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Abstract

Communication-induced checkpointing protocols that
ensure rollback-dependency trackability (RDT) guarantee
important properties to the recovery system without explicit
coordination. However, to the best of our knowledge, there
was no garbage collection algorithm for them which did
not use some type of process synchronization, like time as-
sumptions or reliable control message exchanges. This pa-
per addresses the problem of garbage collection for RDT
checkpointing protocols and presents an optimal solution
for the case where coordination is done only by means of
timestamps piggybacked in application messages. Our al-
gorithm uses the same timestamps as off-the-shelf RDT pro-
tocols and ensures the tight upper bound on the number of
uncollected checkpoints for each process during all the sys-
tem execution.

Keywords: garbage collection, distributed checkpointing,
rollback-dependency trackability, rollback-recovery.

1. Introduction

Checkpointing is a well-known technique used to build
fault-tolerant distributed applications based on rollback-
recovery. Briefly, every process periodically saves the ap-
plication’s local state as a checkpoint and when a failure oc-
curs, the distributed computation restarts from its most re-
cent consistent global checkpoint, or recovery line. A global
checkpoint is a set composed of one local checkpoint for
each process and it is consistent if it includes the sending of
every received message [6, 8].

Netzer and Xu [16] have shown that checkpoint depen-
dencies are created by sequences of messages called zigzag
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paths. Two checkpoints can take part in the same consistent
global checkpoint if and only if no zigzag path connects
them. A zigzag path can be either causal or non-causal de-
pending on whether the receipt of a message always pre-
cedes the sending of the next one. Non-causal zigzag paths
may connect a checkpoint to itself and preclude it from tak-
ing part in any consistent global checkpoint. A checkpoint
involved in such a zigzag cycle is called useless.

If checkpoints are taken autonomously by processes
(called basic checkpoints) and no coordination exists, they
may become useless and a failure could force the applica-
tion to roll back to a very initial state, a phenomenon known
as the domino effect [17]. Communication-induced check-
pointing protocols [8, 15, 21] avoid the domino effect by
piggybacking control information in the application mes-
sages and having processes take forced checkpoints, besides
the basic ones, to break the non-causal zigzag paths that
could create useless checkpoints.

Absence of useless checkpoints is the minimal desired
property for communication-induced protocols. Another
important property is the possibility of tracking check-
point dependencies on-the-fly during the application execu-
tion using a transitive dependency vector, called rollback-
dependency trackability (RDT). Besides ensuring that all
checkpoints are useful, the RDT property eases the determi-
nation of minimum and maximum consistent global check-
points containing a given set of local checkpoints, and al-
lows decentralized solutions for recovery line calculation,
which has been shown to be helpful in many contexts (e.g.,
software error recovery, causal distributed breakpoints,
deadlock recovery and mobile computing [21]). Moreover,
the RDT property minimizes the amount of lost work in a
distributed rollback when compared to other domino-free
properties [1]. Protocols enforcing the rollback-dependency
trackability are called RDT checkpointing protocols [3, 10,
20, 21].



The price of autonomy in communication-induced
checkpointing protocols is storage space [2]. The absence
of explicit coordination makes it difficult to identify obso-
lete checkpoints, that is, those not necessary for future re-
coveries. Existent garbage collection algorithms execute as
secondary tasks, eliminating all or a subset of the obsolete
checkpoints [5, 8, 14, 22]. However, all of them rely either
on time assumptions or reliable control message exchanges.

This paper addresses the problem of garbage collection
where coordination relies only on information propagated
in application messages. We call such garbage collection
algorithms asynchronous. Amongst our contributions, we
present a characterization of obsolete checkpoints for RDT
scenarios and a new algorithm for garbage collection on
them. Differently from the previous approaches, ours does
not rely on time assumptions or control messages. It runs
locally to each process and is based only on the timestamps
already propagated by the checkpointing protocol, increas-
ing neither the amount of control information piggybacked
nor the execution complexity of the checkpointing middle-
ware. Moreover, we prove that our algorithm is optimal in
the sense that no more checkpoints can be eliminated with-
out time assumptions or control messages.

The rest of this paper is organized as follows. Section 2
introduces our model and definitions. Section 3 describes
the necessary and sufficient conditions for a checkpoint to
be obsolete when rollback-dependency trackability holds.
In Section 4, we present and analyze in detail our asyn-
chronous garbage collection algorithm for RDT checkpoint-
ing protocols. Section 5 discusses related work in the field
and Section 6 concludes the paper.

