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Abstract

Advances in distributed service-oriented computing and
global communications have formed a strong technology
push for large scale data integration among organizations
and enterprises. However, concerns about data privacy be-
come increasingly important for large scale mission-critical
data integration applications. Ideally, given a database
query spanning multiple private databases, we wish to com-
pute the answer to the query without revealing any addi-
tional information of each individual database apart from
the query result. In practice, we may relax this constraint
to allow efficient information integration while minimizing
the information disclosure. In this paper, we propose an
efficient decentralized peer-to-peer protocol for supporting
aggregate queries over multiple private databases while re-
specting the privacy constraints of participants. The paper
has three main contributions. First, it formalizes the no-
tion of loss of privacy in terms of information revealed at
individual participating databases. Second, it presents a
novel probabilistic decentralized protocol for topk selection
across multiple private databases that minimizes the loss of
privacy. Third, it experimentally evaluates the protocol in
terms of its correctness, efficiency and privacy characteris-
tics.

1 Introduction

Information integration has been an important area of re-
search as there is great benefit for organizations and individ-
uals in sharing their data. Traditionally, information integra-
tion research has assumed that information in each database
can be freely shared. Recently, it has been recognized that
concerns about data privacy increasingly become an impor-
tant aspect of data integration because organizations or in-
dividuals do not want to reveal their private databases for
various legal and commercial reasons.

Application Scenarios. The increasing need for privacy
preserving data integration is driven by several trends [4].

In the business world, with the push towards end-to-end in-
tegration between organizations and their suppliers, service
providers, and trade partners, information sharing may oc-
cur across multiple autonomous enterprises. Full disclosure
of each database is undesirable. It is also becoming com-
mon for enterprises to collaborate in certain areas and com-
pete in others. This in turn requires selective information
sharing.

Another important application scenario is driven by se-
curity. Government agencies realize the importance of shar-
ing information for devising effective security measures.
For example, multiple agencies may need to share their
criminal record databases to identify suspects in the circum-
stance of a terrorist attack. However, they cannot indiscrim-
inately open up their databases to all other agencies.

Such concerns about data privacy place limits on infor-

mation integration. We are faced with the challenge of data
integration while respecting privacy constraints. Ideally,
given a database query spanning multiple private databases,
we wish to compute the answer to the query without reveal-
ing any information apart from the query result.
Current Techniques and Research Challenges. There are
two main existing techniques that one might use for build-
ing privacy preserving data integration applications, and we
discuss below why they are inadequate.

One technique is to use a trusted third party and have the
participating parties report the data to the trusted third party,
which performs the data integration task and reports back
the result to each party. However, finding such a trusted
third party is not always feasible. The level of trust required
for the third party with respect to intent and competence
against security breaches is too high. Compromise of the
server by hackers could lead to a complete privacy loss for
all participating parties should the data be revealed publicly.

The other technique is secure multi-party computation,
[9, 8] which has developed theoretical methods for securely
computing functions over private information such that par-
ties only know the result of the function and nothing else.
However, the methods require substantial computation and
communication costs and are impractical for multi-party



large data-base problems.

Agrawal et al [4] recently proposed a new paradigm
of information integration with minimal necessary shar-
ing across private databases. As a tradeoff for efficiency
and practicability, the constraint of not revealing any addi-
tional information apart from the query result can be relaxed
sometimes to allow minimal additional information to be re-
vealed. As an example, they developed protocols for com-
puting intersection and equijoin between two parties that is
still based on cryptographic primitives but is more efficient
than secure multi-party computation and has minimal infor-
mation disclosure.

Given this paradigm, research opportunities arise for de-

veloping efficient specialized protocols for different oper-
ations. One important operation is statistics queries over
multiple private databases, such as topk data values of a
sensitive attribute. In particular, when £ = 1, it becomes
the max(min) query. For example, a group of competing re-
tail companies in the same market sector may wish to find
out statistics about their sales, such as the top sales revenue
among them, but to keep the sales data private at the same
time. The topk function can be also served as a building
block for more complex distributed topk queries or data
mining algorithms such as kNN classification. The design
goal for such protocols is three fold. First, it should guar-
antee accurate results no matter what techniques are used
for preserving data privacy. Second, it should be efficient
in terms of both computation and communication costs. In
order to minimize the computation cost, expensive crypto-
graphic operations should be limited or avoided. Finally, it
should minimize the information disclosure apart from the
query results for each participant.
Contributions and Organizations. Bearing these design
goals in mind, we propose a protocol for selecting topk data
values of a sensitive attribute across multiple (n > 3) pri-
vate databases. This paper has three main contributions.
First, we formalize the data privacy goal and the notion of
loss of privacy in terms of information revealed, by propos-
ing a data privacy metric (Section 2). Second, we pro-
pose a novel probabilistic decentralized protocol for privacy
preserving topk selection (Section 3). Third, we evaluate
the protocol experimentally in terms of its correctness, effi-
ciency and privacy characteristics (Section 4). We provide a
brief overview of the related work (Section 5) and conclude
the paper with a summary, and a brief discussion of future
work (Section 6).

