
Application-Driven Coordination-Free Distributed Checkpointing∗

Adnan Agbaria William H. Sanders
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

{adnan, whs}@crhc.uiuc.edu

Abstract

Distributed checkpointing is an important concept in
providing fault tolerance in distributed systems. In today’s
applications, e.g., grid and massively parallel applications,
the imposed overhead of taking a distributed checkpoint us-
ing the known approaches can often outweigh its benefits
due to coordination and other overhead from the processes.
This paper presents an innovative approach for distributed
checkpointing. In this approach, the checkpoints are ob-
tained using offline analysis based on the application level.
During execution, no coordination is required. After pre-
senting our approach, we prove its safety and present a per-
formance analysis of it using stochastic models.

1. Introduction

In an era in which global computation is possible, e.g.,
via the Internet, and in which approaches such as grid com-
puting are still growing and attracting more attention in dis-
tributed settings, fault tolerance is becoming more crucial in
distributed systems. By being fault-tolerant, a commercial
distributed system may continue to provide its services in
the presence of faults, and a long-running message-passing
application may continue its progress even if some pro-
cesses may fail during the course of its execution.

Checkpoint/Restart (C/R) is a way to provide persistence
and fault tolerance in both uniprocessor and distributed sys-
tems [10, 20]. Checkpointing is the act of saving an appli-
cation’s state to stable storage during its execution, while
restart is the act of restarting the application from a check-
pointed state. If checkpoints are taken, then when an ap-
plication fails, it may be possible to restart it from its most
recent checkpoint. This limits the amount of computation
lost because of a failure to the computation performed be-
tween the last checkpoint and the failure.

One of the main challenges in implementing C/R mech-
anisms is that of maintaining low overhead, since otherwise

∗This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0406351.

the cost of taking checkpoints will outweigh its potential
benefit. In a distributed system, if each process saves its
state in a completely independent manner, it is possible that
no collection of checkpoints, one from each process, will
correspond to a consistent application state. A distributed
application’s state is inconsistent if it represents a situation
in which some message m is received by a process, but the
sending of m is not in the checkpoint collection. A col-
lection of checkpoints that corresponds to a consistent dis-
tributed state forms a recovery line. Therefore, the main re-
search focus in this area was and remains on devising tech-
niques that guarantee the existence of a recovery line while
minimizing the coordination between processes. This coor-
dination overhead includes the amount of control informa-
tion exchanged between processes and the number of times
some process p is forced to take a checkpoint to ensure that
a recovery line exists. Such checkpoints are called forced
checkpoints.

Over the past decades, intensive research work has been
done on providing efficient C/R protocols in traditional dis-
tributed computing [10]. There are three main kinds of dis-
tributed checkpointing protocols. The first approach is co-
ordinated checkpointing, in which all the processes coordi-
nate to produce a recovery line. The two common tech-
niques for coordinated checkpointing are to synchronize
and stop (SaS) the execution of all processes until every
one has taken a checkpoint [2], or to use Chandy-Lamport’s
(C-L) distributed snapshots protocol [7], which produces a
recovery line on-the-fly. The second approach is uncoordi-
nated checkpointing, in which every process takes a check-
point independently. That approach does not impose any
coordination overhead, but runs the risk of never generat-
ing a recovery line due to the domino effect. The third ap-
proach is called communication-induced checkpointing, in
which processes take checkpoints in an uncoordinated man-
ner. However, based on the communication patterns that
can be learned from control information, a process may oc-
casionally be forced to take a checkpoint in order to guar-
antee the existence of a recovery line. From our point of
view, all three approaches impose different coordination
overheads, and determination of the optimal approach that



imposes the minimum overhead could be difficult given the
various types of distributed settings. For example, for a grid
application in which communication is costly, the uncoor-
dinated approach could be the best where there is no need
to exchange messages, but the rollback propagation during
restart could be unbounded. On the other hand, the coordi-
nated checkpointing approach may behave better than oth-
ers if the failure rate is high, in cases where a distributed
application needs to roll back only to the latest checkpoint.
Even considering the coordination overhead, rollback prop-
agation, failure rate, and other parameters, it is not clear
which checkpointing approaches are most appropriate for
different distributed settings [2].

In this paper, we introduce an innovative approach for
constructing recovery lines without any coordination over-
head. Like the other well-known coordinated checkpointing
protocols (e.g., SaS and C-L), our approach ensures that the
recovery line is known and exists as the collection of the
latest checkpoints in every process.

In a nutshell, our approach consists of three main phases
that are applied offline. The first phase is to use the appli-
cation level to gain knowledge about expected running time
and the communication pattern to insert checkpoint state-
ments in the code. The second phase is to represent the
message-passing program using control flow graphs [18],
and then try to match every receive statement with its cor-
responding send statement in the control flow graph. The
third phase is to change the location of the checkpoint state-
ments in the code such that in any possible execution, we
always obtain recovery lines for a specific set of check-
points. Although the idea behind the first phase has been
used for serial programs, our approach involves several in-
novations, including the application of the first phase in
message-passing applications, the introduction of new tech-
niques for applying the second and third phases, and the
combination of these three phases together to achieve a
coordination-free distributed checkpointing approach.

2. System Model and Definitions

We consider a distributed system consisting of n pro-
cesses, denoted by P1, P2, · · · , Pn, connected by a network
(a process Pp may be denoted by p). Processes communi-
cate via asynchronous reliable message passing. Each pro-
cess Pi is modeled as an automaton with a predefined initial
state ei and a deterministic transition function from its cur-
rent state to the next state based on the current state and
the occurring event. The possible events are computation,
send, receive, or checkpoint. A local history of a process
is a sequence of such events. An execution is a collection of
local histories, one for each process.

