acknowledgment that q has delivered
m.

Definition 3 (fixed-size). For S < ∞, we call these stub-
born channels fixed-size because only messages up to size
S can be transmitted.

We assume that the receiver q of a message m can pig-
gyback a message of a size up to S on the acknowledg-
ment message of m. We denote the fixed-size acknowl-
edged stubborn channel from p to q by SCp→q .

Operational Aspects. Instead of the poll-based model de-
fined in [17], we define a push-based model: The arrival
of a message automatically triggers the execution of an ac-
tion. Actions are executed in sequence3. The delivery of
messages arriving while another messages is processed is
deferred to sequentialize the delivery of messages. Oper-
ationally, we define the following interface for fixed-size
stubborn channels (see Figure 1):

• To send a message of size ≤ S, a process can call a
primitive sc send. By expression “sc send(m) to q”
we denote that a process sends a message m to pro-
cess q via the fixed-size stubborn channel. The size
of m, denoted by size(m), must be at most S, i.e,
size(m) ≤ S.

• A message m from p to q is delivered by an action on
q. In the pseudocode we express this delivery action
as follows: “on sc deliver m from p { . . . sc piggy-
back(n) to p; . . . }”. After executing this action, q
sends an acknowledgment to p. The acknowledgment
lets p know that it can send the next message. q can
piggyback a message n on the acknowledgment mes-
sage. However, the size of n has to be bounded by S,
i.e., size(n) ≤ S.

3To simplify the pseudo-code, an action can execute another action in
the same way an action would call a function. An action and also nested
actions must not be preempted by another message arrival.

• The acknowledgment together with the optional pig-
gybacked message n is delivered by an action on p. In
the pseudocode we express this action as follows: on
sc ack(n) from q { . . . }. Note that the message n that
was piggybacked on the acknowledgment message is
not acknowledged.

n

q

p

m

}
{

...

...

sc_send(m) to q

vs_piggyback(n) to p;

on sc_deliver m from p

A C

B

on sc_ack(n) from q { ... }

Figure 1: Communication is push based: The arrival of a messages
automatically triggers the execution of an action. The reception and
processing of a message is acknowledged. We permit application mes-
sages to be piggybacked on an acknowledgment message. Note how-
ever that these piggybacked messages are not acknowledged.

Response Time. The FAR model assumes that the average
response time is finite. The response time of a message m is
the real-time duration between the time a message m is sent
and the time the acknowledgment for m arrives. In Figure 1
the response time of message m it is the real-time duration
between point A and C.

To make our assumption as weak as possible, the FAR
model will not even guarantee a finite average response if a
process does not wait for an acknowledgment before send-
ing the next message via the same link. To formalize this,
we first assign certain messages sent via a channel SCp→q

a unique natural number.

Definition 4 (message enumeration). We enumerate (start-
ing at number 1) exactly those messages sent via a fixed-size
acknowledged stubborn channel SCp→q that are acknowl-
edged and are acknowledged before the next message is sent
via SCp→q . Set Ip→q contains this enumeration for link
SCp→q .

To explain this definition, consider that a process p al-
ways waits for an acknowledgment from q before sending
a message via SCp→q and all messages are acknowledged.
In this case, this definition assigns the first message sent
via SCp→q the number 1, and the next message the num-
ber 2, etc. However, if process p sends a new message n
via SCp→q before it received an acknowledgment for the
previous message m that p sent via SCp→q , then the defi-
nition does not assign a number to m (see Figure 2). Also
if a message m is never acknowledged, the definition does

not assign a number to m. In particular, messages sent to
a crashed process are never acknowledged and hence, these
are not enumerated.

RT(3)

q

p

ack

1

ack ackack

32

m n

RT(1) RT(2)

Figure 2: The response time of a message is the real-time duration
between the time at which a message is sent until the time the acknowl-
edgment is delivered. Unacknowledged messages are not enumerated.

Definition 5 (response time). For i ∈ Ip→q , RTp→q(i) is
the duration between the point in real time the i-th message
is sent by p to q via SCp→q and the point in real time at
which p receives the acknowledgment for mi.

Note that the response time cannot be measured by the
processes since they do not have a real-time clock.

2.2 FAR Model

A system consists of N < ∞ processes.

