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Abstract sor nodes are reprogrammed in a one-by-one fashion. How-

R . f worksi : tant and he er, as the size of sensor networks continues to grow, this
eprogramming O Sensor Networks IS an important and Chigha g of manual reprogramming is no longer feasible. More-

lenging problem as itis often necessary to reprogram the SVer, even collecting the sensors from the field and repro-

sors in place. In this paper, we propose a multihop repr%—r mming them using wireless reprogramming (typically in

gramming service designed for Mica-2/XSM motes. Onella| hatches using the single-hop reprogramming (XNP) [2]
the problems in reprogramming is t.he ISsue of.message C9iluded in TinyOS 1.0) can be a daunting task. Therefore,
sion. To reduce the problem of collision and hidden termin

. X rogramming needs to be performed without physical con-
problem, we propose a sender selection algorithm that qlé—p g g P Py

: ; . ct with the sensor nodes.
tempts to guarantee that in@eighborhoodhere is at most B
one source transmitting the program at a time. Further, ol¥€tWOrK reprogramming in sensor networks poses several
sender selection is greedy in that it tries to select the sendiW challenges. First, network reprogramming requires 100
that is expected to have the most impact. We also use pipdhfcent delivery, which includes two parts: every node in the
ing to enable fast data propagation. MNP is energy efficieRgWOrk must receive the program code, and the code image

because it reduces the active radio time of a sensor node/BySt be received in its entirety. This is very different from
putting the node into “sleep” state when its neighbors afgaditional sensor network applications, in which, occasional

transmitting a segment that is not of interest. Finally, we al@Ss of data is tolerable.

gue that it is possible to tune our service according to ttf®econd, high communication bandwidth is needed in network
remaining battery level of a sensor, i.e., it can be tuned sgprogramming. For the vast majority of sensor network ap-
that the probability that a sensor is given the responsibility pfications, the generated sensing data from an individual sen-
transmitting the code is proportional to its remaining battergor node is small, usually of the order of bytes, and thus eas-
life. ily fits the low wireless radio bandwidth. However, deliver-
ing the entire program image, of the order of kilobytes over
low-bandwidth wireless radio, as required in network repro-
gramming, requires significant bandwidth.

1 Introduction Third, the problem of concurrent senders needs to be ad-

Sensor networks have been proposed for a wide varietydsgssed. In network reprogramming, code image is propa-
application areas. To be practically useful, a sensor netw8aed from one sensor node to another. Every node that has
must be able to operate unattended for long periods of tirffte New code image is a potential sender. Thus, it is likely
This requirement introduces several difficulties. First, the dhat too many senders are transmitting at the same time. This
vironment evolves over time. Predicting the whole set of agduses a lot of message collisions, congests the wireless chan-
tions that a sensor node might need to perform is impossiBR: and possibly results in failure of reprogramming.

in most applications. Second, requirements are also lik@lgurth, energy efficiency is important. Because sensor nodes
to change. For example, with growing understanding of thave limited power supply, the amount of energy consumed
environment or with new technological advances, some @snetwork reprogramming may directly affect network life-
sumptions are found to be incorrect, and, hence, the spetifite. Some of the possible sources of energy inefficiency in-
cation has to be modified accordingly. Thus, reprogrammiogide message collision, overhearing, control message over-
sensor nodes, i.e., changing the software running on sersssd, and idle listening. Among these, idle listening is the
nodes after deployment, is necessary for sensor networksmajor source of energy waste [3]. Reducing the messages

Traditionally, reprogramming is done manually. For exan§€nt and received is also important.

ple, in Mica-2 motes [1], program code is sent from PC diFurther, memory requirements of network reprogramming

rectly to the program memory of a sensor node. Hence, ssheuld be minimized. Memory is a scarce resource for sen-
TEmail: {sandeep.wangliml  }@cse.msu.edu . sor nodes. For example_, only_4k RAM and 128k program
Web: http://www.cse.msu.edu/ ~{sandeep,wangliml }. memory (ROM) are available in M'Ca'_z [1] and XSM [4]
Tel: +1-517-355-2387, Fax: +1-517-432-1061. motes. Because network reprogramming is supposed to be
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applications. 3. Energy efficiency. The energy used in code dissemi-

With this motivation, in this paper, we present a multihop ~hation should be low so as to affect the network lifetime
network reprogramming protocol (MNP) which provides a ~ Minimally.

reliable service to propagate new program code to all semM. Low memory usage.Code dissemination is supposed to

sor nodes in the network over wireless radio. We implement be an underlying service running together with other ap-
MNP on Mica-2 [1] and XSM [4] motes and simulate itusing  plications. Therefore, the memory and storage require-
TOSSIM [5]. ments should be minimized.