2 Privacy Model

In this section we define the problem of topk queries
across private databases. We present the privacy goals that
we focus on in the paper, followed by privacy metrics for
characterizing and evaluating how the privacy goals are

achieved.

Problem Statement. The input to the problem is a set of
private databases, Dy, Do, --- ,D,(n > 3). A topk query
is to find out the topk values of a common attribute of all
the individual databases. We assume all data values of the
attribute belong to a publicly known data domain. Now the
problem is to select the topk values with minimal disclosure
of the data values that each database has besides the final
result.

Adversary Model. We adopt the semi-honest model of
adversaries [8] that is commonly used in multi-party se-
cure computation research. A semi-honest party follows
the rules of the protocol, but it can later use what it sees
during execution of the protocol to compromise other par-
ties’ data privacy. Such kind of behavior is referred to as
honest-but-curious behavior [8] and also referred to as pas-
sive logging [18] in research on anonymous communication
protocols. The semi-honest model is realistic for our con-
text where each participating party will want to follow the
agreed protocol to get the correct result for their mutual ben-
efit and at the same time reduce the probability and amount
of information disclosure about their private data during the
protocol execution.

Privacy Goal. We focus on achieving data privacy for topk
queries in this paper. Ideally, besides the query result that
is revealed to all the databases, nodes should not gain any
more information about each others’ data. In other words,
our goal is to minimize data exposure among the multiple
parties apart from the result of the topk query.

We describe the different types of data exposure we con-
sider and formulate our privacy goals in terms of such ex-
posures. Given a node ¢ and a data value v; it holds, we
identify the following data exposures in terms of the level
of knowledge an adversary can deduce about v;: (1) Data
value exposure: an adversary can prove the exact value of
v; (v; = a); (2) Data range exposure: an adversary can
prove the range of v; (a < v; < b) but not prove its ex-
act value; and (3) Data probability distribution exposure:
an adversary can prove the probability distribution of v;
(pdf (v;) = f) even though it may prove neither its range
nor exact value. Intuitively, data value exposure is the most
detrimental privacy breach. Due to the space restrictions,
we will focus our discussions to data value exposures in the
rest of this paper.

Our privacy goal is to minimize the “degree of data value
exposures” (defined in the next section) for each individual
node. We treat all the nodes in the system equally and no
extra consideration will be given to nodes who contribute to
the final topk values. In addition to protecting the data expo-
sure of each node, a related goal is protecting the anonymity
of the nodes who contribute to the final results. However, it
is not the focus of this paper.

Privacy Metrics. Given the data privacy goal, we need to



characterize the degree with which privacy is attained. The
key question is how to measure the amount of information
disclosed during the computation. Concretely, we need to
quantify the degree of data exposure for a single data item
v; that node ¢ holds. There are a few privacy metrics that
are being proposed and used in the existing literature [14,
2]. For our purpose, we adopted the probabilistic privacy
spectrum [14] and propose a more general and improved
metric.

A node’s privacy is compromised when an adversary is
able to make a claim C about the data at other nodes (e.g.,
node ¢ has a value v = 10) with a high degree of certainty.
Besides the results of the query (denoted by R) that are
made public to all the nodes, an adversary will also have
access to intermediate results (denoted by I R) during the
execution of the protocol. Thus the loss of privacy due to
the execution of the protocol is the added information an
adversary can infer due to his knowledge of the intermedi-
ate results, over and above the information he may derive
by his knowledge of the final results.

We propose a general metric - Loss of Privacy - to char-
acterize how severe a data exposure is by measuring the
additional certainty an adversary gains in making a claim.
Let P(C|R,IR) denote the probability of predicate C' be-
ing true given the final result and the intermediate results,
and let P(C|R) be the probability given only the final re-
sult. We define Loss of Privacy (LoP) in Equation 1:

LoP = |P(C|R,IR) — P(C|R)| (1)

Intuitively, Loss of Privacy quantifies the amount of extra
information an adversary obtains from his knowledge of the
intermediate results. The metric gives a value within the
range [0, 1). We use the phrase “complete loss of privacy”
to refer to the case where the Loss of Privacy is close to 1.