(A0) A process executes actions in sequence. A process p
can prematurely stop executing its actions if p crashes.
An action can send multiple messages but at most
one message per destination process. Actions are not
crash atomic, i.e., a process can crash during the exe-
cution of an action.

(A1) Each pair of processes p, q can communicate via two
fixed-size acknowledged stubborn channel Cp→q and
Cq→pof size S.

(A2) The average response time converges4 and it is finite:

∀p∀q : limi→|Ip→q|

∑
1≤j≤i RTp→q(j)

i
< ∞

(A3) Incrementing an integer number by 1 takes an un-
known minimum amount of time G > 0.

(A4) Processes can only fail by crashing but at most a mi-
nority of the processes can fail. Crashed processes do
not recover.

The maximum response time and maximum message trans-
mission delay is unbounded in the FAR model, and so is the
ratio of the fastest and slowest process and the ratio of the
fastest and slowest message delay. The model does not as-
sume or specify real-time clocks.

4 Using weaker forms of convergence than that defined by the limit are
possible but for simplicity we use the standard definition.

2.3 Remarks

Assumption (A3) can be motivated by fundamental lim-
its on how fast a processor can perform an addition by 1.
For example, the bounded speed of light and limits on how
dense bits can be packed, limit the speed with which two
numbers can be added. To make (A3) as weak as possi-
ble, we do not limit the maximum speed of any other state-
ments. Note that we chose the increment operation for con-
venience: The existence of any operation (e.g., a sleep) for
which there exists an unknown but positive minimum ex-
ecution time would be sufficient. Note that the minimum
response time of a message is permitted to be smaller than
G (by avoiding incrementing integers by 1, e.g., by using
subtractions by −1 if needed).

We use fixed-size acknowledged stubborn channels (A1)
instead of reliable channels to address the following issue:
A fast process p that sends messages to a slower process
q without flow control via a reliable channel can produce
an unbounded number of messages that are in transit to q.
When the number of messages in transit can be unbounded,
a finite average response time (like postulated in A2) is not
necessarily valid. A stubborn channel can limit the number
of messages in transit, i.e., it can enforce a very strict flow
control.

By definition, Ip→q only contains messages that are ac-
knowledged. Hence, if the number of messages sent via
a channel SCp→q is finite (i.e., |Ip→q | < ∞), the aver-
age response time is always finite. The FAR model states
that even if a process sends infinitely many messages via
a channel, the average response time stays finite. This is
a reasonable assumption for fixed-size acknowledged stub-
born channels as long as broken network links are repaired
and as long as physical network links and processors are not
getting slower and slower.

One has to expect that the transmission delay and hence
the response time of a message increases with the size of the
message. If a process p could send messages of unbounded
size, p could gradually increase the response time. To ad-
dress this issue, we permit only messages that are of size
≤ S.

3 Implementation

We show how to implement an eventually perfect failure
detector EA-FD in the FAR model (Section 3.2). This fail-
ure detector is timeout-based and thus needs a clock. We
show in Section 3.1 how to implement a clock with very
weak properties on top of the FAR model that is still suffi-
ciently strong to implement the failure detector. In addition,
consensus protocols need to send variable size messages.
(In [16] we show how to implement variable-size stubborn
channels on top of the failure detector layer.)

3.1 Weak Clock

The FAR model does not contain clocks. In particular,
processes cannot accurately measure the duration of inter-
vals. However, for each process p, one can implement a
monotonic clock Wp with very weak semantics (see Figure
3):
(W) ∀p, ∀s, ∀t : s < t ∧ correctp ⇒

0 ≤ W t
p − W s

p ≤ � t−s
G 	

where W t
p is the value of clock Wp at real-time t and G is

the unknown minimum time to increment an integer from
assumption (A3). Note that since G is not known, one does
not know how fast the clock can proceed. In addition, there
is no limit on how slow the clock proceeds5.

A correct process will execute action Tick infinitely of-
ten. Hence, we can guarantee that the clock of a correct
process is unbounded:
(M) ∀p, ∀B : correctp ⇒ ∃t : W t

p > B
Note that the relative speed of two clocks is unbounded

because there is no bound on how slowly a clock can pro-
ceed.