For a message m in the execution, Send(m) denotes the
send event of m, and Recv(m) denotes the receive event

of m. Events in an execution are related by the happened

before relation [13], denoted by
hb→. This relation is defined

as the transitive closure of the process order and the relation
between the send and receive events of the same message.
Moreover, we assume that the network delivers messages
reliably, in FIFO order.

Obviously, any execution E is created as a result of the
execution of a message-passing program on a distributed
system. Every event in E occurs as the result of the exe-
cution of a particular statement written in the code of the
program. Formally, given a message-passing program P ,
we say that an execution E(P) obeys P if all the events
in E(P) are created as a result of the execution of P on
a distributed system. Particularly, the send, receive, and
checkpoint events in an execution happen because of the
invocation of send, receive, and checkpoint statements in
the program code. The execution is denoted by E if P is
implicity known.

We assume that different executions of the same program
are identical for the same input. Moreover, we assume that
the receive events in the execution are blocking. In other
words, if a Recv(m) is occurring in process p, then the pro-
cess is blocked until m is received.

Each checkpoint taken by a process is assigned a unique
sequence number. The ith checkpoint of process p is de-
noted by Cp,i. The ith checkpoint interval of process p,
denoted by Ip,i, is the sequence of all events performed
between p’s (i − 1)th and ith checkpoints, including the
(i − 1)th checkpoint, but not the ith.

When a failure occurs in a distributed system, we need to
recover from a cut of checkpoints (i.e., a set of checkpoints
consisting of one checkpoint from each process). However,
not all cuts of checkpoints are consistent, i.e., correspond
to a state that could have been reached in the execution. A
consistent cut of checkpoints is called a recovery line. More
precisely,

Definition 2.1: Given an execution E and a cut of check-
points S ∈ E, S is a recovery line if there are no check-

points C,C ′ ∈ S such that C
hb→ C ′.

In this paper we are concerned with only a subset of all
the possible cuts in the execution. Our interest is on ensur-
ing that every cut of checkpoints in the subset is a recovery
line. The subset consists of all the cuts that have the same
checkpoint sequence number in every process.

Definition 2.2: Given an execution E and an integer i,
the collection of all the ith checkpoints of every process
in E represents a straight cut of checkpoints, denoted by
Si = {C1,i, C2,i, · · · , Cn,i}.

In our approach, we show a method to transform an ar-
bitrary message-passing distributed program so that every

2



straight cut of checkpoints in the program is a recovery line.
Given a message-passing program P , we construct its con-
trol flow graph (hereafter, CFG), which is constructed dur-
ing compilation [18]. Then, we apply our techniques on the
CFG to ensure that every straight cut of checkpoints is a
recovery line.

Given a message-passing program P , the CFG of P is
the directed graph G = 〈N,E〉 with node set N and edge
set E ⊆ N ×N , where a directed edge is denoted by 〈a, b〉.
As defined in [18], a CFG should contain nodes represent-
ing loops and conditions in the program. In addition, we
build a CFG with nodes representing the send, receive, and
checkpoint statements that generate the events described in
the system model. In addition, a CFG G has another two
nodes: the entry and exit to indicate the start and termina-
tion nodes in G.

Given a directed edge 〈a, b〉 in G, we say that a is a pre-
decessor node of b, and b is a successor node of a. A branch
node is a node that has more than one successor, and a join
node is a node that has more than one predecessor. No-
tice here that a branch node in G corresponds to a condition
expression statement in the program. Loops in P are iden-
tified in G through the use of dominators. A node a in G
dominates another node b if every path from the entry node
to b includes a. An edge e = 〈a, b〉 is said to be a backward
edge in G if b dominates a. Given a backward edge 〈a, b〉,
a loop in G consists of all the nodes that exist in the path
between b to a, including a and b.

Figure 1(a) presents a message-passing version of a pro-
gram that solves a system of linear equations using the Ja-
cobi method. Figure 1(b) presents the corresponding CFG
of the program. Notice that the edge from the chkpt node
to the while node in the CFG is a backward edge. In this ex-
ample, since the checkpoints of all the processes are taken
in the same place in the code, it is easy to show that any pos-
sible execution of the program has the property that every
straight cut of checkpoints is a recovery line.

However, if we change the program in Figure 1 such that
the chkpt statement does not appear in the same place for
each process, a straight cut of checkpoints may not be a re-
covery line. For example, consider another version of the
program, whose corresponding CFG is presented in Fig-
ure 2. In this example, we change only the checkpoint state-
ment. Notice here that the CFG has different paths inside
the while loop for odd and even process ID numbers. A
process with an even ID number takes the checkpoint before
sending and receiving messages. However, a process with
an odd ID number takes a checkpoint after sending and re-
ceiving messages. Figure 3 presents a possible execution of
this version of the program. Since there are exchange mes-
sages between neighbor processes, causality exists between
checkpoints of any connected neighbor processes. There-
fore, in the execution shown in Figure 3, not every straight

While (…) {
if (myRank > 1)

send(myRank-1, …)
if (myRank < n)

send(myRank+1, …)
if (myRank < n)

recv(myRank+1, …)
if (myRank > 1)

recv(myRank-1, …)
chkpt()