2. System model and definitions

A distributed system is composed of a set II =
{p1,p2, ..., pn} Of processes that communicate only by ex-
changing messages. The system is asynchronous: there are
no assumptions about the time it takes for processes to ex-
ecute and for messages to be exchanged. Moreover, pro-
cesses do not share a common clock. Although messages
cannot be corrupted, they can be lost or delivered out of or-
der. Process p;’s execution is a sequence of events e¥, el . ..
Internal events are related to the local execution of a process
(e.g., local checkpoints) and communication events are re-
lated to sending and receiving messages.

A process can fail by crash, stopping its execution and
losing its volatile state, but it eventually recovers. Its sta-
ble storage persists through failures, preserving the stored
information. Finally, we do not assume piecewise deter-
minism, and therefore cannot use event logging during re-
covery [8].

2.1. Causality and consistency

Throughout the paper we use the definitions of causal
precedence and consistent cuts, presented next.

Definition 1 Causal precedence [13] — Event e% causally
precedes e (e — e) iff
(i) a=bAB=a+1;0r
(i) Im | eg = send(m) A ef = receive(m); or
(iii) Jel | eX — el Ne) — ef.

A cut of a distributed computation contains an initial pre-
fix of the sequence of executed events for each process. A
consistent cut is left-closed under causal precedence and
represents an instant in a distributed computation, as de-
fined below.

Definition 2 Consistent cut [7] — A cut C is consistent iff
ecCNe —e=>eel.

2.2. Checkpointing

A local checkpoint written on stable storage is a stable
checkpoint. We use s to represent the ~-th stable check-
point taken by process p; and call ~ its index. Every process
p; starts its execution by storing a stable checkpoint s. This
ensures the existence of at least one global recoverable state.
The volatile state of a process p; is called a volatile check-
point and denoted by v;. The set of all checkpoints taken by
all the processes in a consistent cut and the dependency rela-
tion between them created by the exchanged messages (ex-
cluding lost and in-transit messages) form a Checkpoint and
Communication Pattern (CCP). We use last_s(7) to refer to
the index of the last stable checkpoint taken by process p;

in a given CCP and denote sﬁ“t—s(i) by siest for simplicity.

Moreover, we define ¢ as a general checkpoint (or simply
checkpoint) of a CCP as follows:

{ s], v <last_s(i); (1)

C’.Y =
v, v = last_s(i) + 1.

K3
A checkpointinterval I;' is the set of events occurred in pro-
cess p; between checkpoints ¢] " and ¢} (including ¢] "
but not ¢'). Figure 1 gives an example of CCP and depicts
selected examples of the definitions that we have just pre-
sented.

Two checkpoints are inconsistent if they are causally re-
lated and consistent otherwise. As a result, a global check-
pointis consistent if, and only if, all its checkpoints are pair-
wise consistent. In Figure 1, {v1,s3, s3} is consistent and
{sY, 53, si} is inconsistent, since sy — si. A consistent
global checkpoint always represents a consistent cut.

Two consistent checkpoints are not necessarily part of
the same consistent global checkpoint. Checkpoint depen-
dencies are created by sequences of messages called zigzag
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Figure 1. Example of CCP.

paths [16]. We use the relation ¢ ~~ cf to represent the
existence of a zigzag path from c$ to cf.

Definition 3 Zigzag path [16] — A sequence of messages
w=[mq,...,my] is azigzag path which connects c% to cf
iff the conditions below hold:
(i) po sends mq after c$;
(i) if m;,1 < i < k, is received by p., then m,;; is sent
by p. in the same or a later checkpoint interval; and
(iii) py receives my, before cf.

A zigzag path can be causal (C-path) or not (Z-path).
It is causal if the receipt of each message but the last one
causally precedes the send event of the next one in the se-
quence. In Figure 1, [m, ms] and [m1,my4) are examples
of C-paths, and [ms5, m4] is an example of Z-path. A Z-
path can connect a checkpoint ¢ to itself (¢ ~~ ¢), which
renders ¢, useless, since it cannot take part in any consis-
tent global checkpoint [16]. Figure 2 illustrates the problem
caused by useless checkpoints already mentioned in Sec-
tion 1. In the scenario we depict, all stable checkpoints but
the initial ones are useless (e.g., [m2, m1] is a Z-path con-
necting si to itself) and, therefore, a single failure would
force the entire application to roll back to its initial state, a
well-known phenomenon called domino effect [17].