1 var int c = 1;
2 function W() { return c ; }
3 function tick () { c++; }
4 Action Tick { tick (); }

Figure 3: Weak Clock Implementation. Action Tick can always be
executed (i.e., no precondition) and a correct process will always even-
tually execute Tick.

Correctness Argument. Assumption (A3) implies that the
execution of function tick takes at least some unknown time
G > 0 because the function increments variable c (line 3).
Variable c is only modified by function tick and assump-
tion (A0) implies that action Tick and hence function tick
is always called sequentially. Therefore, variable c can be
incremented at most every G time units. This implies prop-
erty (W). Note that the ceiling function in property (W) is
needed since term W t is defined for all times and in partic-
ular, for times just before and just after c’s value changes.

Since a correct process p will execute action Tick in-
finitely often, for each B we can find a time t such that p
has executed Tick at least B times by time t. In other words,
property (M) holds.

3.2 Eventually Perfect Failure Detector EA-FD

Our eventually perfect failure detector EA-FD (see Fig-
ure 4) is based on the following idea: EA-FD measures the
response time of messages sent by the application using the

5Typically, one would however use the real-time clock of a computer.
The nice property of the FAR model is that it copes with fast or slow clocks.

weak clock W . It maintains a timeout value that is used
to classify messages as either “fast” or “slow”. Note that a
classification of a message is not predetermined because the
timeout changes over time and the speed of the clock can be
very variable.

For each channel SCp→q there is at most one message
m for which p is waiting for an acknowledgment from q.
Function is suspected(q) returns true if the timeout for the
current unacknowledged message has already expired. If
there is no unacknowledged message, the function sends
one. If process q has crashed and process p continues to
query the status of q by calling is suspected(q), eventually
the timeout will expire for some message to q because q will
not acknowledge any message after its crash.

The protocol counts the number of slow messages and
the number of fast messages between two consecutive slow
messages. There is a timeout per link which is only up-
dated at the arrival of an acknowledgment via that link. The
timeout increases logarithmically with the total number of
slow messages and linearly with the number of fast mes-
sages since the last slow message. Whenever a slow mes-
sage arrives, the number of fast messages is set to zero and
therefore results in a drop of the timeout (if the number of
fast messages was greater than zero). Note that each wrong
suspicion (i.e., a non-crashed process is wrongly suspected
to have crashed) is caused by a slow message. The intuition
behind this timeout scheme is that the average response time
of a link increases slowly with the number of slow messages
sent via this link. In particular, if the number of wrong
suspicions were infinite, the average response time of the
link would be infinite too. Since the average response time
is finite, there cannot be infinitely many wrong suspicions.
Since there are only a finite number of links, the failure de-
tector will eventually be accurate.

Let us come back to the completeness property. Even
though the timeout of a link SCp→q might grow over time,
the timeout is always finite and the timeout does not change
while there is an unacknowledged message. This makes
sure that if a message is not acknowledged because the re-
mote process q has crashed, eventually a correct p will sus-
pect q since the timeout will eventually expire due to prop-
erty (M) of the weak clock.

Theorem 1 (Eventually Perfect). Failure detector EA-FD
is an eventually perfect failure detector.

Proof. To show that EA-FD is complete, we have to show
the following: If a correct process q calls is suspected(p) an
unbounded number of times for a crashed process p, eventu-
ally is suspected(p) always returns true. Let us assume that
process p crashes and process q queries the status of p an
unbounded number of times. Hence, there exists an infinite
sequence A1, A2, . . . of actions which (1) all happened af-
ter the crash of p, (2) all acknowledgments from p to q have

1 const int N ; /∗ # procs ∗/
2 var int unacked[N] init 0;/∗ send−time of last unacked msg∗/
3 Msg fdack[N] init undefined ; /∗ piggyback msg ∗/
4 Msg nextmsg[N] init undefined ; /∗ next msg to send ∗/
5 int slowmsgs[N] = 0; /∗ total number of slow msgs ∗/
6 int numFast[N] = 0; /∗ # fast msgs btwn two slow msgs ∗/
7

8 function fd timeout (process q) {
9 return (1+numFast[q])∗(1+log(1+slowmsgs[q]));

