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Abstract

We consider a simple model for reputation systems such
as the one used by eBay. In our model there are n players,
some of which may exhibit arbitrarily malicious (Byzantine)
behavior, and there are m objects, some of which are bad.
The goal of the honest players is to find a good object. To
facilitate collaboration, the system maintains a shared bill-
board. A basic step of a player consists of consulting the
billboard, probing an object to learn its true value, and
posting the result on the billboard for the benefit of oth-
ers. Probing an object incurs a unit cost to the player, and
consulting the billboard is free. The dilemma of an hon-
est player is how to balance between the desire to reduce
its cost by taking advantage of the reports posted by honest
peers, and the fear of being exploited by adopting reports
posted by malicious players.

In prior work, we presented an algorithm solving this
problem in an asynchronous model, and we analyzed the
total cost of the probes made by honest players during
the algorithm. In this paper, we focus on the individual
cost, and we consider a synchronous model in which each
player takes a step in each round. Our prior algorithm
has individual cost O

(
1
α log n

)
in this model, assuming

that an α fraction of players are honest. In this paper, we
prove that no algorithm can guarantee individual cost of
less than Ω

(
1
α

)
, which is essentially constant if there are

enough honest players. Our main result is a new algorithm
that achieves O(1) individual cost when there are many

honest players, and achieves individual cost O
(

1
α

log n
log log n

)
even when there are not. We also show that this algorithm
generalizes to other interesting scenarios.

1 Introduction

The commerce giant eBay depends heavily on its reputa-
tion system for its success [15]. After each transaction, the
system invites each party to rate the other party on a public

billboard maintained by the system. Looking up the record
of the other party is a key step before making any trans-
action. Unfortunately, malicious users can collude and post
false information on this billboard, inducing other users into
fraudulent transactions with catastrophic results [6, 9]. In
this paper, we study algorithmic solutions to using such bill-
boards effectively, even in the face of malicious users.

1.1 Our model

In prior work, we proposed [1] a simple model for study-
ing collaboration on eBay. In this model, there are n play-
ers and m objects. Each object has an unknown value and
known cost, both specified as real nonnegative numbers.
We divide the objects into good (high value) and bad (low
value) objects. A player can probe each object, discovering
its value and incurring its cost. The goal of each player is to
find a good object at minimal cost.

To facilitate collaboration among the players, the system
supports a public billboard where players report their expe-
rience with objects. Consulting the billboard is free, and is
intended to help reduce the probing costs. Unfortunately,
while some players are honest and follow the protocol, oth-
ers are dishonest and can behave in an arbitrary fashion,
including colluding and posting bogus reports on the bill-
board so as to maximize the cost to the honest players.

In this model, we studied [1] the total cost to the honest
players of finding good objects. We considered an asyn-
chronous model, where a basic step is a single player read-
ing the billboard, probing an object, and updating the bill-
board; the player schedule is assumed to be under the con-
trol of the adversary. We gave a simple algorithm where
the total cost to the honest players of finding good objects
is O( 1

β + n log n), regardless of the number of dishonest
players, where 0 < β ≤ 1 is the fraction of good objects.

1.2 Our Results

In this paper, we focus on the individual cost to the
honest players. The asynchronous model is obviously not
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a good model for studying bounds on individual cost. A
schedule that runs a single player by itself forces that player
to find the good object on its own without any assistance
from any other player. We must make some restriction
on the allowable schedules to get any meaningful results.
Synchronous models are a convenient abstraction of asyn-
chronous models where players are running at more or less
the same speed. Furthermore, we can often simulate syn-
chronous behavior in asynchronous environments with the
use of timestamps (an integral part of any posting on any
real billboard). In this paper, we consider a synchronous
model where computation proceeds in a sequence of rounds,
and each player probes one object in each round until it
probes a good object. In this model, we prove nearly tight
bounds on the expected number of rounds (and hence the
expected cost) until an honest player finds a good object.

We start in Section 3 with two simple lower bounds. The
first is due to the collective amount of work required until
any player finds a good object, and the second holds even in
the case where all other honest players have already found a
good object. Together, these results imply that no algorithm

can halt in less than expected Ω
(

1
αβn + 1

α

)
rounds, where

0 < α ≤ 1 and 0 < β ≤ 1 denote the fraction of honest
players and good objects.

Next, in Section 4, we present our main result: a random-
ized algorithm DISTILL that is always better than the asyn-
chronous algorithm of [1]. Specifically, the asynchronous
algorithm, when considered under a synchronous schedule

(say, round robin), halts in expected time O
(

log n
αβn + log n

α

)
.

Most players are honest in the real world (meaning α is
close to 1), but in this case the expected cost to an honest
player is still Ω (log n). In contrast, the DISTILL algorithm
has O(1) individual cost when most players are honest, and
improves the O(log n) individual cost by a O(log log n)
factor even when many players are dishonest. The individ-
ual cost is stated precisely in Theorem 4, but if there are
just nε dishonest players for some constant ε > 0, then the

expected cost per player is just the constant O
(

1
1−ε

)
. The

idea of the algorithm is quite intuitive, as the following ex-
ample demonstrates.