Concretely, consider the case where C' is in the form
of v; = a (i.e., a data value predicate) and R is the fi-
nal topk value set denoted as TopK. If a € TopK, ev-
ery node has the same probability to hold a so we have
P(v; = a|TopK) = 1/n (for n participants). Otherwise,
when (a ¢ TopK), it is close to impossible for an adver-
sary to guess the exact value of a node given only the fi-
nal result. This is especially true when the data domain is
large enough, because a node can take any of the values
in the data domain. So we approximate P(v; = a|TopK)
with 0. Thus, Loss of Privacy is equal to either P(v; =
alIR,TopK) — 1/n or P(v; = a|IR,TopK), depending
on whether a € TopK.

Given the definition of LoP for a single data item at a
single node, we define LoP for a node as the average LoP
for all the data items used by the node while participating
in the protocol. Intuitively, when nodes participate in the
protocol with their local topk values, the more values that
get disclosed, the larger the LoP for the node. We measure

the privacy characteristics for the protocol using the average
LoP of all the nodes.

3 The Decentralized Protocol

In this section we describe a decentralized protocol
PrivateTopk - for multiple organizations to execute topk
queries across n private databases (nodes), such that each
node suffers minimum information disclosure.

Bearing the privacy goal in mind, we identify two impor-
tant principles for our protocol design. First, the output of
the computation at each node should be sufficiently random
S0 as to prevent an adversary from being able to determine
that node’s data value or data range with certainty. Second,
the protocol should be able to produce the correct final out-
put of a topk query (correctness) in a small and bounded
number of rounds of communication among the n nodes
(efficiency). Using these principles as the design guidelines,
we propose a probabilistic protocol with a randomized lo-
cal algorithm for topk queries across n private databases
(n > 3). To facilitate the discussion of our protocol, we
first present a naive protocol to execute topk queries, and
then present our distributed probabilistic protocol.

3.1 A Naive Protocol

Consider a group of n databases who wish to select the
max value (kK = 1) of a common attribute. A straightfor-
ward way to compute the result without a central server is
to have the nodes arranged in a ring in which a global value
is passed from node to node along the ring. The first node
sends its value to its successor. The next node computes the
current max value between the value it gets from its pre-
decessor and its own value and then passes this value to
its successor. This continues until the first node receives a
value from its predecessor. At this point, the starting node
will know the global max value, and can broadcast this in-
formation.

Clearly, the scheme does not provide good data privacy.
The starting node has complete loss of privacy to its succes-
sor regarding its value. The nodes that are close to the start-
ing node in the ring have a fairly high probability of disclos-
ing their values. A randomized starting scheme would pro-
tect the starting node and avoid the worst case, but it would
not help with the average data value disclosure of all the
nodes on the ring. Furthermore, every node i (1 < ¢ < n)
suffers a complete loss of privacy regarding its data range,
i.e. the successor knows for sure that node ¢ has a value
smaller than the value it passes on. This leads us to con-
sider alternative protocols for better privacy preservation.



3.2 Protocol Structure

To address the shortcomings of the naive protocol, we
devised a probabilistic protocol. First, we give a brief
overview of the key components of the protocol and then
use max (min) queries (topk queries with £ = 1) to illus-
trate how the two design principles are achieved by the com-
putation performed at each node to achieve minimum dis-
closure of information. The protocol is designed to run over
a decentralized network with a ring topology, and consists
of the node communication scheme, the local computation
module and initialization module at each node.

Nodes are mapped onto a ring randomly; thus each node
has a predecessor and successor. The random mapping re-
duces the ability of two colluding adversaries to be the pre-
decessor and successor of an innocent node. The ring set-
ting is commonly used by distributed consensus protocols
such as leader election algorithm [13]. We also plan to ex-
plore other topologies such as hierarchy for designing po-
tentially more efficient protocols. We assume secure com-
munication channels between a node and its successor. The
local algorithm is a standalone component that each node
executes. The initialization module is designed to select the
starting node among the n participating nodes and then ini-
tialize a set of parameters used in the local computation al-
gorithms.

In this paper we do not handle the data schema hetero-
geneity issues. We assume that the database schemas and
attribute names are known and are well matched across n
nodes. Readers who are interested in this issue may refer to
[7] for some approaches to the problem of schema hetero-
geneity.

3.3 PrivateMax Protocol

We first present the protocol for max(min) queries (the
special case of topk with £ = 1) over n private databases,
referred to as PrivateMax protocol, to help readers under-
stand the key ideas and techniques used in our protocol de-
sign. Later, we generalize to topk queries in next subsec-
tion.