}

while

enter

If (myRank>1)

send(myRank-1)

If (myRank<n)

send(myRank+1)

If (myRank<n)

recv(myRank+1)

If (myRank>1)

recv(myRank-1)

exit
(a) A Jacobi version

chkpt

(b) The CFG

Figure 1. The Jacobi program

cut of checkpoints is a recovery line.

while

enter

if (myRank>1)

send(myRank-1)
if (myRank<n)

send(myRank+1)

if (myRank<n)

recv(myRank+1)

if (myRank>1)

recv(myRank-1)

exit

if (myRank mod 2 ==0)

chkpt
if (myRank>1)

send(myRank-1)

if (myRank<n)

send(myRank+1)

if (myRank<n)

recv(myRank+1)

if (myRank>1)

recv(myRank-1)

chkpt

Figure 2. Another version of Jacobi

Since an inconsistent cut in an execution is caused by
messages that cause causality between checkpoints, and
since a CFG does not have any information about messages,
then based on the CFG of a message-passing program, it
is difficult to predict whether a straight cut of checkpoints
will form a recovery line. Therefore, we extend a CFG rep-
resentation to include more information about the expected
communication patterns that may happen during any execu-
tion. In addition, we show that such information is useful
for predicting whether every straight cut of checkpoints will
be a recovery line. Briefly, we extend the CFG to include
message edges that represent the communication between
every two corresponding send and receive nodes. In Sec-

3



P1

P2

P3

C1,1
C1,2

C2,1
C2,2

C3,1 C3,2

C1,3

Figure 3. An execution of the CFG of Figure 2

tion 3, we show the determination of the message edges for
a given CFG. For example, Figure 4 presents the extended
CFG of Figure 2, with message edges added between the
corresponding send and receive nodes. For a CFG G, we
use Ĝ to denote the extended CFG of G.

while

enter

if (myRank>1)

send(myRank-1)

if (myRank<n)

send(myRank+1)

if (myRank<n)

recv(myRank+1)

if (myRank>1)

recv(myRank-1)

exit

if (myRank mod 2 ==0)

chkpt – C1

if (myRank>1)

send(myRank-1)

if (myRank<n)

send(myRank+1)

if (myRank<n)

recv(myRank+1)

if (myRank>1)

recv(myRank-1)

chkpt – C1

Figure 4. The extended CFG of Figure 2

Given a message-passing program P and its CFG G, we
enumerate the checkpoint nodes along every path from the
entry node to the exit node. We use Cγ

i to denote the node
in CFG that contains the ith checkpoint node from the entry
node to the exit node along the γ path. We only use Ci if
the path is not mentioned explicitly. For example, since the
two checkpoint nodes in the extended CFG of Figure 4 exist
in different paths in the corresponding CFG, they are both
denoted by C1. In addition, we define Si to be the collection
of Ci’s in a CFG for every path.

Previously, we used Cp,i to represent the occurrence of
the ith checkpoint event in process p in a given execution.
We refine the definition of Cp,i in the execution to match
the definition of Ci in the CFG. Every invocation of the
checkpoint statement corresponding to Ci by a process p

is denoted by Cp,i in the execution. Notice here that if a
checkpoint statement is in a loop, then in every iteration of
the loop, the checkpoint created due to the invocation of this
statement will be assigned to the same index. Therefore, a
process p may contain several checkpoints indexed as Cp,i.
Consequently, we refine the definition of a straight cut of
checkpoints to deal with multiple Cp,i’s as follows.

Definition 2.3: Given a message-passing program P and
an integer i, in any execution E that is driven by the CFG
of P , we define the straight cut of the ith checkpoints in E
to be Ri = {Cp,i|Cp,i is the latest ith checkpoint in p}.

3. Offline-Based Analysis Recovery Line

In our approach, a recovery line is determined during of-
fline analysis before a message-passing application is ex-
ecuted. In two sentences, our approach works as follows:
if the code does not have checkpoint statements, we in-
sert checkpoint statements in the application code. Then
we move the checkpoint statements that represent a straight
cut of checkpoints to ensure a recovery line for any further
execution. As a result of this approach, during an execu-
tion of the message-passing application, each process takes
local checkpoints due to the checkpoint statements with-
out any extra communication or coordination with the other
processes.

To simplify our offline analysis, we assume that a
message-passing program belongs to the Single Program
Multiple Data (SPMD) type, in which the whole program is
represented in one source file. This assumption helps us to
identify the corresponding send statement for every receive
statement. In addition, if all the files of the source code of
a message-passing program are presented for offline analy-
sis, our approach works for Multiple Program Multiple Data
(MPMD) as well.

In this section, we describe our approach in three phases.
In the first phase, we insert application-level checkpoints if
needed. Then, in the second phase, we describe how to de-
termine the message edges in the CFG in order to generate
its extended CFG Ĝ. Lastly, in the third phase, we state
and prove a necessary and sufficient condition ensuring that
every collection of checkpoint statements Si will produce a
recovery line in any further execution. Then, based on this
condition, using Ĝ, we examine every collection of check-
point statements Si.

3.1. Phase I: Static Checkpoint Insertion

In this phase, we apply known static techniques for
checkpoint insertion [8, 15, 16, 22] in serial code. Note that
this phase is optional, and is only needed if the code does
not contain checkpoint statements.