Informally, the idea is that the algorithm works by refin-
ing a set of candidate objects. To illustrate the idea, suppose
for the moment that there are m = n objects and only

√
n

dishonest players. Consider the following three-phase algo-
rithm which is a simplification of DISTILL. Each phase i
consists of two rounds in which each player probes a ran-
dom object from a candidate set Ci and posts the result on
the billboard. Each candidate set Ci is the set of objects
recommended by at least θi players on the billboard at the
start of phase i, where θi is a threshold for phase i. We
use θ1 = 0, θ2 = 1, and θ3 =

√
n/2.

We claim that each candidate set contains the good ob-

ject i0 with constant probability. The set C1 contains i0
since it contains all objects. In phase 1, each probe by
an honest player probes i0 with probability 1/n; there are
at least 2(n −

√
n) ≥ n probes by honest players in the

two rounds of phase 1; so at least one honest player rec-
ommends i0 by the end of phase 1 with probability at
least 1 − (1 − 1/n)n > 1 − 1/e. The set C2, there-
fore, contains i0 with constant probability, and contains at
most

√
n + 1 ≈

√
n objects since the

√
n dishonest play-

ers can recommend at most
√

n bad objects. In phase 2,
each probe by an honest player probes i0 with probability
at least 1/

√
n, and there are at least 2(n−

√
n) ≥ n probes

by honest players in the two rounds of phase 2, so we ex-
pect

√
n players to recommend i0 by the end of phase 2. By

Markov’s inequality, at least
√

n/2 players recommend i0
with constant probability. The set C3, therefore, contains i0
with constant probability, and contains at most 3 objects
since the

√
n dishonest players can recommend at most 2

bad objects
√

n/2 times. In phase 3, each player can probe
these 3 objects and halt within 3 rounds.

Obviously, the simplistic analysis above breaks down
when the number of dishonest players is large. The hard
part of the analysis in Section 4 is to show that regardless
of the number of dishonest players, and regardless of the
adversarial strategy they employ, the algorithm does quite
well in terms of the expected individual cost.

1.3 Related work

Our algorithms depend on collaboration and recommen-
dations, and are closely related to the literature on collabo-
rative filtering or recommendations systems.

Most prior research on recommendation systems focused
on a centralized, off-line version of the problem, where the
algorithm is presented with a lot of historical preference
data, and the task is to generate a single recommendation
that maximizes the utility to the user. This is usually done
by heuristically identifying clusters of users [14] (or prod-
ucts [16]) in the data set, and using past grades by users in
a cluster to predict future grades by other users in the same
cluster. SVD was shown also to be effective for the off-line
problem [10]. Some of these systems enjoy industrial suc-
cess, but they are known to perform poorly when prior data
is less than plentiful [17], and they are extremely vulnerable
even to mild attacks [12, 13]. Canny [5] gives a distributed
secure and private SVD computation for the off-line version
of the problem.

Theoretical studies of recommendation systems usually
take the latent variable model approach: a stochastic pro-
cess is assumed to generate noisy observations, and the goal
of an algorithm is to approximate some unknown param-
eters of the model. Kumar et al. [11] study the off-line
problem for a model where preferences are identified with
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past choices (purchases). In this model there are clusters of
products. Each user has a probability distribution over clus-
ters; a user first chooses a cluster by his distribution, and
then chooses a product uniformly at random from that clus-
ter. The goal is to recommended a product from the user’s
most preferred cluster. Kleinberg and Sandler [8] general-
ized this model to the case where the choice within a cluster
is governed by an arbitrary probability distribution, and also
consider the mixture model, in which each cluster is a prob-
ability distribution over all products. Azar et al. [3] consider
a model where there exists an unknown user-product prefer-
ence matrix which can be approximated by a low-rank ma-
trix. The system observes this matrix only after its entries
were subjected to random additive noise and then to ran-
dom omissions. They use SVD to reconstruct the original
preferences.

Recommendation systems are often vulnerable to mali-
cious users spamming the system. For example, web search
algorithms [4, 7] are a form of recommendation systems,
but these algorithms essentially compute the popularity of a
page, and are known to be vulnerable malicious users who
generate lots of links to a page to boost the perceived pop-
ularity of the page. Such popularity-style algorithms actu-
ally enhance the power of malicious users. Empirical evi-
dence to that effect is provided in the work by Kamvar et
al. [6], which studies trust in the context of authenticity of
files downloaded in peer-to-peer systems. Using a variant
of Kleinberg’s algorithm [7], they assign a trust value to
each peer. They comment that this approach is useful only
if there are nodes that are known a priori to be trustworthy:
Otherwise, “forming a malicious collective in fact heavily
boosts the trust values of malicious nodes.”

In previous work, we demonstrated [2] that our asyn-
chronous algorithm [1] for reputation systems can also be
used as an on-line solution to the recommendation problem,
even in the presence of malicious users. The DISTILL algo-
rithm in this paper has the limitation of being a synchronous
algorithm and requiring knowledge of α, but it has the ad-
vantage of also being a particularly efficient solution to the
recommendation problem when the number of honest play-
ers is large. The difficult task in this paper is to make the
DISTILL technique work even when the number of honest
players is small, as we do in Section 4. In addition to us-
ing the DISTILL algorithm in recommendation systems, we
can use the algorithm when different objects have different
costs, and when the goal is to find the best object, whose
value is not known in advance, as we show in Section 5.