The intuitive idea of using a probabilistic protocol is to
inject the right amount of randomization into the local com-
putation at each node, such that the probability of data value
disclosure at each node is minimized while ensuring that
the eventual result of the protocol is guaranteed to be cor-
rect. Concretely, the protocol consists of multiple rounds
in which a global value is passed from node to node along
the ring. During each round, nodes inject some randomiza-
tion in their local computation with a certain randomization
probability that depends on the round. The randomization
probability monotonically approaches 0 as the number of

rounds increases, ensuring that the protocol eventually pro-
duces the correct result.

Randomization Probability. We first define the random-
ization probability. It starts with an initial probability de-
noted as pg in the first round and decreases exponentially
with a dampening factor denoted as d, so that it tends to O
with sufficient number of rounds. The randomization prob-
ability for round r denoted as P,.(r) is defined as follows:

P.(r) =po*d ' (2)

PrivateMax Local Algorithm. Each node, upon receiv-
ing the global value from its predecessor, performs the local
randomized algorithm, and passes the output to its succes-
sor. The core idea of this algorithm is to determine when
and how to inject randomization in order to implement the
two design principles of the protocol, namely, the output
of the algorithm should prevent an adversary from inferring
the value or range of the data that the node holds with any
certainty; and the randomized output should not generate
potential errors that lead to incorrect final output of the pro-
tocol.

Algorithm 1 PrivateMax Local Algorithm (executed by
node ¢ at round r)
INPUT: g;—1(r), v;, OUTPUT: g;(r)
Pr(r) < Do * dr_l
if g;_1(r) > v; then
9i(r) < gi—1(r)
else
with probability P,(r): g;(r) < a random value be-
tween [g;—1(r), v;)
with probability 1 — P.(r): g;(r) + v;
end if

A sketch of the PrivateMax local algorithm is given in
Algorithm 1 for node ¢ at round r. The algorithm takes two
inputs: (1) the global value node i receives from its pre-
decessor 7 — 1 in round r, denoted as g;—1(r), and (2) its
own value, denoted as v;. The algorithm compares these
two input values and determines the output value, denoted
as g;(r), in the following way. First, if the global value
gi—1(r) is greater than or equal to its own value v;, node
i simply returns the current local maximum value (g;—1(r)
in this case). There is no need to inject any randomization
because the node does not expose its own value in this case.
Second, if g;_1(r) is smaller than v;, instead of always re-
turning the current local maximum value (v; in this case),
node 7 returns a random value with probability P,.(r), and
returns v; with probability 1 — P,.(r). The random value is
generated uniformly from the range [g;—1 (1), v;). Note that
the range is open ended at v; to ensure that the node will not
reveal its private value v;.



Such randomization has a number of important proper-

ties. First, it successfully prevents an adversary from de-
ducing the value or range of v; with any certainty. This is
because the output of node ¢ can be either a random value,
or the global value passed by the predecessor of node i,
or its own value v;. Second, the global value monotoni-
cally increases as it is passed along the ring, even in the
randomization case. When randomization is injected, the
random value output g;(r) can be smaller than v; but has
to be greater than or equal to g;—1(r), which ensures that
the global value keeps increasing. This monotonic increas-
ing property minimizes the need for other nodes after node
1 to have to disclose their own values because they can sim-
ply pass on the global value if it is greater than their own
values. Finally, the randomization will not generate an er-
roneous value which is greater than the global maximum,
because the global value passed around the ring is always
smaller than or equal to v; and thus smaller than the global
maximum value. It will be replaced by the value that is held
either by the node i itself or any other node that holds a
greater value in a later round as the randomization proba-
bility decreases.
Protocol Details. At initialization, each node in the net-
work chooses its local max value to participate in the global
max selection. The protocol randomly chooses a node from
the n participating nodes, say node 4, with ¢ = 1. Node 1
initializes the global value go (1) to the lowest possible value
in the data domain; the randomization probability to po,
the dampening factor d (recall equation 2), and the round
counter r.