Contributions of the paper. 5. Speed. New program code should be propagated and
1. We propose a sender selection mechanism, in which nstalled quickly (i.e., within a few minutes).

source nodes compete with each other based on the npong these requirements, reliability and autonomy are ba-
ber.of d|st|nqt requests they have received. Through_"s)Fc and essential requirements for the correctness of code dis-
periments with Mica-2 motes, we show that even a silamination mechanism. Other requirements are not necessary
ple greedy approach like this works very well, and hgg ensure correctness, but they are also important and cannot
effectively reduced the concurrent sender problem.  pe gverlooked for the practical use of any system. Since it is
2. We use pipelining to enable fast data propagatiadifficult, if not impossible, to fulfill all the design goals in a
Through simulation, we show the effectiveness afystem, tradeoff has to be made to assure the system’s overall
pipelining in large scale networks. Moreover, we finflinctional and performance goals.
that the dynamic behavior reported in [6] (where th .
propagation speed along the diagonal is significam’% MNP: Protocol Description
less than the speed along the edge) does not existnnhis section, we present our code dissemination protocol,
MNP. MNP. We first present our sender selection protocol, which is
3. We reduce the active radio time of a sensor node Hie core of MNP. We have two versions of the sender selec-
putting the node into “sleep” state when its neighbof9n protocol. In Section 3.1, we first present the basic ver-
are transmitting. This effectively reduces the idle listegion of the sender selection protocol. In this version, a node
ing problem and avoids overhearing. becomes a source node (and starts advertising this fact in its

4. We implement MNP in TinyOS Mica-2 and XSM moteneighborhood) only if it gets the entire new program. This

platforms, and evaluate its performance through Simu%s_s_entially_ divides a multi—hop forwarding opera_tion ir_1to a
¥ series of single-hop transmissions. Then, we revise this pro-

tion (on TOSSIM) and experiments (on Mica-2 mOtes)tocol so that it can be used with pipelining. In Section 3.2,
Organization of the paper. In Section 2, we identify the we describe the sender-receiver behavior when a node is for-
requirements of the reprogramming problem. In Section\garding code to its neighbors. In Section 3.3, we discuss the
we present our code dissemination protocol. We focus liability issues, including loss detection and recovery. In
sender selection algorithm, pipelining, and reliability issuesection 3.4, we describe the operation of the protocol as a
The evaluation results are presented in Section 4. We revigiate machine. In Section 3.5, we discuss the problem when

related work in section 5, and conclude in Section 6. the sensor nodes should reboot with the received program.

2 System Model and Problem Statement 31 Sender Selection Protocol

We make no assumptions about the underlying network ) ] ) )

topology. We require that all sensor nodes receive the exéicthis section, we first present the basic version of our sender
program image as long as the network is connected. csglection protocol. Then we revise the protocol so that it can
rently we only consider networks with stationary nodes. W& used with pipelining.

also assume that every node needs to be updated with the

same version of code. 3.1.1 Basic Sender Selection Protocol

In MNP, sensor nodes do not need to have any location infor-this section, we assume that program is propagated in a
mation or maintain neighbor status. Sensor nodes make Iduap-by-hop fashion. In each neighborhood, a source node
decisions independently and, hence, the protocol is scalabends program code to multiple receivers. When the receivers
We require that a code dissemination protocol meet the fgkt the full program image, they become source nodes, and
lowing requirements. send the code in their neighborhood. We present our sender

1. Reliability. ~ This includes botlaccuracyrequirement select|on. proto.col under this as§umpt|9n. o
andcoveragerequirement. Byaccuracy we mean that Before discussing the protocol in detail, we describe it in the
the exactprogram image is received by sensor nodeg@ntext of an example. Towards this end, consider the ex-
and by coverage we mean that eventuallgverysen- ample of a sensor network in Figure 1. Suppose A transmits
sor node in the network is reprogrammed with the neilie data object first and nodes B, C, D, E, and G receive this

code. object. Now, these nodes should not transmit simultaneously
2. Autonomy. Code should be propagated automaticall§S it will cause significant collisions. Moreover, the choice of
" without human intervention. ie sensor that transmits next is not uniform. For example, G



is a better choice than D; some of the nodes that D can sémelreceived messages.

data to have already received the data from A. A source node broadcasts advertisemenmessage every
random interval (we use random interval to avoid message
collision). Every time a source receiveslawnload request
message, it checks to see if this messagieinedto it. If

it is destined to it, and it is from a “new” requester that the
Figure 1. Example sensor network source has never seen before, it incremé&agCtrby one.

In our protocol, each source node maintains a variglelgCtr If the download requestnessage is destined to some other

that indicates the number of distinct requests (from differef de and that node has a higiieeqCtrvalue, then it stops

requesters) it has received so feeqCtris set to zero when g advertising and goes 10 “sleep” state.
source starts advertising, and incremented by one every tiin@ source node overhears advertisemenmessage from
it receives adownload requesthat is destinedto it from a another source node, it compares tReqCtrvalue of that
“new” requester. node with its own. If the other node has more requesters than
it does, it gives up advertising and goes to “sleep” state. (Note
that this cannot cause deadlock, as the node with hidghest

tr - with appropriate tie breaker on node ID - will succeed.)
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gz @m B
B- B~ Bo

Two types of messages are used for sender selecibrer-
tisementand download requestAn advertisemenimessage

has information about the new program (program ID a oreover, the “sleeping” period is proportional to the size of

size) and the source node (source ID &etCtrvalue). It .
has )two goals: announcing(the arrival of new progr?’;\m, ami3 new program, and lasts for approximately the expected

preventing the source nodes that have fewer requesters f%me transmission time. For a sleeplf]g se,r)s_or node, noth-
becoming a sender Ing is active except a timer. When the “sleep” timer fires, the

source node wakes up and re-enters “advertise” state.