2.3. Rollback-dependency trackability
Rollback-dependency trackability is given by the ab-
sence of Z-paths which (a) connect a checkpoint to itself or

(b) are not doubled by C-paths. This ensures that all check-
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Figure 2. Useless checkpoints and the
domino effect.

point dependencies are causal and can be tracked by using
transitive dependency vectors.

Definition 4 Rollback-dependency trackability [15] — A
CCP satisfies rollback-dependency trackability (is RD-
trackable) iff for any two checkpoints ¢; and c5, c] ~ ¢ =
c] — ct.
G J

In RD-trackable checkpoint and communication pat-
terns, there are no useless checkpoints, since ¢ ~ ¢] im-
plies ¢; — ¢/, which is impossible. The CCP presented
in Figure 1 is RD-trackable. It would not be in the absence
of message ms because [ms,m4] is a Z-path from s} to
s3. Therefore, without ms we would have si ~ s2 and

RDT checkpointing protocols rely on the model we pre-
sented and ensure that the CCP of any consistent cut of
the distributed computation is RD-trackable [9]. Therefore,
henceforth we assume that all the checkpoint and communi-
cation patterns are RD-trackable and we omit this condition
in statements of definitions, lemmas and theorems.

2.4. Rollback-recovery

The system execution alternates between normal execu-
tion periods and recovery sessions, started after some fail-
ure. There are many possible approaches to orchestrate re-
covery sessions [11, 12, 14]. We do not address this prob-
lem in the paper and simply assume the existence of a cen-
tralized recovery manager which stops the execution of non-
faulty processes, takes their volatile state, calculates and
propagates the recovery line, defined below.

Definition 5 Recovery line [22] — Given a CCP and a set
of faulty processes F' C TI, the recovery line R is the con-
sistent global checkpoint which does not include a volatile
checkpoint of a faulty process and minimizes the number of
general checkpoints rolled back.

3. Characterization of obsolete checkpoints

As execution progresses, new checkpoints are taken and
new recovery lines are formed for the possible sets of faulty
processes. This makes some stable checkpoints obsolete,
allowing the application to discard them in order to save
stable storage space.

Definition 6 Obsolete checkpoint — A stable checkpoint is
obsolete iff it cannot take part in any future recovery line,
even after rollbacks.

Definition 6 is based on the future execution of the dis-
tributed application and cannot be used to identify all the
obsolete checkpoints in a given CCP. We need a practical



characterization of obsolete checkpoints and our starting
point is recovery line determination. It is known that the
recovery line of a faulty set F' is unique [22]. The follow-
ing lemma characterizes it for RD-trackable CCPs. In this
extended abstract we omit lemma proofs (they can be found
in [18]).

Lemma 1l Givena CCP and a set F' of faulty processes, the
recovery line R is determined by:

Rp = | J{c}, k= maz(y|Vps € F, s} 4 )}
=1

Informally, the recovery line is composed of the last check-
point of each process, volatile or not, which is not causally
preceded by the last stable checkpoint of any faulty process.
Figure 3 gives an example of recovery line determination in
a CCP for F' = {p2, ps}. The gray checkpoints are causally
preceded by skt or si*st. Thus, by Lemma 1, the recov-
ery line is composed of the last black checkpoint of each
process. Notice that s{*** is not part of the recovery line
because it is causally preceded by s&st.

Figure 3. Recovery line determination.

A necessary condition for a checkpoint to be obsolete in
a CCP defined by a consistent cut is that it not take part in
any of the recovery lines for the 2™ possible sets of faulty
processes (subsets of IT). A checkpoint which does not sat-
isfy this condition in a consistent cut C is called C-needless.

Definition 7 Needlessness — A stable checkpoint s is
needless in a consistent cut C (is C-needless) iff

s]€eC ANVYFCI:s] ¢ Rp.

Lemmas 2 and 3 describe, respectively, an easier way
to identify needless checkpoints in RD-trackable CCPs and
the complete relation between needless and obsolete check-
points. Similar lemmas have been presented in [22] under
different assumptions.

Lemma 2 Every stable checkpoint s}, part of the recovery
line for a set of faulty processes F' in a CCP, is also part of
the recovery line for a single faulty process p in the same
CCP, that is,

s; € Rp = 3py € 11| 5] € Ry

Lemma 3 A stable checkpoint s] is obsolete in the CCP
defined by a consistent cut C iff it is C-needless.

Now we have means to characterize obsolete check-
points in RD-trackable CCPs using a condition that does
not need future knowledge, as we present in Theorem 1.