Upon the completion of the initiation process, the local
computation module is invoked at node 1. Each node j,
upon receiving the global value g;_1 (r) from its predeces-
sor at round r, executes the local computation algorithm,
and passes the output g;(r) to its successor. The protocol
terminates at the starting node after a sufficient number of
rounds. Note that if we set the initial randomization proba-
bility to be 0 (pg = 0), the protocol is reduced to the naive
deterministic protocol.

round | in | out round | in | out

1 0| 16 1 16 | 16
2 |25 30 30 | 30
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4 |40 | 40 40 | 40
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Figure 1. lllustration for PrivateMax Protocol

Figure 1 shows an example walk-through of the PrivateMax
protocol over a network of 4 nodes, initialized with pg = 1
and d = 1/2. Assume the protocol starts from node 1 with
the initial global value go(1) = 0. In the first round (r =
1), the randomization probability P,(1) is equal to 1, so if
a node receives a value smaller than its own value, it will
always return a random value between the received value
and its own value. As a result, node 1 returns a random
value between [0,30), say 16. Node 2 passes 16 to node 3
because it is greater than its own value 10. Node 3 returns
a random value between [16,40), say 25; and node 4 passes
value 25 to the first node because it is greater than its own
value 20. The protocol proceeds this way until the final
round. After the final round all nodes simply pass on the
final result.

This example illustrates how the decentralized proba-
bilistic protocol works and why it ensures that each node
retains good privacy about the exact value and the range of
their data.

3.4 PrivateTopk Protocol

Now we describe the general PrivateTopk protocol for
topk selection. It works similarly as PrivateMax protocol
(k = 1) in terms of the probabilistic scheme. The complex-
ity of extending the protocol from max to general topk lies
in the design of the randomized algorithm.

As the initial step, each node chooses its local topk val-
ues as its local topk vector to participate in the protocol,
since it will have at most k values that contribute to the fi-
nal topk result. As in PrivateMax protocol, the initializa-
tion module randomly picks a node from the n participating
nodes as the starting node, initializes the global topk vec-
tor to the lowest possible values in the corresponding data
domain, sets the round counter r, and initializes the ran-
domization probability py and the dampening factor d.

The protocol performs multiple rounds in which a cur-
rent global topk vector is passed from node to node along
the ring network. Each node ¢, upon receiving the global
vector from its predecessor at round 7, performs a random-
ized algorithm and passes its output to its successor node.
The starting node terminates the protocol after a sufficient
number of rounds.

PrivateTopk Local Algorithm. The randomized algorithm
is the key component of the probabilistic PrivateTopk pro-
tocol. We want the algorithm to have the same properties
as those of PrivateMax algorithm (Algorithm 1), namely,
guaranteeing correctness while minimizing data value dis-
closures. To accomplish this, we can use the same idea of
generating random values and injecting them into the out-
put of the global topk vector at node ¢ (1 < i < n) in order
to hide the nodes own values. However, with k values in
the local topk vector, we need to make sure that the ran-



domly generated values will eventually be shifted out from
the final global topk vector.

Algorithm 2 PrivateTopk Local Algorithm (executed by
node ¢ at round 7)
INPUT: G;_4(r), V;, OUTPUT: G,(r)
Pr(r) < Do * dr_l
G;(’I") = tOpK(Gi_l(’l") UV
Vi€ Gr) - G (1)
m V|
if m = 0 then
Gl(T) — Gi_1(’l")
else
with probability 1 — P, (r): G;(r) < Gi(r)
with probability P, (r):
Gi(r)[1:k—m] <+ G;i_1(r)[1 : k —m]
Gi(r)[k — m + 1 : k] « sorted list of m random val-
ues from [min(G}(r)[k] — 0,Gi—1(r)[k — m + 1]),
Gi(r)[k])
end if

Algorithm 2 gives a sketch of a randomized algorithm for
PrivateTopk protocol with respect to node ¢ executing at
round r. The inputs to the algorithm are (1) the global vec-
tor node ¢ receives from its predecessor ¢ — 1 in round r,
denoted as G;_1(r), and (2) its local topk vector, denoted
as V;. The output of the algorithm is the global vector de-
noted as G;(r). Note that the global vector is an ordered
multiset that may include duplicate values.

The algorithm first computes the correct topk vector,
denoted as G(r), over the union of the set of values in
G;—1(r) and V;. It then computes a sub-vector of V;, de-
noted as Vi’ , which contains only the values of V; that con-
tribute to the current topk vector G (r) by taking a set dif-
ference of the set of values in G (r) and G;_1 (r). Note that
the union and set difference here are all multiset operations.
The algorithm then works under two cases.

Case 1: The number of elements in Vi’, m, is 0, i.e. node
1 does not have any values to contribute to the current topk.
In this case, node 7 simply passes on the global topk vector
G;_1(r) as its output. There is no randomization needed
because the node need not expose its own values.