2 Model

The basic entities in our model are n players and m ob-
jects. Each object has intrinsic unknown value and known
cost, both real non-negative numbers. The collection of ob-

jects is divided into two sets: good (high value) objects and
bad (low value) ones. The basic operation of a player con-
sists of probing an object. In probing an object i, the player
pays the (known) cost of i and learns the (hitherto unknown)
value of that object. Intuitively, the goal of players is to find
a good object while incurring minimal cost. The algorithm
presented in Section 4 assumes unit costs; in Section 5 it is
extended to the general cost model.

2.1 System environment

By convention, players post the value of objects they
have probed after each step they take. It is assumed that
• each message on the billboard is reliably tagged by the

identity of the posting player and a timestamp, and that

• the billboard is “append only,” in that no message is
ever erased from the billboard.

An execution of the system consists of rounds of player
steps. In a round, each active player reads the billboard
and optionally probes an object and writes to the billboard.
A player is called active so long as it hasn’t probed a good
object.

2.2 Object models

Goodness may or may not be testable by a single player.
In the local testing model, a player can always determine
whether an object is good after probing it. This is the case,
for example, when an object is good if its value exceeds a
known threshold. In a model without local testing, good-
ness is defined only by the parameter β, where an object is
deemed good if it is one of the βm top valued objects. In
particular, a maximum value object can be searched with
local testing only if the maximum is known; otherwise, a
search algorithm without local testing must be applied, us-
ing β = 1/m. In Sections 4 and 5 we present algorithms
that work with and without local testing.

2.3 Player models

We define an honest player to be one who always fol-
lows the protocol. We denote the fraction of honest play-
ers by α (there are αn honest players). Dishonest players
follow the Byzantine model, that allows them to behave in
arbitrary ways. When the algorithm is randomized, it is im-
portant to spell out the interplay between the coin flips and
the player actions: an oblivious adversary must set the ac-
tions of the dishonest players independent of the outcome
of coin flips; an adaptive adversary may determine the ac-
tions of the dishonest players based on the results of past
coin flips. Our algorithms work against a Byzantine adap-
tive adversary, which make them very robust. Our lower
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bounds use a much more benign model, and hence hold in
this Byzantine model.

3 Lower Bounds

This section presents two simple lower bounds on the
expected number of probes by an honest player in a search
with or without local testing. These, in turn, imply lower
bounds on the worst-case search time. Each lower bound
corresponds to a term in the upper bound of Theorem 4.
One lower bound says that it takes some work to discover
a good object, even if identities of all honest players are
known. The other lower bound formalizes the intuition that
distinguishing between friends and foes necessitates prob-
ing if appearances are identical. Both proofs use Yao’s Min-
imax Lemma [18].

Our first lower bound is based on the observation that
the combined number of probes taken by the honest players
should be sufficient to ensure that at least one of them hits a
good object.

Theorem 1 Any randomized algorithm for search (with or
without local testing), has an instance where the expected
number of probes executed by an individual player is at

least Ω
(

1
αβn

)
for all 0 < α, β ≤ 1.

Proof: We prove the lower bound for the search problem
with local testing, hence it also holds for the harder version
without local testing. We use Yao’s Lemma [18]. Fix m
objects and fix n players, of which the first αn are hon-
est. Let I be the set of all

(
m

βm

)
possible labeling of βm

objects as good and the others as bad. Consider any deter-
ministic algorithm A that works on I, let us compute the
average running time of A on I. Since A is deterministic
and since the identity of honest players is fixed across all
instances in I, each player probes objects in a fixed order
so long as no other player has reported finding a good ob-
ject. Since the instance is random, we can think of each
player as drawing balls from an urn without replacement;
furthermore, without loss of generality we might as well as-
sume that no two honest players ever try the same bad object
(i.e., the algorithm ensures full cooperation, since the hon-
est players know what reports are trustworthy). Since the
“urn” contains m balls, of which a fraction β are good, the
expected number of probes until a good object is found is
m+1

βm+1 = Ω
(

1
β

)
. Since in each round there are at most αn

probes of honest players in each round, the result follows.

Next, we formalize the intuition that when the adver-
sary maintains complete symmetry between players, no al-
gorithm can easily discern honest players from dishonest
ones. The dishonest players in the proof follow the proto-
col, except that the object values they report are the values

dictated by the adversarial strategy. Thus, an instance of the
problem consists of defining which players are honest, and
what is the value of each object to each player.

Theorem 2 For any randomized algorithm for search (with
or without local testing), there exists an instance and an
oblivious adversarial strategy followed by the dishonest
players where the expected number of probes executed by
an individual player is Ω( 1

α+β ) = Ω(min{ 1
α , 1

β }).

Proof: For notational simplicity, assume w.l.o.g. that the
system contains n+1 (rather than n) players of which αn+1
(rather than αn) are honest, and that αn, βm, 1/α and 1/β
are all integers. Also assume that player 0 is honest. Our
goal is to bound from below the number of probes done
by player 0. By Yao’s Lemma, it is sufficient to prove that
there exists a probability distribution over the instances such
that for any deterministic algorithm, the average number of
probes done by player 0 is Ω(min{ 1

α , 1
β}).