Theorem 1 Characterization of obsolete checkpoints — A
stable checkpoint s is obsolete iff there is no process p;
such that

Slfast _ CZ+1 A Slfast 7L, S;Y.

Proof: By Lemmas 1, 2, 3 and Definition 7. m|

Theorem 1 says that a process p; must retain the most
recent stable checkpoint which is not causally preceded by
s'est for every process p; € II such that s'**" — v;. All
the other checkpoints of p; are obsolete and may be elim-
inated. Clearly, the checkpoint s'as* of every process p; is
not obsolete because st — v; A slest 4 slast In Fig-
ure 3, for example, there are exactly five obsolete check-
points: {c5,c9,c5, S, c5}.

4. Asynchronous garbage collection

Theorem 1 can be used to identify all the existing ob-
solete checkpoints with a simple algorithm like the one pre-
sented by Wang et al. [22]. However, this algorithm is based
on reliable control messages exchanged between processes
and a central coordinator. Ideally, garbage collection should
be as little intrusive as possible, not introducing any over-
head in the normal computation. We capture this intuition
with the notion of asynchronous garbage collection algo-
rithms, as described next. In this section we also provide
such an algorithm and prove its correctness and optimality.

Definition 8 A garbage collection algorithm is asyn-
chronous iff it relies only on information piggybacked in the
existent application messages.

4.1 A sufficient condition

We develop next a sufficient condition for asynchronous
garbage collection based on causal knowledge only. Let
last_k;(j) denote the index of the last stable checkpoint of
process p; known by process p;, that is, the last checkpoint
of p; which causally precedes the current volatile state of
p;. If no such stable checkpoint exists, let last_k;(j) = —1.



For simplicity, we denote s;.“t—k?‘(j) by sk Using this

terminology, we show in Theorem 2 how to weaken Theo-
rem 1 to get a sufficient condition for garbage collection in
RD-trackable CCPs based on causal knowledge.

Theorem 2 A stable checkpoint s] is obsolete if there is no
process py such that
last_k;(f) >0 A slfasmi — cfrl A slf‘m}“ + 8]

Proof: Suppose, by contradiction, that s satisfies this con-
dition and is not obsolete. By Theorem 1, there is a process
py such that s/t — TN slpst A 5] As slpst — gt
pi knows s's* and last_k;(f) = last_s(f). Therefore,
last_ki(f) > 0 A sy — ™1 A s 4 o], contra-
dicting our assumptions. a

Based on this condition, a process p; could safely retain
only its last stable checkpoint that is not causally preceded
by s> for every process py such that last_k;(f) > 0,

being sure that all non-obsolete checkpoints are preserved.
4.2. Dependency vectors

To implement the condition stated in Theorem 2, we
need a dependency tracking mechanism. Dependency vec-
tors [19] capture causal dependencies among checkpoints
and are commonly used in RDT checkpointing proto-
cols [3, 10, 21]. In this mechanism, each process p; main-
tains and propagates inside application messages a size-n
dependency vector DV, initially (0, ...,0). Entry DVi
represents the current checkpoint interval of p; and is incre-
mented immediately after a new checkpoint is taken. Every
other entry DV'[j], j # 4, represents the highest interval
index of p; upon which p; depends and is updated every
time a message m with a greater value of m.DV[j] arrives
at p;. When a stable checkpoint is taken, the current depen-
dency vector is stored with it for recovery purposes. We use
DV (¢]) to refer to the dependency vector of checkpoint ¢;'.
The following equation derive from the propagation mech-
anism of dependency vectors [19]:

Y — cg = a< DV(C?)[Q]. 2

Moreover, as DV (v;)[j] represents the most recent check-
point interval from p; known by p;, we have that

last_ki(j) = DV (v;)[j] - 1. ©)

Based on it, Corollary 1 restates Theorem 2 in terms of de-
pendency vectors.

Corollary 1 A stable checkpoint s; is obsolete if there is
no process p such that

DV (vi)[f] = DV(c]")[f] A DV (vi)[f] > DV (s])[f].

Proof: If we apply Equations 2 and 3 to Theorem 2
we get that s; is obsolete if there is no process p; such
that DV (v;)[f] > 0 A DV(uv)[f] < DV(¢]T[f] A
DV (v)[f] > DV(s])[f]. However, DV (v;)[f] >
DV (s])[f] implies DV (v;)[f] > 0 which makes this lat-
ter condition superfluous. Moreover, since DV [i] is up-
dated monotonically inside a process, it is impossible to

have DV (v;)[f] < DV (¢]TH[f). O

Notice that Corollary 1 relies only on values of DV local
to process p; and allows it to eliminate obsolete checkpoints
without exchanging information with other processes. In
the next section we present our complete garbage collection
algorithm.