Case 2: Node i contributes m(0 < m < k) values
in the current topk. Figure 2 gives an illustrative exam-
ple where m = 3 and £k = 6. In this case, node ¢
only returns the real current topk (G}(r)) with probabil-
ity 1 — P.(r). Note that a node only does this once, i.e.
if it inserts its values in a certain round, it will simply
pass on the global vector in the rest of the rounds. With
probability P,(r), it copies the first ¥k — m values from
G;i—1(r) and generate last m values randomly and inde-
pendently from [min(Gi(r)[k] — 6,G;—1(r)[k — m + 1]),
Gl (r)[k]), where G(r)[k] denotes the kth (last) item in

Gi(r)
m values
1-P.(r) to be inserted

P

m random values
between [80, 100)

Figure 2. lllustration for PrivateTopk Local Al-
gorithm

Gi(r), Gi_1(r)[k —m+ 1] denotes the k —m + 1th item in
G;—1(r), and 0 denotes a minimum range for generating the
random values. The reason for generating m random values
is because only the last m values in the output are guaran-
teed to be shifted out in a later round when the node inserts
its real values if the global vector has not been changed by
other nodes. The range is designed is such a way that it
increases the values in the global vector as much as possi-
ble while guaranteeing the random values do not exceed the
smallest value in the current topk so they will be eventu-
ally replaced. In an extreme case when m = k, the current
topk vector is equal to V;, it will replace all k£ values in the
global vector with k& random values, each randomly picked
from the range between the first item of G;_1(r) and the
kth (last) item of V;.

It is worth noting that when k& = 1 the PrivateTopk local
algorithm becomes the same as the PrivateMax local algo-
rithm. We report our experimental evaluation on the cor-
rectness and privacy characteristics of the general protocol
in Section 4.

4 Experimental Evaluations

In this section, we present an initial set of experiments
evaluating the protocol in terms of its correctness, effi-
ciency, and privacy characteristics. We also conducted for-
mal analysis on the protocol. The analytical results are
omitted in this paper due to space restrictions. Please re-
fer to our technical report [20] for detailed initial analytical
results.

4.1 Experiment Setup

The system consists of n nodes. The attribute values at
each node are randomly generated over the integer domain



Param. | Description

n # of nodes in the system

k parameter in topk

Do initial randomization prob.

d dampening factor for randomization prob.

Table 1. Experiment Parameters

[1,10000]. We experimented with various distributions of
data, such as uniform distribution, normal distribution, and
zipf distribution. The results are similar so we only report
the results for the uniform distribution. The experiment
proceeds by having the nodes compute topk values using
the probabilistic protocol. We evaluate the accuracy and
privacy properties. Each plot is averaged over 100 exper-
iments. Table 1 lists the main parameters for the experi-
ments.

4.2 Precision and Efficiency of Max Selection
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Figure 3. Precision of Max Selection with In-
creasing Number of Rounds

We first verify the correctness of the PrivateMax protocol
(k = 1). Figure 3(a) and (b) show the precision with in-
creasing number of rounds (r) for different initial random-
ization probability (py and dampening factor (d) respec-
tively. We observe that the precision increases to 100% as
the number of rounds increases. A smaller py results in a
higher precision in the first round and makes the precision
converge to 100% faster. A smaller d makes the precision
reach 100% much faster. In other words, a smaller pg and d
provides better efficiency in terms of the number of rounds
required given a precision guarantee.

Note that the communication cost for a single round is
proportional to the number of nodes on the ring. One pos-
sible way to improve the efficiency for a system with a
larger number of nodes is to break the nodes into a number
of small groups and have each group compute their group
maximum value in parallel and then compute the global

maximum value at designated nodes, which could be ran-
domly selected from each small group.

4.3 Privacy Characteristics of Max Selection

We evaluate the privacy characteristics of the protocol in
terms of their data value loss of privacy. In particular, we
want to answer a number of questions. What is the loss
of privacy during the execution of the algorithm? How does
the number of nodes affect the privacy characteristics? How
do the randomization parameters affect the privacy charac-
teristics and how to select them? How does the protocol
compare to the naive protocol?

Loss of Privacy in Different Rounds. We first study the
loss of privacy of the protocol in each round during the ex-
ecution with different randomization parameters.
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Figure 4. Loss of Privacy for Max Selection in
Different Rounds

Figure 4(a) and (b) show the average data value loss of pri-
vacy for all nodes in different rounds with varying initial
randomization probability (po) and dampening factor (d) re-
spectively. With a smaller py, the loss of privacy reaches
highest in the first round and gradually decreases. With a
larger py (e.g., po = 1), the loss of privacy is zero in the
first round and reaches the peak in the second round and
then gradually decreases. If we look at the peak loss of pri-
vacy, a larger py provides a better privacy. In Figure 4(b),
the trend is the same as the one of pyp = 1. However, a larger
d results in a lower peak loss of privacy. Intuitively, a larger
po and d add more randomization into the protocol and thus
provide better privacy.