Let B = min{ 1
α , 1

β }. Players 1, . . . , n are partitioned

into 1
α disjoint subsets P1, . . . , P1/α, where |Pk| = nα

for k = 1, . . . , 1/α. Also, the objects are partitioned
into 1

β disjoint subsets O1, . . . , O1/β , where |Bk| = mβ for
k = 1, . . . , 1/β. Our distribution consists of B equiproba-
ble input instances Ik, for k = 1, 2, . . . , B, defined as fol-
lows. Player 0 is honest in all instances. The probe values
of each player j �= 0 are defined as follows. Let S j(i) be
the value player j reports for object i. If j ∈ Pk, then

Sj(i) =
{

1, i ∈ Ok,
0, otherwise.

These probe values are thus independent of the particular
input instance. For each k = 1, 2, . . . , B, the “true value”
function of input instance Ik is defined as

S(i) =
{

1, i ∈ Ok,
0, otherwise.

so in instance Ik, S = Sj for the players j ∈ Pk . For
player 0, S0 = S in every instance. Thus for k =
1, 2, . . . , B, in Ik the set of honest players is Pk ∪ {0} and
the set of good objects is exactly Ok . In every instance, the
players in Pk view the world as if the input instance is Ik. If
B < 1/α, then the players in PB+1, . . . , P1/α simply don’t
ever report any result in any instance.

It is convenient to define a “null” input instance, de-
noted Î, in which the players have the same probe value
functions as in the instances Ik, but the “true value” func-
tion is S(i) = 0 for every i. This instance has no good
objects, so it violates the assumption that there are at least
βm good objects, but we use it solely for the purpose of
analyzing the other instances.

Let a deterministic algorithm A be given. Denote the ex-
ecution of algorithm A over an instance I by E(I). Let the
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sequence of objects probed by player 0 in execution E( Î)
be o1, o2, . . . , om (note that as instance Î contains no good
objects, the probing will stop only after player 0 exhausts
all objects). For k = 1, . . . , B, let rk be the smallest integer
such that ork

∈ Ok (namely, oi /∈ Ok for all i < rk). By
the construction, it can be verified (say, by induction on the
round number) that for every k = 1, 2, . . . , B, each player
behaves identically in the two executions E(Î) and E(Ik)
for the first rk−1 rounds. Also note that in execution E(Ik)
(for k = 1, 2, . . . , B), player 0 probes an object with score 1
for the first time on round rk, and hence it incurs exactly rk

probes. Hence the expected number of probes incurred
by player 0 in an instance taken from our distribution is
1
B

∑B
k=1 rk.

Finally, note that since rk �= rk′ for k �= k′, we have∑B
k=1 rk > B2/2, and therefore the expected number of

probes incurred by player 0 on this distribution is at least
B/2 = Ω(min{ 1

α , 1
β}).

Note that the trivial algorithm where each player probes a
random object in each step (disregarding the billboard com-
pletely) will terminate in O(1/β) expected time. When 1/α
is much smaller than 1/β, as is the case when a large frac-
tion of the players are honest, we might hope that these
honest players could collaborate and do even better. As
we have already mentioned, our prior algorithms [1, 2] halt

in O
(

log n
αβn + log n

α

)
expected rounds, which is O

(
log n

α

)
when m = n. In the next section, we show that we can do
better, and sometimes much better.

4 A Sublogarithmic Search Algorithm With
Local Testing

This section presents Algorithm DISTILL for search with
local testing that halts in a constant number of rounds when
the number of honest players is large, always halts within

O
(

1
α · log n

log log n

)
rounds when m = n. This result is stated

precisely in Theorem 4.
Algorithm DISTILL is formally presented in Figure 1.

The fundamental idea of the algorithm is to use only posi-
tive reports, and allow each player to make only one such
report, called the player’s vote. The algorithm maintains an
explicit set of candidate (or potentially good) objects which
is being reduced as the execution progresses. The algo-
rithm consists of a series of calls to subroutine ATTEMPT.
ATTEMPT first reduces the candidate set to a manageable
size (Steps 1.1–1.2 take care of the case where m � n).
Thereafter, in Step 2 ATTEMPT performs a succession of
stages that is aimed to reduce the candidate set: In order
for a current candidate object to be a member in the next
set, it must receive sufficiently many votes in this stage
(specifically, we use half the expected value as the thresh-
old); candidates that do not receive sufficiently many votes

in a stage drop from contention. We show that the num-
ber of stages in the reduction process of a single invocation
of ATTEMPT can be bounded by a sublogarithmic function
of n (times 1/α), and the probability of success in an in-
vocation (defined to occur when most honest players have
found a good object) is a positive constant. The latter holds
provided that initially, the candidate set contains at least one
good candidate and not too many bad candidates, which is
guaranteed by Step 1 with positive constant probability. The
algorithm has an additional wrinkle to ensure termination of
all honest players. Call a player satisfied in a given state if
at that state it has already found a good object and stopped
probing (i.e., it has a vote). Consider the state when most
honest players are already satisfied, and therefore don’t vote
any more. To guarantee quick termination of the remaining
players, the algorithm stipulates that at every second step,
each player makes a probe that follows a recommendation
of a randomly chosen player. This is done by always prob-
ing using Subroutine PROBE&SEEKADVICE.

To facilitate the analysis of DISTILL, we introduce the
following notation.

Notation 3 Given 0 < α < 1 and n, define

∆ def= log
(

1
1 − α

+ log n

)
.

Theorem 4 For some constants k1 and k2, the expected ter-
mination time of each player under Algorithm DISTILL is

O
(

1
αβn + 1

α · log n
∆

)
for any adaptive Byzantine adversary.