4



The checkpoint insertion techniques provide an effi-
cient way to insert checkpoint statements in serial applica-
tions. Some of the techniques require users to insert check-
point statements in the application code [8, 22]; others de-
pend on the compiler to analyze the program and insert
the checkpoint statements in the target code after compila-
tion [15, 16]. In general, these techniques are based on an-
alyzing the code and inserting checkpoint statements in the
source code to ensure optimal checkpoint intervals. For ex-
ample, Chandy and Ramamoorthy [8] used a graph model
to describe a program. They claimed that after estimating
the bounds of the program instruction, they would be able
to insert checkpoint entries in the program such that they
satisfy optimal checkpoint intervals. On the other hand,
in [14], Li et al. built the CATCH compiler, which takes
program code and inserts the checkpoint statements in a
way that tries to preserve optimal checkpoint intervals.

In Phase I, we use one of the known techniques for
checkpoint insertion, and insert checkpoint statements in
the code of a message-passing program. The difference
between a message-passing program and a serial program
is that the message-passing program contains message-
passing statements that may perform differently with dif-
ferent processes. Therefore, before applying this phase, we
estimate the message delay in the network [5, 12]. By esti-
mating the delay, we help the used technique to determine
the optimum checkpoint interval in every process for further
execution of the message-passing application.

Notice here that we may add/remove some of the check-
points to ensure that every path of the CFG has the same
number of checkpoint nodes.

3.2. Phase II: Generating the Extended CFG

Given a CFG, in this phase we show how we add the
message edges to the CFG that match every receive node
with its corresponding send node. Informally, we scan the
CFG. Then, for each receive node that has not yet been
matched, we scan the CFG again, trying to identify all the
candidate send nodes for the matching. We claim that a send
node can be matched with a given receive node if they exist
in different paths and their parameters (source and destina-
tion parameters) do not present any contradiction.

Usually, a typical message-passing program contains
two types of communication statements that can eventually
be reduced to send/receive statements. The two types are
collective communication and point-to-point communica-
tion [1].

In collective communication, the same statement should
exist in the code of all the processes in which the source and
distention parameters are indicated explicitly. Usually, the
source and distention parameters are computation expres-
sion patterns that indicate the process IDs of the sender(s)

and the receiver(s), respectively. For example, the MPI
called MPI Bcast should be called by all the processes that
participate in the multicast operation [1]. Furthermore, us-
ing any message-passing compiler, every collective com-
munication statement can be reduced to send/receive state-
ments. For that reason, it is easy to determine the message
edges in a CFG between the send and receive nodes that are
driven from a collective communication statement.

On the other hand, the point-to-point communication
type consists of the basic send/receive statements, e.g.,
MPI Send and MPI Recv. Since a send and its corre-
sponding receive statement may exist in different places in
the code, it might be difficult to determine the match be-
tween them during compilation. Another difficulty that we
may encounter is that the source and destination parameters
could have irregular computation patterns [18]. A compu-
tation pattern is called irregular if it depends on input data.
Notice here that in a statement of collective communica-
tion type, irregular computation patterns do not bother to
match, since the statement exists in the code of each pro-
cess. However, for the point-to-point communication type,
we observe that since the send and receive statements are
supposed to be called by different processes in any further
execution, the corresponding send and receive nodes should
exist in different paths in the CFG. Notice that those dif-
ferent paths, which include the matched send and receive
statements, should be created due to a condition expression
that depends on process IDs. We say that a branch node in
the CFG is ID-dependent if its condition expression in the
program depends on process IDs.

A branch node in a CFG represents a condition expres-
sion in the program. Obviously, every control path in the
CFG from the branch node is characterized by an attribute
that is driven from the condition expression. Therefore, for
every branch node, we can determine the attribute of every
control path from the node during compilation. For exam-
ple, in Figure 2, the first branch node is ID-dependent, since
it depends on myRank. The right path after this branch
node has the attribute of even process ID numbers, and the
left path has the attribute of odd process ID numbers.

Using any data flow analysis technique [4, 18], we can
specify whether each branch is ID-dependent or not. Specif-
ically, we first determine the variables and constants that
depend on process IDs, and then use the technique of data
flow analysis to determine whether each condition expres-
sion is ID-dependent or not. To simplify the presentation
of our mechanism for matching the send and receive nodes,
we ignore all the non ID-dependent branches in the CFG.
For that purpose, without loss of generality, we assume that
all the branch nodes are ID-dependent.

Our algorithm depends on the fact that the matched send
and receive nodes exist in different paths that are obtained
via ID-dependent branches. Relying on the assumption that

5



every send/receive statement has the source and destination
parameters written explicitly, our algorithm tries to match
every receive statement with the send statement such that
there are no contradictions between the source and destina-
tion parameters of the receive statement and the destination
and source parameters of the send statement, respectively.
Therefore, for every send/receive statement, we determine
the driven attributes from the source and destination param-
eters. Our algorithm of matching works as follows:

Algorithm 3.1 : Scan the CFG graph using the DFS
(Depth-First Search) method from the entry node. En-
counter the following nodes:

Branch: analyze the condition expression corresponding
to this node and determine the attributes for every fan-
out control path.

Receive: if the node has not yet been matched, then

1. Based on the source parameter, determine the at-
tribute, and call it SA.

2. Scan G to determine all the successor nodes
e1, · · · , er in different paths that have attributes
that do not contradict SA.

3. For every successor node ei, scan the CFG start-
ing from ei. Consider all the send nodes in the
subgraph from ei and determine their attributes
that are determined by the destination param-
eters; call them DA1, · · · ,DAk. For every j,
1 ≤ j ≤ k,

• If SA and/or DAj has an irregular pattern,
then match the receive node and the corre-
sponding send node if SA and DAj do not
contradict.