10 }
11 function is suspected (q) {
12 send next (q);
13 if (! unacked[q] or q == myid)
14 return false ;
15 else
16 return unacked[q]+fd timeout (q) < W();
17 }
18 function send next (q) {
19 if (! unacked[q]) {
20 unacked[q] = W();
21 sc send(nextmsg[q]) to q;
22 nextmsg[q] = undefined ;
23 }
24 }
25 function fd send(n) to q {
26 nextmsg[q] = n;
27 send next (q);
28 }
29 function fd piggyback(n) to p {
30 fdack[p] = n;
31 }
32 on sc ack(m) from q {
33 if (is suspected (q)) {
34 slowmsgs[q]++;
35 numFast[q] = 0;
36 } else {
37 numFast[q]++;
38 }
39 unacked[q] = 0;
40 execute (fd ack(m) from q);
41 send next (q);
42 }
43 on sc deliver (m) from p {
44 if (m != undefined) {
45 execute (fd deliver (m) from p);
46 }
47 sc piggyback(fdack[p]) to p;
48 fdack[p] = undefined ;
49 }

Figure 4: Code of eventually perfect failure detector EA-FD. This
code is a layer between the application and the fixed-size stubborn
channels provided by the FAR model. The layer running on this code
must use primitives fd send, fd piggyback, etc instead of primitives
sc send, sc piggyback, etc.

been delivered, (3) q executes Ai before Ai+1, and (4) in
each action Ai process q calls is suspected(p). If there ex-
ists no unacknowledged message that q has sent to p before
executing A1, A1 sends a message to p which will never be
acknowledged since p has already crashed. Hence, no later
than action A2 variables unacked[p] (contains sent time of
last unacknowledged message from q to p and 0 otherwise),
numFast[p] (contains the number of fast messages from q
to p since last slow message from q to p), and slowmsgs[p]
(contains the total number of slow messages from q to p)
will not change anymore. Because of property (M) of q’s
clock W , there exists an i such that

unacked[p]+(1+numFast[p])*(1+log(1+slowmsgs[p]))<W()

which means that in all actions Aj,j≥i process p is suspected
by q.

To show that EA-FD is eventually accurate, we need to
show that eventually no correct process will ever be sus-
pected. We show this by contradiction and hence assume
that there exists a correct process p that suspects a correct
process q infinitely often. A wrong suspicion of q is caused
by a slow message. Therefore, each wrong suspicion of q
is eventually corrected by the arrival of an acknowledgment
from q.

We derive a lower bound for the average response time
as follows: we use 0 as the lower bound of all fast messages
and use the current timeout value as a lower bound for a
slow message. Due to our selection of p and q, we know that
|Ip→q| = ∞ and the number of slow messages is infinite.
Let numFastjq be the number of fast messages between the
j-th and j + 1-th slow message from p to q. The total num-
ber of messages from p to q at the arrival of the acknowl-
edgment of the k-th slow message is therefore

∑
0≤j≤k(1+

numFastjp). The lower bound for the response time of the
j-th slow message is G(1 + numFastjp)(1 + log(j + 1)).
Hence, we know that:

limi→|Iq→p|
P

1≤j≤i RTq→p(j)

i ≥

limk→∞
G

P
0≤j≤k(1+numFastj

p)(1+log(j+1))
P

0≤j≤k(1+numFastj
p)

= ∞.

This is a contradiction to assumption (A2).

4 Practical Aspects

The timeouts of failure detector EA-FD can grow quite
large over time. For algorithms like a consensus algorithm
that typically run only for a few rounds before terminating,
one can decrease the expected time for termination with-
out sacrificing the guaranteed termination by fusing EA-FD
with an adaptive timeout-based failure detector that adjusts
its timeouts according to the current system behavior (e.g.,
[15, 3, 7]) but which does not guarantee termination in the
FAR model.

Typically, a timeout-based failure detector will set its
timeout based on the predicted current response time which
might be based on criteria like the average response time,
the average response time over the last K messages, the last
observed response time, the maximum observed response
time, etc. We fuse such a failure detector QOS-FD with
EA-FD by using QOS-FD to compute the timeouts for a
link SCp→q until the number of slow message on SCp→q

reached a given threshold. After that, the timeouts will be
computed by EA-FD which ensures that the failure detector
will eventually be perfect (see Figure 5).