4.3. Algorithm description

Our algorithm, named RDT-LGC, simply implements
the idea of Theorem 2, identifying obsolete checkpoints as
soon as they satisfy the condition of Corollary 1. We as-
sume that the CCPs created during the execution of the dis-
tributed application are always RD-trackable. In Section 4.5
we show how checkpointing and garbage collection could
be merged in a single algorithm.

Algorithm 1 Data structures of RDT-LGC

Data structures
1. Type
2. CCB:record of {checkpoint control block}
3 IND: integer {checkpoint index}
4 RC: integer {reference counter }
5. Var
6 UC :array[l .. n] of TCCB

7. DV :array[l .. n] of integer

Procedureinitialize()

1. for j«— 1tondo

2 UC[j] < Null

3 DV[j] <0
Procedurerelease(;:integer)

1. if UC[j] # Null then

22 UC[j]1.RC— UC[j]T.RC-1

3 if UC[j]1.RC = 0then

4 eliminate checkpoint UC[4]1.IND
5; delete UC|j]

6:  UC[j] < Null

Procedurelink(j:integer, i:integer)

1. UC[j) < UCIi]

2. UC[j]1.RC «— UC[j]1.RC+1
Procedure newCCB(j:integer, ind:integer)
1. UCJj] + new CCB

2. UC[4]7.IND« ind

3 UC[j]1.RC—1




Algorithm 2 RDT-LGC at process p;
Initialization
1: initialize()

Before sending m

1. m.DV «— DV
On recelving m

1: for j «— 1ton do

{piggybacks DV on m}

2 ifm.DV[j] > DV[j] then {new causal info}
3 DV[j] < m.DVj]
4 release(y)
5 link(j, ©)
On taking checkpoint
1: store DV with the checkpoint

2: release(7)
3: newCCB(i, DV [i])
4 DVI[i] < DVI[i] +1

{create new CCB}

Theorem 2 states that a process p; can retain, for every
process p¢, only the most recent checkpoint not causally
preceded by slf‘““‘"’i. Therefore, p; can maintain a simple
size-n vector UC (Uncollected Checkpoints) that maps p ¢
to the checkpoint retained because of p;. Notice, however,
that more than one process can break the condition of The-
orem 2 for the same checkpoint of p;. Thus, we use a dif-
ferent structure called CCB (Checkpoint Control Block) to
represent an uncollected stable checkpoint of p,. A CCB
keeps track of the checkpoint index and a reference counter
storing how many processes deny the checkpoint elimina-
tion. UC entries reference CCBs to simplify their update
when new causal information is received.

Algorithm 1 presents these data structures, together with
the dependency vector, and the basic procedures to manip-
ulate them. Every process has its own instances of the pre-
sented data structures. Procedure release decrements the
reference counter of the referenced CCB and, if there is no
other reference, collects the obsolete checkpoint. Procedure
link makes UC[j] reference the same CCB of UC|[i]. Pro-
cedure newCCB creates a new CCB and makes UC'j] ref-
erence it. In the following, we explain the RDT-LGC al-
gorithm during normal execution periods and recovery ses-
sions separately.

Normal execution periods. In these periods, RDT-LGC
simply updates the data structures mentioned above in or-
der to identify obsolete checkpoints as soon as they satisfy
the condition presented in Corollary 1, as shown in Algo-
rithm 2. When a message is received by p; and a new
causal dependency from process p; is noticed (line 2), p;
must keep track that now, by Theorem 2, p; is denying the
collection of the last stable checkpoint taken by p;. As we
show in the sequence, the CCB of this checkpoint is always
referenced by UC|i]. Therefore, p; updates DV (v;)[j], re-

(0,0,0)(1,0,0) (1,0,0)
(0,5, %) (0, *, %) (0, %, %)
N v
(0,0,0) (1,1,0 ,1,0) (1,2 , , 1,4,2)
(, 0, *) 0, 07 1 *) (0 1) , 3, ) 0,3,1)
2 = v
(0,0,0) (0,0,1) \(111/ \ 3\ (1,4,4)
(x, %,0) (* +,0) (0,0,1) (0 0,2) 2,3 (0,3,3)
p3 '

Figure 4. Execution of RDT-LGC.

leases UC|[j], and links it to the CCB referenced by UC/:]
(lines 3-5). When a new checkpoint is taken, a new CCB
is created and UC¢] is updated to reference it (lines 2-3),
since sl2sthi = glast glast _, 4, and slost £ slast (re-
call Theorem 2). As p; cannot receive new causal informa-
tion about itself in a message, this is the only way the entry
UCYi] is updated, ensuring that it always references the last
stable checkpoint of p;. The rest of the algorithm refers to
dependency vector propagation.