• Otherwise, if the corresponding send node
has not yet been matched and SA and DAj

do not contradict, then match the receive
node and the corresponding send node.

Notice here that since the algorithm uses DFS for scan-
ning the graph, it will visit all the nodes in the CFG. There-
fore, every send/receive node should be visited by the algo-
rithm. In addition, since our algorithm does the match only
if there are no contradictions between any attributes, then if
a receive node has a parameter that is an irregular computa-
tion pattern, the node may be matched with more than one
send node. The following lemma states the safety of our
algorithm. Because of space restrictions, we eliminate the
proof.

Lemma 3.1: Given a CFG G, for every receive node in
Ĝ, at least one of the matched send node(s) due to Algo-
rithm 3.1 is the corresponding send statement of the receive
statement in the program.

3.3. Phase III: Ensuring Recovery Lines

In the third phase, we consider the extended CFG Ĝ of
a message-passing program that has the checkpoint nodes
in it. First, we give a necessary and sufficient condition on
Ĝ to ensure that for every i and any further execution, Ri

is a recovery line. In order to guarantee that this condition
is satisfied, we may need to move some checkpoint nodes
in Ĝ, and consequently in the program code. For exam-
ple, if a checkpoint statement is before a send statement, we
may move the checkpoint statement to appear after the send
statement.

Obviously, the
hb→ relation is created by an application

message from Ip,i+1 to Iq,i in E. For every process p, any
checkpoint Cp,i is created as a result of calling a checkpoint
statement in Si (Si contains all the checkpoint nodes Cγ

i for

every path γ ∈ Ĝ). Then, to avoid the
hb→ relation between

any two checkpoints in Ri, we need to ensure that there are
no edge messages between any two checkpoint nodes in Si.

Consider the extended CFG Ĝ presented in Figure 5 and
its corresponding execution example. Assume that process
P1 executes along path A and P2 executes along path B. It
is easy to verify that due to the path between CA

i and CB
i in

Ĝ, the straight cut of checkpoints is inconsistent. Therefore,
it is clear that in order to avoid such inconsistent cuts, we
need to avoid any path between any two members of Si.

if (myRank ..)

Ci
A

Send(..)

Recv(..)

Ci
B

P1

P2

C1,i

C2,i
Inconsistent cut

A
B

Figure 5. A CFG Ĝ and its execution

Now consider the example presented in Figure 6. In
this example we can see that there is a path from CB

1

to CA
1 . However, the path contains the drawback edge

〈Recv, while〉 of the loop in path A. More precisely, the
path is 〈CB

1 , Send, Recv, while, CA
1 〉. If P2 fails right after

sending the message in the second iteration of the loop, R1

is not a recovery line.
We now state a sufficient condition for ensuring recovery

lines.

Condition 1: If for every integer i and every collection of
checkpoint nodes Si, there is no path in the extended CFG
between any two checkpoint nodes in Si, then in any further
execution, Ri is a recovery line.

Given an extended CFG Ĝ, based on Condition 1, we
now show an algorithm that examines every Si in the CFG

6



if (myRank ..)

C1
A

Recv(..) Send(..)

C2
B

P1

P2

C1,1

C2,1

C2
A

C1
B

C1,1 C1,1 C1,2

C2,1
X

Failure

whilewhile

A B

R1

Figure 6. Another CFG Ĝ and its execution

to ensure that Si produces a recovery line in any further
execution.

Algorithm 3.2: Given an extended CFG Ĝ, determine
{S1, S2, · · · , Sm} in Ĝ (assume that every path has m
checkpoint nodes). For every Si, 1 ≤ i ≤ m, do the follow-
ing steps:

Step 1 For every two checkpoint nodes CA
i , CB

i ∈ Si,
check whether there is a path between them in Ĝ. To
verify whether there is a path, we can use any graph
theory algorithm for finding paths, e.g., Dijkstra’s al-
gorithm [9].

Step 2 If there is a path γ between CA
i and CB

i in Ĝ such
that CA

i
γ
� CB

i , we move CB
i back in G to avoid γ.

Let 〈a, b〉 be the edge in G such that a and b dominate
CB

i in G (notice here that G is the CFG without the
message edges). Let CA

i
γ
� b in Ĝ; however, if there

is no path from CA
i to a in Ĝ, then we move CB

i to
appear between a and b in G. Notice here that b is the
first node of the path 〈ENTRY, · · · , CB

i 〉 that is in γ.

To illustrate Algorithm 3.2, consider the extended
CFG Ĝ presented in Figure 6. As we pointed out,
CA

1 , CB
1 ∈ S1, but CB

1
γ
� CA

1 such that γ =
〈CB

1 , Send, Recv, while, CA
1 〉 ∈ Ĝ. By Algorithm 3.2, the

edge 〈if, while〉 plays the role of the edge 〈a, b〉 of Step 2.
Thus, we avoid γ by moving CA

1 to appear between the if
node and the while node.