Before proving Theorem 4, let us interpret the expres-
sion for the expected time. For m = n and β > 0, Theo-
rem 4 says that the expected time complexity is never more

than O
(

1
α · log n

log log n

)
. If the fraction of dishonest players is

small, the complexity is significantly better: it may even be
independent of n, as the following corollary states.

Corollary 5 If m = n and α ≥ 1 − 1
nε for some ε > 1

log n ,
then the expected termination time is O(1/ε).

To prove Theorem 4, we first state the high level argu-
ment, and then delve into the details in the ensuing lemmas.
Proof: Consider termination first. In Lemma 6 below
we show that once there are more than αn/2 satisfied
honest players, each remaining unsatisfied player finds a
good object after O

(
1
α

)
additional expected rounds. So

let us assume from now on that the number of unsatis-
fied honest players is at least αn/2, and analyze the to-
tal number of rounds. We claim that each invocation of
ATTEMPT takes O

(
k1

αβn + k2
α + log n

α∆

)
rounds, and that

each such invocation succeeds with probability at least
1 − e−k1/2 − e−k2/16 − 9e−k2/64. By the code, Step 1
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Shared Variables (computable from the shared billboard data):
• �t(i): The number of votes object i receives in iteration t of Step 2.

Subroutine ATTEMPT:

Prepare initial candidate set
1.1 for k1/αβn times do invoke subroutine PROBE&SEEKADVICE({1, . . . , m}).
1.2 Let S be the set of objects with at least one vote.
1.3 for k2/α times do invoke subroutine PROBE&SEEKADVICE(S).
1.4 Let C0 be all objects that got at least k2/4 votes at Step 1.3;
1.5 Let t ← 0 (t is a running iteration index). Denote c t = |Ct|.

Distill candidate set
2 while ct > 0 do
2.1 for 1/α times do invoke subroutine PROBE&SEEKADVICE(C t).
2.2 Ct+1 ←

{
i ∈ Ct | �t(i) > n

4ct

}
; t ← t + 1.

Subroutine PROBE&SEEKADVICE(S):
Pick a random object from the set S and probe it.
Pick a random player j, and probe the object j votes for, if exists.

Main algorithm:

Invoke subroutine ATTEMPT repeatedly until done.

Termination:

Whenever a good object is probed, post result on billboard and halt; that
object is the probing player’s vote.

Figure 1. Algorithm DISTILL. The parameters k1 and k2 are determined later.

takes O
(

k1
αβn + k2

α

)
rounds; Lemma 7 shows that the num-

ber of iterations of the while loop is O
(

log n
∆

)
, and by the

code for Step 2.1, each such iteration takes O
(

1
α

)
rounds.

Lemma 10 below shows that Step 2 succeeds with probabil-
ity at least 1 − 9e−k2/64 if C0 contains a good object, and
Lemma 8 shows that this condition is satisfied by Step 1
with probability at least 1 − e−k1/2 − e−k2/16. Hence, for
any k1 ≥ 1 and k2 ≥ 192, say, the expected number of
invocations of ATTEMPT is at most 5, and the theorem fol-
lows.

The following lemma establishes the termination condition.

Lemma 6 If at some state there are at least αn/2 satisfied
players, then any unsatisfied player will find a good object
in 4/α additional expected rounds.

Proof: Consider a state in which at least αn/2 honest play-
ers are satisfied. Then there are at least αn/2 votes for good
objects, and hence the expected number of times a player
probes an object following the vote of a randomly chosen
player until it probes a good object is at most 2/α. The
lemma follows from the fact that since all probes are done

via PROBE&SEEKADVICE, every second probe follows a
vote of a randomly chosen player.

Since the algorithm terminates quickly once half the
honest players are satisfied, we need only analyze how long
it takes for this many honest players to become satisfied.
The key to the analysis is that each player has only one
vote. This property allows us to bound the total number
of probes done in Step 2. We remark that it is relatively
simple to show a weaker O(log n) bound on the number of
iterations of the while loop in the special case of large α
values; the following key lemma proves a tighter and more
general bound.

Lemma 7 If there are at least αn/2 unsatisfied players,

then each invocation of ATTEMPT contains O
(

log n
∆

)
ex-

pected iterations of the while loop.

Proof: Consider all iterations of the while loop within a
single invocation of ATTEMPT. The number of votes cast
in iteration t that are required for an object in C t−1 to be a
member in Ct is, by Step 2.2, at least n

4ct−1
. Let bt denote

the number of bad objects which are still candidates in C t.
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Using this notation, the number of votes cast by dishonest
players in iteration t is at least bt · n

4ct−1
. Since the total

number of votes by dishonest players throughout the execu-
tion of the algorithm is at most (1− α)n, summing over all
rounds we have that∑

t

bt
n

4ct−1
≤ (1 − α)n . (1)

Let T ∗ = {t | ct > 0}, i.e., T ∗ is the set of iterations in
which the while loop takes place. Let T ∗ = |T ∗|. To
prove the lemma we bound T ∗ as follows. We divide T ∗

into two sets:

T = {t ∈ T ∗ | bt > ct/2} , T ′ = {t ∈ T ∗ | bt ≤ ct/2} .