We have shown the loss of privacy in different rounds
during the execution. For the rest of the experiments we
will take the highest (peak) loss of privacy among all the
rounds for a given node to measure its overall loss of pri-
vacy, because that gives us a measure of the highest level
of knowledge an adversary can obtain regarding the node’s
data value.

Effect of Number of Nodes. We now report the experi-
ments showing how the number of nodes affects the loss of
privacy of the protocol.
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Figure 5. Loss of Privacy for Max Selection
with Varying Number of Nodes

Figure 5(a) and (b) show the average data value loss of pri-
vacy for all nodes with varying initial randomization prob-
ability (pg) and dampening factor (d) respectively. We can
see that the loss of privacy decreases with increasing num-
ber of nodes. This is very intuitive because the larger the
number of nodes, the faster the global value increases and
thus the less probability the nodes have to disclose their own
values. Again, the result shows that a smaller py and d pro-
vide a better privacy.

Selection of Randomization Parameters. This set of ex-
periments is dedicated to study the effect of randomization
parameters on both privacy characteristics and efficiency
of the protocol. Recall the experiments described so far,
a larger py and d provide better privacy but requires more
cost in terms of number of rounds required for a given pre-
cision guarantee. Our design goal is to increase the effi-
ciency while minimizing the loss of privacy. Put differently,
we want to see what parameters give good tradeoff between
privacy and efficiency.
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Figure 6. Tradeoff between Privacy and Effi-
ciency with Randomization Parameters

Figure 6 shows the loss of privacy on X axis and the cost in
terms of number of rounds for a given precision guarantee
(e = 0.001) on Y axis for varying randomization parame-
ter pairs (pg,d). We can see that py has a dominating ef-
fect on the loss of privacy while d has a dominating effect
on efficiency. An optimal set of parameters may be cho-

sen according to the requirements or preferences on privacy
and efficiency of different applications. In general, the data
points in the lower left corner of the graph provide a good
tradeoff between efficiency and privacy. In the rest of our
experiments, we use pp = 1 and d = 1/2 as default param-
eters.

Comparison of Different Protocols. We have discussed
the naive protocol with fixed starting node, and our proba-
bilistic protocol. The experiments reported below compare
the probabilistic protocol with the naive protocol. For com-
parison purposes, we also include the anonymous naive pro-
tocol which uses a randomized starting scheme, instead of
fixed starting node, to provide the anonymity of the starting
node. We show both average and worst case loss of privacy
for different nodes in the system. By worst case, we mean
highest loss of privacy among all the nodes and it typically
happens at the starting node in the fixed starting scheme.
Our goal is to show the effectives of our probabilistic proto-
col over the naive one and the benefit of randomly selecting
the starting node.
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Figure 7. Comparison of Loss of Privacy with
Varying Number of Nodes

Figure 7(a) and (b) show the average and worst case data
value loss of privacy for all nodes with different number
of nodes (n) respectively. The anonymous starting scheme
has the same average LoP as the naive protocol but avoids
the worst case scenario. This can be seen in Figure 7(b)
where the naive protocol suffers a loss of privacy close to
100% (at the starting node) while the anonymous protocol
does not change significantly from the average case in Fig-
ure 7(a). The probabilistic PrivateMax protocol achieves
significantly better privacy than the naive protocols. It is
close to 0 in most cases. All the protocols have a decreasing
loss of privacy as the number of nodes increases. Interest-
ingly, when the number of nodes is sufficiently large, the
anonymous naive protocol performs reasonably well com-
pared to the probabilistic protocol. However, most of the
privacy preserving data integration will be among tens or
hundreds of nodes with membership controls. A network
of size on the order of thousands seldom occurs in the data
integrations scenarios we envision.



4.4 Precision and Efficiency of Topk Selection

We have presented results for PrivateMax protocol so
far. Now we evaluate the general PrivateTopk protocol in
terms of its correctness, efficiency, and privacy character-
istics. In addition to running the same set of experiments
for PrivateMax protocol, we also run a set of experiments
with varying k. Since most of the results we obtained are
similar to those for PrivateMax protocol, we only report in
these two subsections the results for PrivateTopk protocol
with varying k to show the effect of k.