When a node, say, receives the advertisement message fr . .
W g 0IE]S receives a “StartDownload” message or data packets, i.e.,

a source node, say, if j needs the new code, then it sends X . .
download requesib k. Thedownload requesalso contains some node in the neighborhood has won this round of sender
é:ompetltlon,S stops advertising and goes to “sleep” state.

the value ofReqCtrthat & sent in the advertisement phas
While thedownload requess intended destinedifor &, itis The advertising phase ends when a source node has sent
sent as a broadcast message Wwitts one of the fields. Thus,a2 given number of advertisements continuously (without
when another node, sdyreceives thelownload request is “sleeping”). At this point, if it has received one or more re-
aware of the fact that is a potential source. This allows ugjuests, it will become a sender and start transmitting code.
to account for hidden terminal effect whdreould not have Otherwise, it will advertise with reduced frequency (we ex-
received the advertisement message fiamMoreover, by ponentially increase the advertise interval if no request is re-
including the value oReqCtrin download requesive allow ceived). Applying different advertise frequencies enables fast

| to be aware of the number of requesters:oHence,] can data propagation when the network is in active updating state,
utilize this information to determine who should transmit th@nd saves energy when the network is “stable”.

code first. Tasks for Requester. In Figure 3, we show the tasks that
We note that a node sendslawnload requesb all senders a requester performs in the sender selection process. If a
that send the advertisement messages. This ensures thide hears aadvertisementhat announces the availability
node is aware of all the requesters who are likely to receidga new program, it broadcastslawnload requeshessage,

the code if it is chosen to transmit the code. However, ifdgstined to the advertising node. As mentioned earlier, it also
node, sayk, loses to nodé that has more requesters, theputs theReqCtrinformation of that advertising node in the
wheneverk attempts to advertise again (e.g., afthas trans- download requeshessage.

mitted the code)k must reset itdkeqCtrvalue to zero, and . o

recalculate its requesters. This is due to the fact that somgk}fz Sender Selection with Pipelining

old followers of k may have already received the code frorh€ Sender selection algorithm in 3.1.1 is suitable for the
L. case where the program is small or where the network is

. - - ... too small to take advantage of pipelining. For large net-
After [ finishes transmitting the code, it quits the competitiq, ks where a large amount of data is sent, pipelining is de-

temporarily by “sleeping” for a while, so that other Sourceg, ;e To achieve this pipelining, we divide a program into
have better chance to become senders. The purpose of thig {3 entseach of which contains a fixed numberpztckets

to (Ij(lstnbute t(;ansm|SS|onhIo?ddthro_ung the ne_twork. \lNhe ach segmentis assigned a segment ID that is strictly increas-
wakes up and re-enters the "advertise” stateRegCtrvalue ., "Nodes must receive the segments sequentially. We make

is reset to zero, and a new round of sender selection startgyq following changes to the protocol in Figures 2 and 3.
Based on the above discussion, our sender selection protocol

can be described as two parts: source part and requester pdrt. Eachadvertisemertiownload requeshessage contains
Tasks for Source. In Figure 2, we present the tasks that an additional fieldseglD(Segment ID).

a source performs in the sender selection process. This p&t When a node receives advertisemenfor a segment
contains the basic control logic and the actions in response to that it does not have, it sendsdawnload requesthat



Source: (in advertise state)

Broadcast an advertisement message every random interval
After advertising K times (without sleep):
if (my.ReqCtr > 0)
Become a sender, and start forwarding code
else
Restart advertising, with lower frequency
endif

During advertise interval:
(@)
if a download request message RegMsg arrives
if (ReqMsg.DestID == my.ID)
if (1IsNew(ReqMsg.SourcelD) )
my.ReqCtr ++
endif
else //the message is destined to some other node
if (RegMsg.ReqCtr > 0) and
((RegMsg.ReqCtr > my.ReqCtr ) or
(ReqMsg.ReqCtr == my.ReqCtr) and (ReqMsg.DestID>my.ID))
Stop advertising, go to “sleep” state, my.ReqCtr = 0
endif
endif
endif

(b)
if an advertisement message AdvMsg arrives
if (AdvMsg.ReqCtr > 0) and
((AdvMsg.ReqCtr > my.ReqCtr) or
(AdvMsg.ReqCtr == my.ReqCtr) and (AdvMsg.SourcelD >my.ID))
Stop advertising, go to “sleep” state, my.ReqCtr = 0
endif
endif

(©

if “StartDownload” message or data packets arrives
Stop advertising, go to “sleep” state, my.ReqCtr = 0

endif

Figure 2. Tasks of the source in sender selection mecha-

nism

Requester:

if an advertisement message AdvMsg arrives
if itis a “new” program
Prepare download request message ReqMsg:
ReqMsg.DestID = AdvMsg.SourcelD
RegMsg.ReqCtr = AdvMsg.ReqCtr
Send RegqMsg
endif
endif

3.2 Tasks in Downloading a Segment

When a node decides to become a sender, it broadcasts a
“StartDownload” message to announce this fact. Then, it
starts sending code packet by packet. A node will change
to “download” state once it hears a “StartDownload” mes-
sage with expected segment ID. As a node always receives
segments sequentially, the expected segment ID is the high-
est segment ID the node has received so far plus one. The
node indownloadstate also sets the sender (the node that has
sent the “StartDownload” message) to bepigsent(for that
segment).