First, note that after two expected iterations of T ′, the num-
ber of unsatisfied players drops below αn/2; this is true be-
cause if bt ≤ ct/2 in any round t, then the probability that
at least half of the unsatisfied players probe a good object
at that round is at least 1/2. Thus, it is sufficient to bound

T
def= |T |. Simplifying Equation 1 and using the definition

of T , we get

∑
t∈T

ct

ct−1
≤

∑
t∈T

2bt

ct−1
≤ 8(1 − α) . (2)

We use Equation 2 to obtain an upper bound on T as fol-
lows. By Step 2.2 of the code, ct/ct−1 ≤ 1 for all t; By
Step 1.4 of the code, c0 ≤ n; also by definition, cT∗ ≥ 1.
Hence we have that∏

t∈T

ct

ct−1
≥

∏
t∈T ∗

ct

ct−1

=
T∗∏
t=1

ct

ct−1
=

cT∗

c0
≥ 1

n
. (3)

We now distinguish between two cases. The first case is that
α < 1 − 1

log n , in which ∆ = Θ(log log n). In this case we
apply the Means Inequality to Equation 2, and by plugging
in Equation 3 we get that

∑
t∈T

ct

ct−1
≥ T

(∏
t∈T

ct

ct−1

)1/T

≥ T

(
1
n

)1/T

.

Combined with Equation 2, we have T
(

1
n

)1/T ≤ 8(1 − α),

or
(

T
8(1−α)

)T

≤ n. For α < 1 − 1
log n , this solves to

T ≤ O

(
log n

log log n
1−α

)
= O

(
log n

log log n

)
= O

(
log n
∆

)
.

It remains to consider the case α ≥ 1 − 1
log n , in which

∆ = Θ(log 1
1−α ). In this case, 8(1 − α) < 1 for large n

values. Since Equation 2 trivially implies that ct/ct−1 ≤

8(1 − α) for all 0 ≤ t ≤ T , it follows from Equation 3 that

(8(1 − α))T ≥ 1/n, and therefore T = O
(

log n
log 1

1−α

)
=

O
(

log n
∆

)
.

We now turn to analyze the success probability in Step 1
of ATTEMPT.

Lemma 8 If there are at least αn/2 unsatisfied honest
players, then the probability that C0 contains a good ob-
ject is at least 1 − (e−k1/2 + e−k2/16).

Proof: The total number of probes made by honest play-
ers at Step 1.1 is at least αn

2 · k1
αβn = k1

2β , and each of these
probes hits a good object with probability β. Thus, the prob-
ability that no good object is probed by an honest player in
Step 1.1 is at most (1− β)k1/2β < e−k1/2 for β > 0. Next,
let us compute the probability that a good object i0 is in C0,
given that some player voted for i0 in Step 1.1. In each
round of Step 1.3, the expected number of votes i 0 receives
is at least α/2, since there are at least αn/2 honest players
probing, and at most n objects were voted for in Step 1.1.
Hence the expected total number of votes i0 gets in Step 1.3
is at least α

2 · k2
α = k2

2 . Hence, by Step 1.4 of the code, i0

will be in C0 if it gets at least half of the number of votes it
expects to get in Step 1.3. The result follows, since by the
Chernoff bound we have

P [i0 /∈ C0 | i0 marked in Step 1.1]

< P
[
�0(i0) <

1
2
E [�0(i0) | i0 marked in Step 1.1]

]

< e
1
8E[�0(i0)|i0 marked in Step 1.1] ≤ e−k2/16 .

Using the following technical lemma, we bound the suc-
cess probability in Step 2 of ATTEMPT.

Lemma 9 Given a sequence σ = {c0, c1, c2, . . . cT } of
positive integers, and a constant 0 < a < 1, let us denote

f(σ) =
T∑

t=1

ct

ct−1
and ga(σ) =

T∑
t=0

a1/ct .

Then for all sequences σ of non-increasing positive inte-
gers, ga(σ) ≤ (
f(σ)� + 1)a1/c0 .

Proof: Fix a first element c0 > 0. Let σ∗ =
{c0, c1, c2, . . . cT } be the sequence maximizing ga(σ)
among all non-increasing sequences that start with c0 and
satisfy f(σ) ≤ B for some given constant B. Define
rt = ct

ct−1
for any 0 < t ≤ T , and consider the se-

quence of ratios ρ = {rt}T
t=1. We first claim that ρ is non-

increasing: For suppose not. Then there exists a t0 such that
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rt0 < rt0+1. Consider the sequence σ ′ = {c′0, c′1, . . . , c′T }
obtained from σ∗ be setting

c′t =
{

ct if t �= t0 ,
ct0−1 · rt0 if t = t0 .

It is easy to see that f(σ′) = f(σ) (we just transposed rt0

with rt0+1). However, since a1/x is a monotonically in-
creasing function of x for a < 1, and since c ′

t0 > ct0 by
construction, we have that ga(σ′) > ga(σ), contradicting
the maximality of σ∗. After establishing the monotonicity
of the ratio sequence ρ, we next claim that the following
stronger property holds:
Claim A. In σ∗, we have c0 = c1 = . . . = c�B�. If B is
integer, then there are no more elements. Otherwise, the last
element is c�B�+1 = c0/(B − �B
) < c0.

Note that Claim A implies the lemma: if B is not integer,
then T = �B
 + 2 = 
B� + 1; and if B is integer, then
T = �B
 + 1 = 
B� + 1. In both cases, a1/ct ≤ a1/c0 for
all t ≤ T .