Figure 4 depicts a normal execution of RDT-LGC. For
each event shown, we present the contents of DV and UC
(in Figure 4, DV is depicted on top of UC'). For simplicity,
we show only the checkpoint index of the CCB referenced
by an entry UC|[j] and represent null references by “x”
Therefore, UC' = (0,0, x) means that UC[0] and UC|[1 ]
reference the CCB of the first checkpoint taken (index 0),
and UC[2] = Null. Remember that DV[i], for a process
pi, is incremented only after a local checkpoint is taken. By
the end of this execution, checkpoints s3, si and s% (empty
squares) have been eliminated. The only obsolete check-
point not identified by RDT-LGC is si. It is retained by po
because po does not know that ps has taken other check-
points after s3.

Recovery sessions. A simple way to orchestrate a recovery
session is through process synchronization [8, 12]. If global
information is available in a single process during recovery,
it is possible to eliminate all obsolete checkpoints based on
Theorem 1. Let us suppose that every process receives a
last interval vector LI such that LI[j] = last_s(j) + 1 in
the CCP defined by cut Rr. This cut represents the global
state in which the application starts the following normal
execution period. In this context, a process p; that must roll
back to a previous checkpoint runs Algorithm 3, where RI
indicates the index of the checkpoint to which p; must roll
back. Initially, p; eliminates the checkpoints rolled back
and calculates the new dependency vector DV (lines 4-6).
After that, p; finds for every process p, based on Theo-
rem 1, the stable checkpoint that must be retained by p;
because of p; and updates UC/[f] accordingly (lines 9-14).
Finally, p; eliminates all checkpoints identified as obsolete
(lines 15-17). A process p; whose component in R is
its volatile checkpoint does not run this algorithm and can



Algorithm 3 RDT-LGC in a rollback of p;

: Input
LI: array[l .. n] of integer

RI: integer {component of p; in Rr}

1

2

3

4: eliminate checkpoints s} | v > Rl

5 DV — DV(sf) {recreates DV}
6: DV[i] — DV[i] +1

7: create a new CCB for every checkpoint s; stored

8 for f +— 1tondo

9. findy | LI[f] = DV(¢")[f] A LI[f] > DV (s])[/]

10:  if found ~ then

11 UC[f] — CCBofs] {updates UC[f]}
12; UC[f]1.RC — UC[f]1.RC+1

13  dse

14; UC[f] « Null

15: for all {CCB| RC =0} do
16:  eliminate represented checkpoint
17.  delete CCB

{obsolete}

just release any entry UC|f] such that DV[f] < LI[f]. If
DV|f] < LI[f], the last stable checkpoint of p; does not
causally precede v; and, by Theorem 1, no checkpoint of p;
must be retained because of p.

If an uncoordinated algorithm is used for recovery line
calculation [21] and no global information is available dur-
ing the recovery session, a process that must roll back ex-
ecutes Algorithm 3 replacing LI by DV in line 9. This
means that the garbage collection will be based on Theo-
rem 2 instead of Theorem 1. A process that does not roll
back simply continues its execution, since its volatile state
is ensured to be consistent (w.r.t. the recovery line).

4.4. Correctness and optimality

RDT-LGC ensures that during the execution, every pro-
cess p; satisfies the following invariant (see Theorem 3). In
the following, UC[f] = s] means that the entry UC|f]
references the CCB of s;.

Theorem 3 RDT-LGC satisfies the invariant described by
Equation 4 during the execution of every process p;:

St A sl L S U0 = 5T, ()

Proof: Initially, the invariant is trivially true. Now let us
analyze the events where the terms of Equation 4 are modi-
fied.

New causal precedence from py to p,. When a new de-
pendency s — wv; is created by the receipt of a message,

RDT-LGC makes UC|f] reference s'est. If v = last_s(f),
the new reference makes Equation 4 hold. If v < last_s(f),
no relation 5" — ¢] ™! exists and Equation 4 holds inde-

pendently of UC/[f]’s value.