We note that although the sender selection algorithm attempts
to keep only one active sender in a given neighborhood, it is
possible to have multiple active senders due to time-varying
link properties. Hence, a node may receive code from mul-
tiple senders. In our protocol, we allow a sensor node to re-
ceive data packets from its parent as well as other senders as
long as the segment ID matches.

When a node is in “download” state, it receives the data pack-
ets and stores them in EEPROM. At the same time, it keeps
track of missing packets. The download process ends when
the receiver receives an “EndDownload” message from its
parent. At this point, if the node has successfully received
the whole segment, it will go to “advertise” state. Other-
wise, there are two choices: the node can go to “fail” state
directly; or it can go to theuery/updatghase, during which

it requests for the missing packets from its parent. We will
discuss theuery/updatghase in the next section.

Parent-children relationship is one-directional: the child
knows who its parent is. However, the parent does not know
who its children are. It is possible that the receiver never gets
the “EndDownload” message. The reason can be the sender
dies as itis sending packets, or the “EndDownload” messages
collide with other messages. To avoid being stuck in “down-
load” state, the node in “download” state sets a timer when
it is waiting for the next packet from its parent. It will wait
for reasonably long time until it concludes that this download

Figure 3. Tasks of the requester in sender selection mech- process fails. Then it will go to “fail” state.

anism

3.3 Reliability Issues: Loss Detection and Recovery

ggg:ﬁg]lz ﬂi]tetrllgag]\c/tehr(taisseerg?n?gtfcljtresxep;gesntfg e;ﬁg/%:!ﬂrMNP, egch packet ha}s a unique packe_t ID. Each receiver
node haé received segment 1 in the past, it ’wiII ask 13 respon_S|bIe for detecting its own loss. Slnce_the_3|ze (_)f the
segment 2 ’ Qégment is small and pre-determined, we maintain a bitmap
: (which we call MissingVectoy of the current segment in
. Whenever a node receiveslawnload requesfior seg- memory. Each bit irMissingVectorcorresponds to a packet.
menty while advertising segment, if y < x, then it All the bits are initially set to 1. When it receives a packet,
starts advertising segmept This is true even if the the corresponding bit iMissingVectoiis set to 0. One addi-
download requess not “destined” to this node. tional advantage of this mechanism is that the packets do not

. When nodel receives aradvertisementor segmenty necessarily arrive in order. A sensor node can receive packets

from nodek while it is advertising segment, if y < , N any order and from any node.

andk has already received at leasidwnload requests In MNP, each node has BorwardVector which is also a
then nodd should go to “sleep” state. (We give highebitmap of the advertised segment, and is an indicator of the
priority to a lower segment.) packets the node needs to send if it becomes a sender. When
dee sendsdownload requestt puts the loss information

S MissingVectoy in the download requestiessage. When

e advertising node receives the download request, it marks

. Timeouts are used so that a node can determine whe
it should advertise the current segment or the next s
ment.



Receive Adv with

SeglD>my.RdiSeg| D/
Send DL R

its ForwardVectoraccording to the loss information. There-
fore, an advertising nodeRorwardVectoris the union of the
missing packets in thdownload requesinessages the node
has received. A node only sends the packets indicated in the
ForwardVector In addition, we restrict the length of the seg-
ment to be no longer than 128 packets, so that the maximal
size ofMissingVectolis only 16 bytes, and thus fits into a ra-
dio packet. For the case where larger segments are used, fg
example, in scenario where pipelining is not expected to be _
beneficial (small networks), we provide a mechanism to usg I =R B Domore
EEPROM to keep track of lost packets. However, for reason ‘ e *
of space, we omit the implementation of that. A reader ca
find the details in [7].

This algorithm is efficient in that a node will send a packet

Receive Adv or DL Req (to
other node) that has higher
ReqCtr /Set Sleep timeg

Receive "Startpownload" with
SeglD=(my. RvdSeg D+1)/
Set parent

Receive "StartDownload” with
SeglD=(my.RvdSeg| D+1)/
el parent

Receive data packet /
Store packet, wait for
next packet

Regeive DL Req (to me)/
increase ReqCtr

Receive "EndDownload” from
parent & No missing packed
SET GV Timer, reset ReqClr

from parent & Tijere are
missing packts!