We prove Claim A by contradiction: Assume the claim
is false. Then it must be the case that

cT−2 > cT−1 > cT > 0 . (4)

Consider the sequence σ ′′ = {c′′0 , c′′1 , c′′2 , . . . c′′T } defined by

c′′t =




ct if t ≤ T − 2 ,
cT−1 + 1 if t = T − 1 ,
cT − 1 if t ≤ T .

Note that possibly, c′′T = 0: in this case we have that
c′′T

c′′T−1
= 0, and we abuse notation slightly and use the con-

vention that a1/c′′T = 0 (which is consistent with the def-
inition of ga). We complete the proof by showing that σ ′′

has all the required properties and that ga(σ′′) > ga(σ∗),
contradicting the maximality of σ∗. First, note that σ′′ is
non-increasing by Equation 4. Also we have by Equation 4
that

f(σ′′) =
T∑

t=1

c′′t
c′′t−1

= f(σ∗) −
(

cT−1

cT−2
+

cT

cT−1

)

+
(

cT−1 + 1
cT−2

+
cT − 1

cT−1 + 1

)

= f(σ∗) +
(

cT−1 + 1
cT−2

− cT−1

cT−2

)

−
(

cT

cT−1
− cT − 1

cT−1 + 1

)

< f(σ∗) +
1

cT−2
− 1

cT−1

< f(σ∗) ≤ B .

Finally, we prove that ga(σ′′) > ga(σ∗), by noting that

ga(σ′′) − ga(σ∗)

=
(
a1/(cT−1+1) + a1/(cT −1)

)
−
(
a1/cT−1 + a1/cT

)
=

(
a1/(cT−1+1) − a1/cT−1

)
−
(
a1/cT − a1/(cT−1)

)
> 0 ,

where the final inequality follows because the second
derivative of a1/x (as a function of x) is negative for 0 <
a < 1 and x > 0.

Lemma 10 If there are at least αn/2 honest unsatisfied
players throughout the execution of the while loop, then
the probability that there is a good object in the final candi-
date set CT is at least 1 − 9e−k2/64.

Proof: Let i0 be a good object. We first estimate
P [i0 /∈ Ct+1 | i0 ∈ Ct]. Summing these probabilities over
all iterations will give us an upper bound on the probability
that i0 survives all iterations, given that i0 ∈ C0. So con-
sider an iteration t, and assume i0 ∈ Ct. By Step 2.2, and
since there are at least αn/2 unsatisfied players, we have
that E [�t(i0)] ≥ αn

2 · 1
α · 1

ct
= n

2ct
. By Chernoff bound,

we have

P [i0 /∈ Ct+1 | i0 ∈ Ct] = P
[
�t(i0) <

1
2
E [�t(i0)]

]
< e−E[�t(i0)]/8 ≤ e−n/16ct .

Thus, P [i0 /∈ CT | i0 ∈ C0] ≤
∑T−1

t=0 e−n/16ct for
any T > 0. Now apply Lemma 9. By Step 2.3, Ct ⊆ Ct−1

always and hence the sequence σ = {ct} is non-increasing;
by Equation 2, f(σ) ≤ 8(1 − α) and hence f(σ) < 8
for α > 0; and by Step 1.4, c0 ≤ 4n

k2
. Therefore, taking

a = e−n/16 in Lemma 9,

P [i0 /∈ CT | i0 ∈ C0] ≤
T−1∑
t=0

e
−n
16ct

≤ (
8(1 − α)� + 1) · e
−n
16c0

≤ 9 · e−k2/64 .

4.1 Multiple votes and erroneous votes

Our analysis makes heavy use of the fact that each player
is allowed to submit a positive vote for only one object. This
bounds the amount of damage a dishonest player can do by
voting for bad objects. There is nothing special about the
number 1, however, and we can allow each player to submit
positive votes for up to f objects. Our analysis also makes
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heavy use of the fact that votes by honest players are cor-
rect, but it is reasonable to expect that even honest players
will submit erroneous votes by mistake from time to time.
We can tolerate incorrect votes by an honest player as long
as one of its positive votes is correct. With both of these
extensions, it is not difficult to see that the asymptotic result
of Theorem 4 remains unchanged so long as f = o( 1

1−α ).

5 High Probability Algorithm And Its Appli-
cations

Algorithm DISTILL, with k1 = O(1) and k2 = O(1),
ensures that the expected termination time for each player is
O(log n) (assuming, say, that α = Ω(1/ log log n) and that
β = Ω(1/αn logn)). If we are interested in a bound on the
time in which the last player terminates, naı̈ve application
of the analysis of Section 4 yields a bound of O(log2 n)
under the same setting for α and β. In fact, we can do
much better. Let DISTILLHP (where HP stands for high-
probability) denote a variant of Algorithm DISTILL with
k1 = Θ(log n) and k2 = Θ(log n). We now have the fol-
lowing simple observation.

Theorem 11 Algorithm DISTILLHP terminates in

O
(

log n
αβn + log n

α

)
rounds with probability 1 − n−Ω(1)

for any adaptive Byzantine adversary.

Proof: (Sketch) The arguments used to prove Theorem 4
still apply, showing that the probability of failure in a single
iteration is n−Ω(1) if k1 and k2 are Ω(log n). Lemma 6 is
replaced by a lemma that shows that once the majority of
honest players are satisfied, all other players terminate in

O
(

log n
α

)
additional rounds with probability 1 − n−Ω(1).