We first verify the correctness of PrivateTopk protocol.
In order to evaluate the precision of top-k selection, we first
define the precision metric we use. Assume TopK is the
real set of topk values and R is the set of topk values re-
turned. We define the precision as |[R N TopK| /k.
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Figure 8. Precision of Top% Selection with In-
creasing Number of Rounds

Figure 8 shows the precision of PrivateTopk protocol with
increasing number of rounds (r) for varying k. The preci-
sion reaches to 100% in all lines after a fairly small number
of rounds. The effect of k£ on the convergence is not signifi-
cant. We also ran experiments for varying n with £ > 1 and
the result did not show any significant effect.

4.5 Privacy Characteristics of Top-% Selection

Now we report the loss of privacy for PrivateTopk proto-
col with varying k and its comparison to the naive protocol.

Figure 9(a) and (b) show the average and worst case data
value loss of privacy for all nodes of different protocols with
varying k. We can make a few interesting observations. We
see that the probabilistic PrivateTopk protocol achieves sig-
nificantly better privacy than the naive protocols. Interest-
ingly, PrivateTopk protocol has an increasing loss of privacy
as k increases. An intuitive explanation is that the larger the
k, the more information a node exposes to its successor and
hence the larger the loss of privacy.
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Figure 9. Comparison of Loss of Privacy with
Varying &

5 Related Work

Privacy related problems in databases have been an
active and important research area. Research in secure
databases, Hippocratic databases and privacy policy driven
systems [12, 5, 3] has been focused on enabling access of
sensitive information through centralized role-based access
control. More recently research has been done in areas such
as privacy preserving data mining, privacy preserving query
processing on outsourced databases, and privacy preserving
information integration.

In privacy preserving data mining [17], the main ap-
proach is to use data perturbation techniques to hide precise
information in individual data records, as the primary task
in data mining is the development of models and patterns
about aggregated data. In database outsourcing scenarios,
the main technique is to use data partitioning to evaluate
obfuscated range queries with minimal information leakage
[10, 11]. However, these techniques may not apply to infor-
mation integration tasks where precise results are desired.

In the information integration domain, Agrawal et al.
[4] introduced the paradigm of minimal information sharing
for privacy preserving information integration. A few spe-
cialized protocols have been proposed under this paradigm,
typically in a two party setting, e.g., for finding intersec-
tions [4], and kth ranked element [1]. Though still based
on cryptographic primitives, they achieve better efficiency
than traditional multi-party secure computation methods by
allowing minimal information disclosure. In contrast, our
protocol does not require any cryptographic operations. It
leverages the multi-party network and utilizes a probabilis-
tic scheme to achieve minimal information disclosure and
minimal overhead.

As a recent effort, there is also research on privacy pre-
serving topk queries across vertically partitioned data using
k-anonymity privacy model [16]. Our protocol computes
topk selection across horizontally partitioned data and uses
a different data privacy model. The topk selection alone
can be also served as a primitive function for more complex



aggregate queries or data integration tasks.

Another related area is the anonymous network where
the requirement is that the identity of a user be masked
from an adversary. There have been a number of appli-
cation specific protocols proposed for anonymous commu-
nication, including anonymous messaging (Onion Routing
[15]), anonymous web transactions (Crowds [14]), anony-
mous indexing (Privacy Preserving Indexes [6]) and anony-
mous peer-to-peer systems (Mutual anonymity protocol
[19]). Some of these techniques may be applicable for data
integration tasks where parties opt to share their information
anonymously. However, anonymity is a less strong require-
ment than data privacy.

Finally, distributed consensus protocols such as leader
election algorithms [13] provide system models for design-
ing distributed algorithms. However they are not concerned
about data privacy constraints of individual nodes.

6 Conclusion

We have presented PrivateTopk protocol for top-k selec-
tions across multiple private databases. We formalized the
notion of loss of privacy in terms of information revealed
and developed an efficient decentralized probabilistic proto-
col, which aims at selecting topk data items across multiple
private databases with minimal information disclosure. We
evaluated the correctness and privacy characteristics of the
proposed protocol through experimental evaluations.

Our work on privacy preserving data integration contin-
ues along several directions. First, we are continuing our
formal analysis of the protocol including privacy analysis
with potential collusions among the nodes. Also, given the
probabilistic scheme, it is possible to design other forms
of randomization probability and randomized algorithms.
We are interested in formally discovering the optimal ran-
domized algorithm. Second, we are exploring optimiza-
tion techniques for networks with a large number of partic-
ipating databases. Third, we plan to relax the semi-honest
model assumption and address the situations where adver-
saries may not follow the protocol correctly. Finally, we are
developing a privacy preserving kNN classifier on top of the
topk protocol. We are also interested in developing efficient
protocols for more complex aggregate or topk queries.
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