"t (b) Finish fprwarding
* " segment/ Sfnd query

only if there is some node requesting for it. When a node NS S — i
receives a packet for the first time, it stores that packet in § B Pevetaenenta

EEPROM and sets the corresponding biMissingVectorto Lo L ;
0. In this way, we guarantee that each packet in a segment is ! () ReoaVeres for g

+ packet/ Retransmit this packet +

written to EEPROM only once. SO :

We also provide ajuery/updatephase, after the sender has Figure 4. MNP: the state machine. (a) transitions for
finished transmitting the requested packets in the segmentMNP without query/update(b) transitions for MNP with
The parent-children relationship also applies in this phase duery/update

The sender broadcasts a “query” message to its recevE i ments of the highest segment ID and has received no re-

VAthlgz éisrréoﬂi St:ymrggs'“' ae Sé'sn%g cea Sﬁ?gli(éts ;?:Xt a\rlshrgr']sz'agésts, it assumes that all its neighboring nodes have received
N 9 P ) the whole program, and then reboots itself with the new pro-

iggg‘i{]éercee'niztzéquffettfro.pm?;e /ouf '&th':gseebrgag'_ gram. However, this local estimation of neighbors may be
d P : ylupdate P inz?ccurate, because the messages can be lost or collided, or

tional. This option is desirable in cases where the number, : g "
packets lost by the receiver is less than a given threshold. the neighbors may be in "sleep” state, thus are unable to re

spond.
3.4 The Big Picture Based on these concerns, we decide not to let sensor nodes

Figure 4 gives an overall picture of MNP. MNP operaté@bOOt automatically. A sensor node will reboot with the new
as a state machine. Since theery/updatephase is op- Program only when it receives an external “start” signal. The
tional, we have two versions of the state machine, one witiin€ when the signal is sent should be based on empirical
outquery/updateand one withquery/update Both state ma- data from experiments. We can also send query messages to
chines have 6 states in commaddie, download advertise individual nodes asking about their status before sending the
forward, sleepandfail. Fail state is used to avoid infinite Start” signal.

waiting. A node always sets a timer when it is waiting fo  Eyaluation Results

the next packet or the retransmitted packet from its parent,|f

it does not receive any packet from its parent when the tim X ;
fires, it will go tofail state.Fail state is a temporary state. A 3MHz radio. A Mica-2/XSM mote has 128KB of program

node infail state releases EEPROM resource, and switc)%L mory, 4KB of RAM, a 7MHz 8-bit microcontroller, and

toidle state immediately. Note that in the state machine wi KB e?<ternal flash storage (EE_PROM)'
query/updatethere are additional two stategueryandup- We fully implemented MNP on Mica-2 and XSM mote plat-

datg and the associated transitions. A node running MNPf@gms, and used two methods to evaluate the behavior of
in one of these 8 states. MNP. The first method is to run the code on TinyOS hard-

35 When to Reboot ware, Mica-2 motes. We experimented in a classroom and on

) en to <eboo a grass field in a grid topology. The purpose of these exper-
When a sensor node receives all the segments of a progranents is to verify the correctness of the algorithm and ob-
it can reboot with the new program. Reboot can happen algerve the effectiveness of the sender selection protocol. Due
matically. A node can reboot with the new program as sotmthe limitation on the number of available motes and the
as it receives the entire program. In this case, the new pspace to perform experiments, we were unable to experiment
gram should include the reprogramming service, so that thith networks of large scale. Therefore, the second method
node can continue serve as the source node after reboot. ishe use TOSSIM [5]. TOSSIM is a discrete event simulator
other choice is to let a node to decide the time to reboot basedTinyOS wireless sensor networks. We use TOSSIM to in-
on its local estimation of its neighbors. For example, if @estigate the behavior of MNP when it is applied to a large
source node has seht (a pre-determined parameter) advenetwork.

r target platform is TinyOS Mica-2/XSM motes, with



In the rest of this section, we first present the indoor and out-
door experiment results with Mica-2 motes. These results are
based on the basic version of MNP without pipelining. We
did not use pipelining because the number of motes and the
space for performing the experiments were relatively small,
and pipelining would be significantly helpful only when the
network is large and several non-overlapping communication

cells exist. In the second part, we present simulation results 19ure 5. Indoor experiments for 5 by 5 grid with (a) power
using TOSSIM. level = 2, time = 5 minutes; (b) power level = 1, time = 8

minutes. Program size: 1500 packets (33KB).

4.1 Experiments with Mica-2 Motes

TinyOS allows developers to specify the power level a Mica-2
mote uses for its radio communication. The range of power
level is from 1 to 255. In our indoor experiments, we use the
lowest power levels (1 and 2). In outdoor experiments, we
use power level 10 and default power level (255).

In these experiments, we place sensor nodes in a grid. The (@) (b)

base station, which has the new program image, is alwaysrigure 6. Outdoor experiments for 7 by 7 grid with (a) full
put in the upper-left corner of the grid. We expect that these power level, time = 25 minutes; (b) power level = 10, time =
results would be valid if the number of sensors is increased 435 minutes. Program size: 1500 packets (33KB).

times and the base station is kept at the center.