A significant drawback of Algorithm 3.2 is that some of
the checkpoints have been moved out of loops. For many
programs, such as the program presented in Figure 1, loops
are considered the main code of the application. One op-
timization that we can do in our algorithm to avoid such
movement out of loops is to ensure the following condition.
If a checkpoint node CA

i is in a loop and there is another
checkpoint CB

i such that CB
i

γ
� CA

i and γ has a backward
edge (CB

i could be inside a loop or not), then in any exe-
cution we need to guarantee that the Ci,p that occurs due
to CA

i completes before the Ci,q that occurs due to CB
i for

any two processes p and q. Furthermore, if CB
i

γ
� CA

i and

CB
i

γ′
�CA

i , then we guarantee the completion of one check-
point before the other according to the order of the message
edges that are involved on the path between them.

We now show that after Phase III has been applied, in
any further execution E and for every integer i, Ri is a re-
covery line. We state a theorem showing that Condition 1
is a necessary and sufficient condition. Then, we show that
Algorithm 3.2 ensures Condition 1.

Theorem 3.2: Given a CFG G, for every execution E from
G and for every integer i, Ri is a recovery line iff there is
no path in Ĝ between any two members of Si.

Proof sketch: It is easy to show that after Algorithm 3.2
is applied on a graph Ĝ, for every Si in Ĝ, there is no path
between any two members of Si. Therefore, the condition
of Theorem 3.2 will hold, and then in any further execution
E, every Ri ∈ E is a recovery line.

To prove the correctness of Algorithm 3.2, we need to
show the existence of the edge 〈a, b〉 in G as mentioned
in Step 2 of the algorithm. Indeed, such an edge should
exist in G because of the ENTRY node. In any case, the
ENTRY node can take the role of node a, where there are
no incoming edges to the ENTRY node.

4. Performance Analysis

Since our approach does not impose any coordination
among the processes, it promises better performance than
any other approach. However, since there are many param-
eters that should be considered in evaluating performance,
it is not easy to compare our approach with the other known
approaches. We present here an analysis of the performance
overhead ratio as presented in [2, 21, 25]. Using this analy-
sis and considering many parameters, we try to evaluate our
approach by comparing it to the other approaches.

In the analysis, we consider all the following parameters:
λ denotes the failure rate of the process (following an expo-
nential distribution) of Poisson distribution, Γ denotes the
expected execution time of a checkpoint interval, o denotes
the checkpoint overhead which is the increase in the execu-
tion time of a process p because of a single checkpoint, l
denotes the checkpoint latency which is the time required to
take a single checkpoint, R denotes the recovery overhead
which is the time required to restart a process from a check-
point, M denotes the recovery overhead which is the time
required to restart a process from a checkpoint, C denotes
the coordination overhead which is the overhead due to pro-
cess coordination that may happen in taking a cut of check-
points, O denotes the total checkpoint overhead which is the
increase in the execution time (because of o, M , and C), and
L denotes the total latency overhead which is the increase

7



in the execution time (because of l, M , and C). Lastly, we
define the overhead ratio, denoted by r, as r = Γ

T − 1.
Any checkpoint interval is completed either with or with-

out failure. Therefore, the expected execution time Γ can be
computed using the 3-state Markov chain presented in Fig-
ure 7. Process p starts the interval with the start state i (re-
lated to the checkpoint Cp,i). A transition from state i to the
sink state i+1 occurs if Ip,i+1 is completed without failures.
If a failure occurs during Ip,i+1, then p recovers from Cp,i.
In that case, we have a transition from state i to state Ri.
After state Ri is entered, a transition is made to state i + 1
if no further failure occurs in Ip,i+1 after a recovery. Other-
wise, a transition is made from state Ri to itself. Let s, t be
states in a Markov chain in which there is a transition from s
to t. Ps,t denotes the probability of the transition from s to t
and Ws,t denotes the expected execution time spent in state
s before moving to state t. In the Markov chain, Γ is the ex-
pected cost of reaching the sink state i+1 from state i. Since
there are only two possible paths from state i to state i + 1,

then Γ = Pi,Ri

(
Wi,Ri

+ PRi,Ri

1−PRi,Ri
WRi,Ri

+ WRi,i+1

)
+

Pi,i+1Wi,i+1.

i i+1

Ri

Figure 7. A Markov chain represents Ip,i+1

The probability that there is no failure during T +O units
of time is Pi,i+1 = e−λ(T+O). Notice here that Wi,i+1 =
T + O. However, if a failure occurs during Ip,i+1, then the
rollback is made to the latest checkpoint Cp,i. Therefore, a
transition is made from state i to one of the states Ri. The
probability of such a transition is equal to 1 − Pi,i+1. The
cost of this transition, Wi,Ri

, is the expected execution time
for Ip,i+1 until a failure occurs. Given that a failure occurs
in the interval [0, T +O) during the execution of Ip,i+1, the
time to failure (TTF) is a random variable x in the interval
[0, T + O) [23]. Moreover, its probability density function
(PDF) is λe−λx for 0 ≤ x < T + O, and its conditional
density function is f(x) = λe−λx

Pi,Ri
, where 0 ≤ x < T +

O. This implies that Wi,Ri
=

∫ T+O

0
x · f(x)dx = 1

λ −
(T+O)e−λ(T+O)

1−e−λ(T+O) .
After state Ri is entered, a transition to state i+1 is made

if no further failure occurs before Ip,i+1 is completed. As
pointed out in [2], the execution time required to reach state
i + 1 is WRi,i+1 = T + O + R + L − o ∼= T + R + L.
Therefore, the probability that no additional failure will oc-

cur is PRi,i+1 = e−λ(T+R+L). However, if another failure
occurs after the system has been in state Ri, a transition is
made from state Ri to itself. For that transition we define
PRi,Ri

= 1 − PRi,i+1 = 1 − e−λ(T+R+L). As discussed
above, WRi,Ri

can be obtained in the same way as Wi,Ri
.