For Lemma 7, we note that the argument works as is, aug-
mented by the observation that throughout the execution of
the algorithm, the total number of rounds in which there are
less than αn/2 satisfied honest players and the good ob-
jects constitute a majority of the current candidate set, is

O
(

log n
α

)
with high probability. Lemma 8 and Lemma 10

hold verbatim (Lemma 9 is independent of k1, k2).

5.1 Guessing α

One disadvantage of the algorithm is that α is hardwired
in the code. This can be overcome by the standard tech-
nique of doubling (in our case, halving), applied in conjunc-
tion with the high-probability algorithm described above.
Specifically, set k1, k2 so as to ensure that the algorithm ter-
minates in k3

log n
α ( 1

βn + 1) rounds with probability at least
1 − n−2. Note that k1 and k2 are independent of α. The
existence of such a constant is guaranteed by Theorem 11.

Now, for i = 0, 1, 2, . . . log n, we run this algorithm ex-
actly 2ik3log n( 1

βn + 1) rounds, where in the ith run we set

α ← 2−i in the code. Let α0 be such that there are α0n
honest players. Clearly, once i = log(1/α0), the algorithm
will succeed: the only “after effects” from previous execu-
tions will be that some honest players may be satisfied, and
some dishonest votes were possibly cast. As for the time
complexity, it is obvious that the overall time complexity is
at most twice the time complexity of the last iteration, i.e.,
all honest players will terminate with high probability after

O
(

log n
α0βn + log n

α0

)
rounds.

5.2 Multiple Costs

Algorithm DISTILL minimizes the time complexity,
which implicitly means that it works under the unit cost
model. If we apply algorithm DISTILL in the general cost
model as is, the expected cost per player may be very high
with respect to the best solution, because the algorithm may
probe very expensive objects even if there is a cheap good
object. However, letting q0 denote the cost of the cheapest
good object, where w.l.o.g. the minimal object cost is 1, we
have the following using standard techniques.

Theorem 12 There is an algorithm such that each honest
player finds a good object with probability 1−n−Ω(1) while

paying only O
(
q0

m log n
αn

)
for any Byzantine adaptive ad-

versary.

Proof: Aggregate objects with similar cost in cost classes,
where class i contains all objects whose cost is in the range
[2i, 2i+1) (assuming, without loss of generality, that all
costs are at least 1). We execute a series of instances of
algorithm DISTILLHP: First, we run the algorithm only on
objects of class 0; then we run the algorithm on objects of
class 1 and so on. Each instance is run under the minimal
assumption that there is only one good object in class i, i.e.,
in version i, we have β = 1/mi, where mi denotes the num-
ber of objects in class i. We claim that the cost incurred to
an honest player by this iterative algorithm is only a factor
of O(log n/α) times the cost of the cheapest good object
(assuming m = Θ(n)). To see that, let i0 = log q0. Then
the total cost to an honest player under this algorithm is at
most

i0∑
i=0

2i+1

(
mi log n

αn
+

log n

α

)

=
log n

α

i0∑
i=0

2i+1
(mi

n
+ 1
)

≤ O

(
2i0

m log n

αn

)
= O

(
q0

m logn

αn

)
.
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5.3 Search without local testing

As stated, Algorithm DISTILL relies on local testing.
Nevertheless, it turns out that it straightforward to tweak
Algorithm DISTILLHP to solve the search problem without
local testing. The idea is to still rely on the restriction that
each player is allowed to have only one vote; in the current
context, however, the vote of player j is the highest value
object j has personally probed so far. Note that in contrast
to the local testing case, the vote of a player can therefore
change as the execution progresses. With this interpreta-
tion, we run the algorithm for a prescribed number of steps
(which depends on β, assumed to be part of the input in
this case). Applying Algorithm DISTILLHP, all players stop
at the prescribed time; with extremely high probability, all
honest players have found a good object. Thus we obtain
the following.

Theorem 13 There is an algorithm without local testing
such that each honest player finds a good object with proba-

bility 1−n−Ω(1) in O
(

log n
αβn + log n

α

)
rounds for any Byzan-

tine adaptive adversary.

6 Conclusion and open problems

In this paper we have studied the parallel time complex-
ity of eBay-like problems. Our main result is that even in
the presence of dishonest players, the honest players can
halt in a constant number of rounds when there are many
honest players, and can halt in O(log n/ log log n) rounds
even when there are not. Besides the obvious open problem
of narrowing the gap between the upper and lower bounds,
we believe that several that issues came up in the analysis
deserve further study. To begin with, our algorithm uses
only positive recommendations (“this object is good”), and
flatly ignores bad recommendations (“that object is bad”).
Can bad recommendations be used to close the gap between
the upper and lower bounds? (Alternatively stated: “Is slan-
der useless?”) Second, we have decoupled the objects from
the players. What is the effect of associating each object
with a player? Third, in market systems like eBay, the rep-
utation of an object influences its cost: A seller with little
positive reputation will make up for it by setting a low price
to his object. What is the effect of incorporating feedback
via pricing into the model? Finally, note that our model
does not make use of any non-trivial notion of “trust.” It
seems interesting to understand whether such a notion can
be useful in our model.
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