We tested our algorithm in both indoor and outdoor enJf! Figure 5(b), more sensors are not covered by the base sta-
ronments. Due to limitation of space for performing exper‘i'—onv thus have to obtain code from other intermediate nodes.

ments, we fixed the inter-node distance, i.e., the distance p8-o outdoor Experiments
tween two neighboring nodes, to 8 feet. We repeated oureig

eriments under the same setting with different power lev e performed two sets of experiments on a grass field. In
P 9 P . the first set of experiments, we deployed 49 motes in a 7 by

; grid, in a 48’ by 48’ area. In the second set of experiments,
tion range of sensors, and thus the number of hops to prop; “placed 50 motes in a 5 by 10 grid, in a 72’ by 32’ area
gate the program through the network. The purpose of using this 5 by 10 grid topology is to better
The goal of the experiments is to examine the behavior @famine multi-hop behavior in the code dissemination pro-
our sender selection protocol. For this purpose, each neges. We used two different power levels: full power level
records the time when it gets the full program image (“g@he default value in TinyOS), and power level 10. Figure 6
code time”) and the ID of its parent (parent ID). Further, wghows the parent-children relationship and the order of source
synchronize all the nodes before the experiment starts, so fiiles becoming senders for 7 by 7 grid. Figure 7 shows the
the time reported by each node is consistent. Note that thisults for 5 by 10 grid.

synchronization is not used by the algorithm. Rather, it\V@e notice that the nodes that are away from the base sta-
used to collect data consistently.

tion are more likely to become senders. This is desirable,
) because these nodes have a larger number of nodes in their
4.1.1  Indoor Experiments neighborhood that are not covered by the base station. As
We deployed 25 sensor nodes in a classroom area (appréRPwn in Figure 5, 6 and 7, when nodes are working at a
mately 32’ by 32’), in a 5 by 5 grid. In order to see multi-hofpwer power level, more nodes become senders, and each

effect, we chose the lowest power levels: power level 2 apgnder has a smaller group of followers. Therefore, more
power level 1. hops are involved in propagating code to the nodes that are

Figure 5(a) shows the parent-children relationship of the dg/. 2&Y from the base station. In our experiments, we did
periment with power level 2. Each grey dot represents a sgﬁ’—t _obse_rve the situation w_here two nearby nodes were trans-
sor node. From each node. there is an arrow pointing to éttmg simultaneously. This shows that the sender selection

parent. According to the “get code time” value and parent IB’gorithm, although imperfect, achieves its goal of selecting

reported by each sensor, we can compute the order of sensqt.
becoming senders, which is marked on the figure. As wg
can see in Figure 5(a), our sender selection protocol worke

By using different power levels, we change the communi

came senders one after another. All other sensors that join
the sender selection were put in “sleep” state. (@ (b)

In Figure 5(a), most of the sensors receive code directly fromFigure 7. Outdoor experiments for 5 by 10 grid with (a) full

the base station. When we reduce power level to 1, as showmower level, time = 35 minutes; (b) power level = 10, time =
45 minutes. Program size: 1500 packets (33KB).
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Table 1. Power required by various Mica operations 1200
Operation nAh
Transmitting a packet 20.000 1000
Receiving a packet 8.000
Idle listening for 1 millisecond| 1.250 800
EEPROM Read Data 1.111
EEPROM Write Data 83.333 oo - o0

. . . a
a sender with the largest impact and selecting at most one_. ( )_ o )
sender in a neighborhood. Figure 8. Active radio time of nodes in a 10 by 10 net-

i ) work. Program size: 14KB (5 segments). Completion time:
We repeated our experiments several times. We found thab4 minutes. Average active radio time: 949 seconds.

the results are similar. Although the actual sensor nodes that

selection algorithm ensured that two nearby sensors neygk distance between every two nodes is kept constant at 10
transmitted simultaneously. Moreover, in these experimersat apart. We assume that initially only the base station, the

the sender selection algorithm selected nodes that were f@jge at the bottom-left corner, has the new program.
ther from the base station (respectively, previous sources).

4.2 Simulation Results 4.2.1 Active Radio Time and Completion Time

. _ In Figure 8, we show the active radio time distribution in a
In TOSSIM, the network is modelled as a directed grapfyy py 10 network. The simulation starts by the base station
Each vertex in the graph is a node. Each edge has a bit@iyging a 5 segment program (14KB). It takes approximately
ror probability, representing the probability a bit can be cofz minytes for the program to go through the whole network.
rupted if it is sent along this link. Asymmetric links exist ifrpe active radio time for an average node is 949 seconds. In
this model since the b|t-error rate for each edge is decided gy case, we save about 38% of energy spent on idle listening
dependently, based on empirical loss data gathered from {3a},ming off radio. Figure 8 (a) shows the active radio time
world. Since TOSSIM does not capture energy consumptigff.each node. Figure 8 (b) shows the same values based on
we calculate the energy consumption by counting the opegsation of sensors. As shown in Figure 8, the active radio
tions performed during reprogramming. In Table 1, we ligine of a node in the network is closely related to its location.
the costs of various operations from [3]. The active radio time for the nodes in the center is approxi-
We note that the energy consumed in idle listening is compaately half (or even less) of those on the edges. Note that this
rable to the energy consumed in transmitting/receiving, angttern is similar to the reception distribution, which we show
is proportional to the active radio time. Reprogramming typ: Figure 11 (b). The nodes in the center receive many more
ically lasts from several minutes to several hours. If a nodeessages than the ones on the edge or at the corner, thus they
keeps its radio on at all time, the vast majority of energy get the code and become source nodes earlier. Since there is
wasted in idle-listening. In MNP, a node turns off its radionly one sender at a time in any neighborhood, after a node
when it loses in the sender selection algorithm or one of ftas got the code, it spends most of the time in “sleeping”
neighbors is transmitting a segment in which it is not intestate, during which the radio is off. On the other hand, a node
ested. In the following discussion, we count the active radad the corner receives fewer messages than the center nodes,
time, as well as the completion time. The active radio tinaad has to spend more time trying to get the code, during
is even more important than the completion time, becaus&hich the radio is always on.