New checkpoint taken by p;,. When p; takes a new
checkpoint, RDT-LGC makes UC1i] reference s!**, since
slast — p; A slast 4 glast (left term of Equation 4 when
pi = pf)-

New checkpoint taken by py. When p; # p; takes a new
checkpoint, the left term of Equation 4 becomes false and
the equation as a whole holds independently of UC|[f]’s
value in p;.

Rollback of p;. When global information is available
during a rollback, Algorithm 3 updates entries UC|[f]
to satisfy Equation 4 and makes them Null if the left
term is false. If there is no global information, Algo-
rithm 3, modified to use DV instead of LI, will make
this update based on last_k;(f) instead of last_s(f). If
last_k;(f) = last_s(f), the update satisfies the invari-
ant, and if last_k;(f) < last_s(f), no relation si*s* —

c}“ exists and Equation 4 holds independently of UC[f]’s
value.

Rollback of p¢. If py # p; rolls back to a stable checkpoint
s%, this checkpoint becomes slﬂst and will not precede any
checkpoint of p; in the following normal execution period.
Therefore the left term of the equation will be false and the
invariant will hold. O

From this invariant, we can easily derive a correctness
proof for RDT-LGC, as presented in Theorem 4.

Theorem 4 If Equation 4 holds during the execution of ev-
ery process p;, all checkpoints eliminated by RDT-LGC are
obsolete.

Proof: By Theorem 1, if the invariant defined by Equation 4
holds, then every non-obsolete checkpoint has at least one
entry UC|;] referencing its CCB. However, in RDT-LGC, a
checkpoint is collected only when there is no entry UC'[j]
referencing its CCB. O

We have defined that an asynchronous garbage collection
algorithm relies only on causal knowledge and does not ex-
change control messages. Now we define optimality in this
context.

Definition 9 An asynchronous garbage collection algo-
rithm is optimal if it collects all obsolete checkpoints that
can be identified using causal knowledge.

Our algorithm is clearly asynchronous, and Theorem 5
shows that it is also optimal.

Theorem 5 RDT-LGC is an optimal asynchronous garbage
collection algorithm.

Proof: Suppose, by contradiction, that there is an obsolete
checkpoint s that can be identified with causal knowledge
and is not eliminated by RDT-LGC. As it is not collected



by RDT-LGC, there is an entry UC|[f] in p; that references
its CCB, which means that s|**"** — ¢] 1 A sl 4 g7
However, as it is obsolete and can be identified by causal
knowledge, by Theorem 1 p, must have known a check-

point of p; taken after s**¢, contradicting the definition

lastk;
of s PR O

4.5. Analysis and optimizations

A stable checkpoint s is retained by RDT-LGC only if
its CCB is referenced by an entry UC/[j] in p;. Therefore,
RDT-LGC retains at most n stable checkpoints in a process
during its normal execution, which is the least upper bound
on checkpoint space overhead in a single process [22]. Ac-
tually, a process may need to store n -+ 1 checkpoints for a
brief period if lines 1 and 2 of event taking checkpoint in
Algorithm 2 cannot be executed atomically. This happens
when a process retaining n checkpoints decides to take a
new checkpoint, since the last stable checkpoint previously
taken will become obsolete only after the new checkpoint is
completely stored in stable storage. There are executions
where every process reaches this bound, which gives to
RDT-LGC a global space overhead of at most n(n + 1) sta-
ble checkpoints. As an example, consider Figure 5, where
the empty squares represent the checkpoints eliminated by
RDT-LGC. If, at that moment, all processes decide to take
a new checkpoint, a total space of n(n + 1) stable check-
points will be required during the operation. Just after that,
n checkpoints will be collected, but n2 will remain stored.
It is known that when all obsolete checkpoints are identi-
fied and eliminated, the global upper bound is n(n + 1)/2
checkpoints [22]. However, Theorem 5 shows that it is im-
possible to give better bounds than RDT-LGC based only
on causal knowledge.
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Figure 5. Worst-case scenario for RDT-LGC.

Our algorithm runs locally to each process and relies
only on dependency vectors propagated as timestamps in
the application messages. Moreover, this task actually
drives the time complexity of RDT-LGC in normal ex-
ecution periods. As efficient RDT checkpointing proto-
cols [3, 10, 21] also rely on dependency vector propagation,

it becomes straightforward to come up with a merged imple-
mentation of checkpointing and garbage collection, without
increasing the asymptotic time complexity of the former.
The only special remark on a merged implementation con-
cerns the treatment of forced checkpoints. As they are trig-
gered by the receipt of a message and supposed to have been
taken before its receipt, the implementor must be careful to
ensure that forced checkpoints are indeed stored before the
execution of the garbage collection related to the receipt of
the message. Algorithm 4 shows how RDT-LGC can be
integrated in the well-known RDT checkpointing protocol
FDAS (Fixed-Dependency-After-Send) [21]. The main dif-
ference from a simple implementation of FDAS are the calls
to the procedures presented in Algorithm 1, shown in bold.