1 const int FUSION THRESHOLD;
2

3 function fd timeout (process p) {
4 if (slowmsgs[p] < FUSION THRESHOLD) {
5 return qos fd timeout ();
6 } else {
7 return (1+numFast[p])∗(1+log(1+slowmsgs[q]));
8 }
9 }

Figure 5: Failure Detector Fusion. We replace the fd timeout
function of Figure 4 by a new function that uses the timeout of
QOS-FD until the total number of slow messages of a link reaches
FUSION THRESHOLD. From then on, we use the timeout of EA-FD
which guarantees that eventually there will be no wrong suspicions.

5 Related Work

The impossibility of deterministic consensus in the FLP
model [17] stimulated a wealth of research. In [9], the exact
borderline between models where consensus can/cannot be
solved has been determined for 5 key aspects (communica-
tion delays, speed ratio, message order, broadcast, atomic-
ity). In particular, consensus cannot be solved in systems
where either processing or communication delays are un-
bounded.

An important class of models that allow consensus to be
solved are known as partially synchronous models. The
seminal paper [12] classifies partial synchrony according
to whether bounds upon the maximum relative processing
speeds and the maximum absolute communication delays
exist but are either unknown, or are known but hold only
after some unknown global stabilization time GST. Those
two models were combined into a single generalized par-
tially synchronous model in [6].

Alternative models have been proposed, which augment
asynchronous systems with additional facilities and/or prop-
erties. The most prominent example are unreliable fail-
ure detectors, introduced in [5], which add an oracle that
provides processes with hints about crashed processes. [4]
provides the weakest failure detector for solving consensus
(when a majority of processes stay correct), and [6] contains
a comprehensive study of all classes of failure detectors that
are sufficiently strong for solving consensus.

Failure detectors are specified in an abstract axiomatic
way, however, which raises the question of how to imple-
ment them in a real system: Due to the consensus impossi-
bility in the FLP model [17], no sufficiently strong failure
detector can be implemented in purely asynchronous sys-
tems. Stronger models are hence required when implement-
ing a failure detector.

Most implementations of eventual-type failure detectors
[6, 23, 19, 24, 25, 10, 30, 26, 7, 1, 21, 15, 22, 3, 2, 28]
rely upon the generalized GST model of [6], or even a syn-
chronous model. The simple implementation of an eventu-
ally perfect failure detector �P in [6] is based upon mon-

itoring periodic “I am alive”-messages using adaptive (in-
creasing) timeouts at all receiver processes: Starting from
an a priori given initial value, the timeout value is increased
every time a false suspicion is detected. By restricting the
recipients of “I am alive”-messages from all processors to
suitably chosen subsets, a less costly implementation of an
eventually strong failure detector �S was derived in [26].
Alternative FD implementations, which use polling by means
of ping/reply round-trips instead of “I am alive”-messages,
have also been proposed. The message-efficient algorithms
of [25] use a logical ring, where processors poll only their
neighbors and use an adaptive (increasing) timeout for gen-
erating suspicions.

Other instances of timeout-based failure detectors are the
hardware watchdogs permitting a timely crashing of pro-
cesses proposed in [14], which allow to solve consensus in
the timed asynchronous model [8], and the fast failure de-
tectors of [22], which use head-of-the-line-scheduled FD-
level messages to speed up detection time. Note that not all
existing adaptive timeout approaches can decrease the time-
out value, cp. [26, 15], i.e., cannot adapt to (slowly) varying
delays over time.

There are alternatives to timeout-based failure detector
implementations, which usually require an asynchronous
model plus some additional assumptions. For example, the
implementation of the leader oracle Ω in [2], which outputs
just a single—eventually common—process that is consid-
ered up and running, assumes a partially synchronous sys-
tems where only a few links eventually respect (unknown)
communication delay bounds. Note that Ω also allows to
solve consensus [24] and can in fact be implemented very
efficiently. Another link-related assumption is used in the
timeout-free implementation of P in [28], which requires
a system where every correct processor is connected to a
set of f + 1 processors via links that are not among their f
slowest ones. Finally, the perfect failure detector for the par-
tially synchronous Θ model of [27] assumes that the maxi-
mum versus minimum end-to-end delays are unbounded but
within some (known or unknown) Θ of each other.