decides the amount of energy that a node actually consumgg. 5iso notice that the nodes that are far away from the base

The number of messages sent and received is also an imptation keep their radio on most of the time during reprogram-
tant metric for energy consumption. We use sender selectinimg. Initially, the radio is on. The nodes close to the base
to address the message collision problem and try to selectstetion get the code immediately, while the nodes that are far
senders that tend to have the maximal effect. This effectivelyay from the base station have to wait until the “propaga-
reduces the number of transmissions and receptions. Mdi@a wave” arrives, and the radio is always on when they are
over, by including the loss information in tldwnload re- waiting. To solve this problem, we can use a protocol such as
guestmessages, we further reduce the message transmisSidMAC [8] or SS-TDMA [9] that allows a node to synchro-
by letting a sender send only the packets that are requestedibg its wake up and sleep time with its neighbors. In this
its neighbors. Finally, regarding EEPROM writes, we guatase, a node could sleep for most of the time before the prop-
antee that each packet is written to EEPROM only once. agation wave arrives. Hence, in Figure 9, we show the active
In this section, we first measure the active radio time of nod&glio time after the node has received its first advertisement
for propagating a given size program in a square topologyessage. As we can see, in this case, thg active radio time of
Then we examine the number of transmissions and receptiBh§odes is closer to each other than that in Figure 8.

based on location and time. Finally, we show the code propa+igure 10, we show the completion time, the active radio
gation progress. In the current implementation, each segnmtéme, and the active radio time after the sensor has received its
has 128 data packets and each data packet has 22 bytesfulstadvertisement message, for various program size, from 1
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entire process, indicating a smooth data propagation flow.

< - >
AS
(b)
Figure 9. Active radio time of nodes without initial idle
listening in a 10 by 10 network. Program size: 14KB (5 seg-
ments). Completion time: 24 minutes. Average active radio

time: 862 seconds. Figure 12. Overall advertisements, download requests, and

data messages transmitted in a one-minute window in a 10 by
segment (2.8KB) to 10 segments (28.2KB). As we can see,10 network. Program size: 14KB (5 segments).

the completion time is linear with the program size, and the

active radio time is around 60% of the completion time. 4.2.3 Propagation Progress

Figure 13 shows the code propagation progress when we send
one segment (2.8KB) in a 14 by 14 network. The distance
between every two nodes is still 10 feet. As we can see, data
is propagated at a fairly constant rate from the base station to
the other end of the network.

5 Related Work

Brrvram S Sanmose In this section, we discuss work in the areas of network re-
Figure 10. Completion time, active radio time and active programming and suppression schemes.
radio time without initial idle listening for various program  Network reprogramming. The work on network re-
size in a 10 by 10 network. Program size is from 1 segment programming/data dissemination can be classified into two
(2.8KB) to 10 segments (28.2KB). types: entire code image delivery ( [2, 6, 10, 11]) and
4.2.2 Transmissions and Receptions differenc_e-based application adjustment ( [12,.13]). Er_1tire
] o ] ~ code delivery provides the basic reprogramming function-
In Figure 11, we show the transmission and reception disljity, while difference-based approach can be used to send
bution in a 10 by 10 network. The size of the program gfferences between versions. MNP follows the former ap-
14KB (5 segments). We note that the number of messag@sach. However, we note that our solution is complementary
sent by each node is low, on average 400 messages, incigdyifference-based approaches. In other words, our sender
ing all data and control (advertisements, requests, etc.) M@jaction and loss recovery approaches can be used to im-

sages. The node sending the most number of messages ;ﬁ,tb@e difference-based approaches as well.

base station, since all the data messages are originated from . . L

it. The nodes that are close to the base station get code @F— existing work on network reprogramming includes
lier than those that are far away from the base station. T %yOS smgle-hop networ!< reprogramming (XNP) [2],
they become source nodes earlier and send more data paciate:r. (Multinop Over-the-Air Programming) [10], and Del-
In the reception distribution, the nodes in the center recefvd® [6].' Al Of. them are entire code delivery approaches, and
many more messages than the ones on the edge or at theadrgrpuIIt on TinyOS platform.

ner. This is due to the fact that a node in the center has méigyOS has included single-hop network reprogramming
neighbors than that at the corner. support (XNP) for Mica-2 motes since the release of version

In Figure 12, we show different types of messages trans 't(-)' In X.NP’ one source node (the_ba_\se SI"’.‘“O”) broadcasts
ted in the network in a one-minute window. The number 8¢ code image to all the nodes within its radio range.