Algorithm 4 FDAS with RDT-LGC at p;
{besides those in Algorithm 1}

Data Structures

1: Var

2. sent: boolean
Initialization

1. sent — false

2: initialize()
Before sending m

1. sent «— true
2 m.DV «— DV

On recelving m
1. forced < true
2: for j +— 0tondo
if m.DV[j] > DV[j] then
if forced then
take checkpoint
forced « false
release(y)
link(j, 7)
DVj] < m.DV[j]
On taking checkpoint
. sent «+ false

{forced checkpoint}

{basic or forced}

1

2: store DV with the checkpoint
3. release(s)

4: newCCB(:, DV [i])

5 DV[i]— DV[i]+1

When it comes to time complexity, except for initialize,
all procedures in Algorithm 1 execute in O(1) time, which
gives an O(n) complexity for all the events shown in Al-
gorithm 2. Algorithm 3 runs in O(n logn) time if line 9 is
implemented using a binary search and O(n) checkpoints
are stored. Moreover, for cases in which a process has to
roll back without having failed, the algorithm can be im-
proved to a time complexity of O(n) by taking advantage
of the existent values in DV and UC.



5. Related work

Rollback-dependency trackability was originally pre-
sented by Wang [21], who introduced efficient distributed
algorithms for calculating minimum and maximum con-
sistent global checkpoints containing a given set of local
checkpoints, when the RDT property holds. This seminal
work also discusses the application of these algorithms in
different scenarios.

RDT can also be defined as the absence of non-causal de-
pendencies, since non-causal zigzag paths must be doubled
by a causal relation to ensure on-the-fly trackability [4, 15].
This observation provided a new perspective on RDT algo-
rithms. Based on it, Agbaria et al. [1] showed that in case of
failure, RDT ensures better bounds on the number of rolled
back checkpoints than other known domino-free properties.

Much research has been pursued in reducing the hum-
ber of forced checkpoints in RDT checkpointing protocols.
Garcia et al. [10] and Baldoni et al. [3] presented protocols
that take fewer forced checkpoints than the protocols pre-
sented by Wang [21]. Important results in this context are
related to the minimal visible characterization of the RDT
property [4, 9], which gives the strongest condition to be
tested for taking forced checkpoints in order to ensure RDT.
Nevertheless, Tsai et al. [20] showed that strong conditions
not always translate into a fewer number of forced check-
points during the whole execution.

Although garbage collection incurs overhead, being an
important pragmatic issue in rollback-recovery, it has re-
ceived little attention in the literature [8]. A simple ap-
proach based on the recovery line for the failure of all pro-
cesses is presented in [5, 8]. Albeit simple, this algorithm
requires process to exchange control messages and does
not bound the number of uncollected checkpoints. Wang
et al. [22] presented a general characterization of obso-
lete checkpoints and developed an algorithm that discards
all of them and ensures a limit on the number of uncol-
lected checkpoints. However, like the previous approach,
it involves the exchange of control messages. The strategy
proposed by Manivannan et al. [14] does not involve con-
trol message exchanges, but requires processes to take basic
checkpoints in known time intervals, which is unfeasible in
many practical scenarios.

6. Concluding remarks

Garbage collection is highly necessary in systems where
the storage space is limited or expensive, like embedded
systems and mobile computing. The garbage collection
algorithm we presented in this paper ensures that a pro-
cess will not maintain more than n stored checkpoints dur-
ing normal execution and does not rely on explicit process
synchronization like previous approaches. It relies on the

propagation of the same control information as many RDT
checkpointing protocols, allowing an efficient merged im-
plementation.

An interesting extension to this work concerns its eval-
uation in a practical environment. This is motivated by the
fact that the theoretical bound on uncollected checkpoints
presented in the paper is reached in executions not likely
to happen often in practice. Moreover, merged implementa-
tions can also be explored in the search for performance im-
provements. Finally, RDT-LGC is the first garbage collec-
tion algorithm based on application messages only. A sim-
ilar approach could be used to create new efficient garbage
collection algorithms based on other properties ensured by
checkpointing protocols.
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