The work most closely related to the present paper is the
the adaptive failure detection protocol of [15], which uses
a finite average delay assumption similar to (A2) to imple-
ment a failure detector that is perfect for a finite number
of steps. It needs a clock and a finite average for arbitrary
sequences of overlapping message round-trips in the entire
system. This is a stronger property than we are assuming in
this paper. In this paper we make weaker assumptions and
provide a failure detector with stronger properties. Our pa-
per also relates to the message classification model of [13],
where slow vs. fast messages are distinguished in a time-
free way.

6 Performance

We performed two experiments to evaluate the assump-
tions of the FAR model. First, we measured the average
response time for systems under attack. Second, we mea-
sured the average response time of a client/server system
connected by a reliable channel (and without an application
level flow control mechanism) and of a client/server sys-
tem connected by a stubborn channel. Our measurement
programs were implemented in Java and we executed the
measurements on a set of computers (Athlon 64 3200+, 1
GByte RAM each) connected by a 1 Gbit Ethernet switch.
In both our experiments, clients generated requests (a small
random integer) and a server replied to these requests (with
a prime factorization of the integer). The processing time of
such a request takes in average less than 10 ms (see Figure
7).

We simulated a denial of service attack by two clients
sending requests to a server as fast as possible, i.e., without
flow control. We measured the response time with the help
of a third client (with flow control). The attack of the two
clients is coordinated in the sense that they synchronize the
periods in which they attack. The attack duration and the
gap between two consecutive attacks is doubled after each
attack. Figure 6 shows that the average response time peaks
after a few attacks.

Figure 6: Response time average of a link to a host that is under attack
by two machines (8 attack periods). Both the duration of attacks and
the gap between attacks are doubling after each attack.

Our choice of using stubborn channels instead of reli-
able channels in the FAR model was based on the obser-
vation that reliable channels do not necessarily bound the
average response time. We illustrate this observation with
the following experiment. A client sent 100000 requests to
a server. Figure 7 shows that the client was able to flood the
server with requests when using a reliable channel: the aver-

age response time via the reliable channel was continuously
increasing. However, the response time of the stubborn
channel was slightly decreasing. The decrease can be ex-
plained by caching effects that help to reduce the response
time.

The total runtime of the experiment using reliable chan-
nels was 498.75 seconds. Note that even though a stubborn
channel acknowledges every message, the total runtime of
this experiment for stubborn channels was only 168.45 sec-
onds.

Figure 7: The average response time of two processes connected by
a reliable channel without flow control can go up continuously (upper
curve). The flow control of the stubborn channel kept the average
response time finite (and in this case, caching reduced the response
time slightly ; lower curve).

7 Conclusion

We have shown that one can implement an eventually
perfect failure detector in systems in which the average re-
sponse time is finite and there exists at least one known
operation (like incrementing an integer) that cannot be in-
finitely fast. Therefore, one can solve consensus determin-
istically in such systems. We described how to combine this
new failure detector with other failure detectors to optimize
the average behavior while still guaranteeing the properties
of an eventually perfect failure detector.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. On quies-
cent reliable communication. SIAM Journal of Computing,
29(6):2040–2073, April 2000.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing Omega with weak reliability
and synchrony assumptions. In Proceeding of the 22nd An-
nual ACM Symposium on Principles of Distributed Comput-
ing (PODC’03), 2003. (to appear).

[3] M. Bertier, O. Marin, and P. Sens. Implementation and per-
formance evaluation of an adaptable failure detector. In Pro-
ceedings of the 2002 International Conference on Depend-
able Systems and Networks, pages 354–363. IEEE Com-
puter Society, 2002.

[4] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest fail-
ure detector for solving consensus. In Proceedings of the
11th ACM Symposium on Principles of Distributed Comput-
ing, pages 147–158, Aug 1992.

[5] T. Chandra and S. Toueg. Unreliable failure detectors for
asynchronous systems. In Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing, pages
325–340, Aug 1991.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, March 1996.

[7] W. Chen, S. Toueg, and M. K. Aguilera. On the qual-
ity of service of failure detectors. IEEE Trans. Comput.,
51(5):561–580, 2002.

[8] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model. IEEE Transactions on Parallel and
Distributed Systems, pages 642–657, Jun 1999.

[9] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of
the ACM, 34(1):77–97, Jan. 1987.