The PDF of the TTF is λe−λx for x ∈ [0, T + R + L).
After replacing the variables in the equation for Γ with

the obtained values, and then doing some mathematical sim-
plification, we obtain Γ = λ−1(1 − e−λ(T+O))eλ(T+R+L).
Then, after plugging that value of Γ into the equation of r,

we obtain r = λ−1eλ(R+L−O)(eλ(T+O)−1)
T − 1.

With any checkpointing and recovery mechanisms, T
and n are the only parameters that a user can program. We
report results using local checkpointing and recovery mech-
anisms as presented in [3]. In previous experimental work,
we ran a matrix multiplication application in Starfish [3]
with checkpointing. From that experimental work we ob-
tained the following parameters: o = 1.78, l = 4.292, and
r = 3.32 seconds. In addition, we assume that the failure
rate of a single process is 1.23 ·10−6 [21, 24]. Under the as-
sumption that process failures occur randomly and indepen-
dently with a probability of p = 1.23 · 10−6, the probability
of a failure in a system with n processes is 1 − (1 − p)n.
Therefore, the overhead ratio increases proportionally with
n. In addition, we assume that T = 300 seconds.

4.1. Comparison with other Protocols

We compare our approach to other coordinated check-
pointing protocols. Because of space limitations, we choose
to compare our approach only to coordinated protocols, be-
cause our approach has the coordinated checkpointing prop-
erty that the recovery line exists as the last checkpoint of
every process. The most well-known coordinated protocols
are the SaS protocol [19] and the C-L protocol [7]. We do
not give a description of the protocols, but we determine the
value of the parameters for them.

In SaS, since all the processes stop during checkpointing,
the collection of checkpoints constructs a recovery line. The
message overhead results from the fact that in each phase
of SaS, the coordinator broadcasts three messages, and the
other n− 1 processes send two reply messages. Notice that
the protocol needs an 8-bit program message. Therefore,
M(SaS ) = 5(n−1)(wm +8 ·wb), where wm is the “setup”
time for sending a message, and wb is the additional per-
bit delay associated with sending a message. On the other
hand, in C-L with a fully connected network with n nodes,
C-L generates 2n(n − 1) messages per checkpoint. Also,
as the marker is assumed to be 8-bit, we have M(C-L) =
2n(n − 1)(wm + 8 · wb).

After determining all the parameters of our approach,
SaS, and C-L, we compute and compare their overhead ra-
tio. Figure 8 shows a comparison between our approach

8



and the other protocols. Since our approach (“appl-driven”
in the figure) does not require any coordination, its over-
head ratio is smaller than that of the other protocols. Notice
here that the overhead ratio increases proportionally with
the number of processes because the failure rate λ increases
proportionally with the number of processes.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of processes

O
ve

rh
ea

d 
ra

tio

C−L 

SaS 

appl−driven 

Figure 8. Comparing protocols

Figure 9 shows that while the overhead ratio of the C-L
and SaS protocols gets worse as the communication param-
eter increases, the overhead ratio of our protocol remains
unchanged. For example, in the figure, we vary the setup
time (wm) it takes to send a message. Notice here that pa-
rameters that depend on the network can be varied during
execution depending on the network status. For instance,
due to congestion in the network, wm may increase signifi-
cantly.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

communication setup

O
ve

rh
ea

d 
ra

tio

appl−driven 

C−L 

SaS 

Figure 9. The communication setup effect

5. Related Work

Much work has been done on distributed checkpointing,
such as [10, 17, 19]. Those papers presented summaries of

different checkpointing protocols. To the best of our knowl-
edge, all the checkpointing protocols impose overhead due
to additional communication (e.g., program messages) and
rollback recovery. However, our approach is the first ap-
proach for distributed settings that does not impose any
overhead from those parameters [2, 21].

Some work has been done on application-driven check-
pointing, especially in distributed settings. Bronevetsky
et al. [6] presented an application-level checkpointing for
message-passing application that was based on the C-L
(Chandy-Lamport) protocol, with the change that the check-
points are initiated at the application level instead of at the
system level as in the C-L protocol. The only thing that
the Bronevetsky et al. protocol takes from the application is
information on where to apply the checkpoint calls at the
application level to capture a global snapshot of the dis-
tributed application. Therefore, that protocol still imposes
the same overhead as the C-L protocol. On the other hand,
for serial applications, there are a number of compiler-
and application-driven checkpointing mechanisms. Most
of them were developed to insert checkpoint calls at the
application level to obtain an optimal checkpoint interval.
Chandy and Ramamoorthy [8] were the first people to show
that by analyzing the program code, we can insert the check-
point calls to achieve an optimal checkpoint interval. The
problem was then solved by others [16, 22]. Also, for serial
applications, much of the research has relied on the appli-
cation level in introducing new features of fault tolerance
using checkpointing. For example, many checkpointing
protocols use compilers and code analysis to achieve het-
erogenous checkpointing [11, 15], incremental checkpoint-
ing [20], and other types of checkpointing.

6. Conclusions

In our previous work [2], we showed that coordinated
checkpointing approaches are the most efficient among a
set of known distributed checkpointing protocols. Concen-
trating on distributed checkpointing for providing fault tol-
erance, we came up with a new approach that has better per-
formance than the previous approaches that we know about.