[10] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper.
Muteness failure detectors: Specification and implementa-
tion. In Proceedings 3rd European Dependable Computing
Conference (EDCC-3), volume 1667 of LNCS 1667, pages
71–87. Springer, September 1999.

[11] P. Dutta and R. Guerraoui. The inherent price of indul-
gence. In Proceedings of the Twenty-first Annual Symposium
on Principles of Distributed Computing, pages 88–97. ACM
Press, 2002.

[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[13] C. Fetzer. The message classification model. In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pages 153–162. ACM Press, 1998.

[14] C. Fetzer. Perfect failure detection in timed asynchronous
systems. IEEE Transactions of Computers, 52:99–112, Feb
2003.

[15] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure de-
tection protocol. In Pacific Rim International Symposium on
Dependable Computing (PRDC 2001), Seoul, Korea, Dec
2001.

[16] C. Fetzer and U. Schmid. On the possibility of consensus
in asynchronous systems with finite average response times.
Technical Report 14/2004, 2004.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty processor. Journal
of the ACM, 32(2):374–382, Apr. 1985.

[18] R. Friedman, A. Mostefaoui, and M. Raynal. The notion
of veto number and the respective power of �p and �s to
solve one-shot agreement problems. In Proceedings of the
18th ACM Symposium on Principles of Distributed Comput-
ing (DISC04), pages 41–54. Springer Verlag, October 2004.

[19] V. K. Garg and J. R. Mitchell. Implementable failure de-
tectors in asynchronous systems. In Proceedings of the
18th Int. Conference on Foundations of Software Technology
and Theoretical Computer Science (FST & TCS’98), LNCS
1530, pages 158–169. Springer, 1998.

[20] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn com-
munication channels, 1996.

[21] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scalable
and efficient distributed failure detectors. In Proceedings
of the 20th ACM Symposium on Principles of Distributed
Computing (PODC’01), pages 170–179, Aug. 2001.

[22] J.-F. Hermant and G. Le Lann. Fast asynchronous uniform
consensus in real-time distributed systems. IEEE Transac-
tions on Computers, 51(8):931–944, Aug. 2002.

[23] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Solv-
ing consensus in a byzantine environment using an unre-
liable fault detector. In Proceedings of the International
Conference on Principles of Distributed Systems (OPODIS),
pages 61–75, Dec. 1997.

[24] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[25] M. Larrea, A. Fernández, and S. Arévalo. Efficient algo-
rithms to implement unreliable failure detectors in partially
synchronous systems. In Proceedings of the 13th Inter-
national Symposium on Distributed Computing (DISC’99),
LNCS 1693, pages 34–48. Springer, Sept. 1999.

[26] M. Larrea, A. Fernández, and S. Arévalo. Optimal imple-
mentation of the weakest failure detector for sloving consen-
sus. In Proceedings of the 19th ACM Symposium on Princi-
ples of Distributed Computing (PODC’00), page 334, 2000.

[27] G. Le Lann and U. Schmid. How to implement a timer-
free perfect failure detector in partially synchronous sys-
tems. Technical Report 183/1-127, January 2003.

[28] A. Mostefaoui, E. Mourgaya, and M. Raynal. Asynchronous
implementation of failure detectors. In Proceedings of the
International Conference on Dependable Systems and Net-
works (DSN’03), San Francisco, CA, June 22–25, 2003.

[29] A. Mostefaoui, S. Rajsbaum, and M. Raynal. Conditions
on input vectors for consensus solvability in asynchronous
distributed systems. J. ACM, 50(6):922–954, 2003.

[30] A. Mostéfaoui and M. Raynal. Solving consensus us-
ing chandra-toueg’s unreliable failure detectors: A general
quorum-based approach. In Proceedings 13th International
Symposium on Distributed Computing (DISC’99), volume
1693 of LNCS, pages 49–63. Springer-Verlag, 1999.

	1 Introduction
	2 Finite Average Response Time Model
	2.1 Definitions
	2.2 FAR Model
	2.3 Remarks

	3 Implementation
	3.1 Weak Clock
	3.2 Eventually Perfect Failure Detector EA-FD

	4 Practical Aspects
	5 Related Work
	6 Performance
	7 Conclusion