To the best of our knowledge, our approach is the first
checkpointing protocol that produces recovery lines without
coordination, additional checkpoints, or rollback propaga-
tion. In addition to presenting the protocol itself, we stated
and discussed the safety and termination of the protocol. As
a proof of concept, we used stochastic analysis to compare
the overhead ratio of our approach with other well-known
approaches for distributed checkpointing.

Our approach has three phases. In the first phase, we
solve the problem of inserting checkpoint calls in the ap-
plication code. Then, in the second phase, we construct
the control flow graph of the message-passing program, try

9



to match send and receive statements, and enumerate the
checkpoint statements. Lastly, in the third phase, we elabo-
rate the CFG to ensure that in every further execution of the
CFG, the straight cut of checkpoints is a recovery line.

We believe that this approach is the first mechanism for
obtaining coordination-free recovery lines that is based on
use of the application level. This approach is especially use-
ful for high-performance applications in which reliability
can be provided without imposing much overhead on the
performance.

Acknowledgments

We would like to thank Vikram Adve for discussions re-
lated to compilers and Jenny Applequist for her editorial
assistance.

References

[1] MPI: Message Passing Interface. http://www.mpi-forum.org.

[2] A. Agbaria, A. Freund, and R. Friedman. Evaluating Dis-
tributed Checkpointing Protocols. In Proceedings of the
23rd International Conference on Distributed Computing
Systems (ICDCS’03), pages 266–273, Providence, Rhode Is-
land, May 2003.

[3] A. Agbaria and R. Friedman. Starfish: Fault-Tolerant Dy-
namic MPI Programs on Clusters of Workstations. In
Proceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing (HPDC’99),
pages 167–176, August 1999.

[4] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2001.

[5] S. Biaz and N. Vaidya. Is the Round-Trip Time Correlated
With the Number of Packets in Flight? In Proceedings
of ACM Internet Measurement Conference, Miami, Florida,
October 2003.

[6] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Automated Application-level Checkpointing of MPI Pro-
grams. In Proceedings of the 9th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages
84–94, 2003.

[7] K. M. Chandy and L. Lamport. Distributed Snapshots: De-
termining Global States of Distributed Systems. ACM Trans-
actions on Computer Systems, 3(1):63–75, February 1985.

[8] K. M. Chandy and C. V. Ramamoorthy. Rollback and Recov-
ery Strategies for Computer Programs. IEEE Transactions
on Computers, 21(6):546–556, June 1972.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. The MIT Press and McGraw-Hill Book
Company, 1986.

[10] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems. ACM Computing Surveys, 34(3):375–408, Septem-
ber 2002.

[11] F. Karablieh, R. Bazzi, and M. Hicks. Compiler-Assisted
Heterogeneous Checkpointing. In Proceedings of the 20th
IEEE Symposium on Reliable Distributed Systems, pages 56–
65, New Orleans, LA, USA, October 2001.

[12] P. Karn and C. Partridge. Improving Round-Trip Time Esti-
mates in Reliable Transport Protocols. ACM Transactions on
Computer Systems (TOCS), 9(4):364–373, November 1991.

[13] L. Lamport. Time, Clocks and Ordering of Events in Dis-
tributed Systems. Communications of the ACM, 21(7):558–
565, July 1978.

[14] C. C. Li and W. K. Fuchs. CATCH: Compiler-Assisted
Techniques for Checkpointing. In Proceedings of the 20th
IEEE International Symposium on Fault-Tolerant Comput-
ing, pages 74–81, 1990.

[15] C.-C. J. Li, E. M. Stewart, and W. K. Fuchs. Compiler-
Assisted Full Checkpointing. Software: Practice and Ex-
perience, 24(10):871–886, October 1994.

[16] J. Long, W. K. Fuchs, and J. A. Abraham. Compiler-Assisted
Static Checkpoint Insertion. In Proceedings of the 22nd
IEEE International Symposium on Fault-Tolerant Comput-
ing, pages 58–65, July 1992.

[17] D. Manivannan and M. Singhal. Quasi-Synchronous Check-
pointing: Models, Characterization, and Classification.
IEEE Transactions on Parallel and Distributed Systems,
10(7):703–713, July 1999.

[18] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, 1997.

[19] J. S. Plank. Efficient Checkpointing on MIMD Architectures.
PhD thesis, Princeton University, January 1993.

[20] J. S. Plank. An Overview of Checkpointing in Uniprocessor
and Distributed Systems, Focusing on Implementation and
Performance. Technical Report UT-CS-97-372, Department
of Computer Science, University of Tennessee, July 1997.

[21] J. S. Plank and M. G. Thomason. Processor Allocation
and Checkpoint Interval Selection in Cluster Computing
Systems. Journal of Parallel and Distributed Computing,
61(11):1570–1590, November 2001.

[22] S. Toueg and O. Babaoglu. On the Optimum Checkpoint
Selection Problem. SIAM Journal on Computing, 13(3):630–
649, August 1984.

[23] K. S. Trivedi. Probability and Statistics with Reliablity,
Queuing, and Computer Science Applications. Prentice-
Hall, USA, 1982.

[24] N. Vaidya. On Checkpoint Latency. In Proceedings of the
Pacific Rim International Symposium on Fault-Tolerant Sys-
tems, Newport Beach, December 1995.

[25] N. H. Vaidya. Another Two-Level Failure Recovery Scheme:
Performance Impact of Checkpoint Placement and Check-
point Latency. Technical Report TR94-068, Department of
Computer Science, Texas A&M University, 1994.

10