MOAP is a multihop network reprogramming approach.
MOAP disseminates code in a hop-by-hop fashion, that is,

Hm data messages transmitted remains almost constant during the
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a node has to receive the entire program image before stistassigned time slots, so that message collision is avoided
ing advertising. MOAP uses a simple publish-subscribe intand the node can turn off its radio when it is not transmitting
face for reducing the number of senders. No sender selectionreceiving. However, TDMA requires the time synchro-
mechanism is considered. If a loss is detected, a NAK is unization service, and it is only applicable when the network
cast to the sender requesting for retransmission. To keep tragology is well defined (e.g., a grid).

of loss information, a sliding window approach is pmposedSuppression schemes. Message implosiomr broadcast

Deluge is another multihop network reprogramming aptorm problem [15] exists in both wired and wireless net-
proach. MNP shares many ideas with Deluge, suchwasrks. Suppression schemes normally fall into two cate-
advertise-request-data handshaking (based on SPIN [14])gdiries: aggregation based, deferred feedback based. Aggre-
viding a code image into equally sizeadges pipelining the gation based suppression is usually used in large sensor net-
transfer of pages, and using a bit vector to keep track of lagsrks. Data is aggregated at intermediate nodes on the way to
within a page. In contrast to MNP, Deluge (as well as XNtRe destination node. This approach, caltedetwork aggre-

and MOAP) requires that radio is always on during reprgation, was proposed in Directed Diffusion [16], and broadly
gramming. Therefore a node’s idle listening time is the samsed in almost all flat structured or cluster-based protocols,
as the completion time. Since the energy spent on idle listsnch as LEACH [17], SINA [18].

ing is the major source of energy consumption, we compaEgeferred feedback based suppression, each node defers its
the average active radio time in MNP with the completiafhnging of response for a certain period of time, during which
time in Deluge. As reported in [6], for Deluge, the time fof may cancel its response if it hears an identical one from its
sending 240 packets (SKB) through a 10 by 10 network §3ighhors, or it may send response probabilistically based on
more than 700 seconds. In MNP, it takes about 24 minutesd@"nymber of identical replies it has heard. Two examples

send 640 packets (14KB) through a 10 by 10 network. TBeeferred feedback based suppressiorSaaable Reliable
active radio time in average is about 930 seconds (or 862 Eilticast(SRM) [19] and Trickle [20].

onds without the initial idle listening). Therefore we sen

almost 3 times the data using 30% more time. If we consid; pr sender selection !?rOtOCOI is. al.f,o delay based. We use
a program of similar size, that is, sending 2 segments (Z%Jm_ber of requesters” as the criteria to choose Sefjder- Our
packets, 5.6KB) through a 10 by 10 network. It takes 577 s&2a! is to find the “good” senders who have many “follow-

onds to complete. The active radio time is only 352 secorfds -
(or 273 seconds without the initial idle listening). Thereforgy  conclusion and Future Work

MNP saves energy by turning off a node’s radio when it |s . i
not supposed to transmit or receive. In this paper, we presented a multihop network reprogram-

. . L ) ming protocol, MNP, that is targeted at Mica-2/XSM motes.
In [6], the dynamic behavior of Deluge is investigated. It ig\p yses a sender selection protocol to reduce message col-

found that when the network is dense, the propagation spgehn anqd to address the hidden terminal problem. When
along the diagonal is significantly less than the speed alqiigiple sensor nodes compete for being the potential sender,
the edge. One of the main causes of this behavior is the Qs sender selection algorithm attempts to find a node whose
den terminal problem, Wh'Ch. occurs when two senders OUkPlhsmission of the program code is likely to have the most
range of each other transmit packets to the same receivengfact Based on the experiments presented in Section 4, our
the same time, thus causing collisions at the receiver. In MWotocol ensures that at a time at most one sender is active

we _solve the message collision problem using the _sender-ﬁeany neighborhood. Also, MNP propagates the code in a
lection protocol. And we address the hidden terminal pribl‘pelined fashion.

lem by including “requester counter” information of a source . .
node indownload requestessages. Hence, we did not oplVé evaluated MNP through experiments on Mica-2 motes
serve this kind of behavior (as shown in Figure 13). and simulation on TOSSIM. In our experiments and simu-

lation, we kept the base station at the corner. Hence, we ex-

To address the very resource constrained nature of Se’a@:rt that this algorithm can be easily extended to the case
nodes, Ma [12], and its successor, Bombilla, is includeflere the network size is 4 times larger (twice the length
in TinyOS. Bombilla is a stack-based virtual machine. Prgqq preadth) and the base station is in the center. MNP was
grams are represented as one or a éapsulegcurrent im- - 4o monstrated in the DARPA NEST team meeting in Colum-

plementation allows at most eight capsules), of up to 24 s, OH, May 2004 and during the ExScal project demon-

structions. Each capsule fits in a packet and can be proasion in Avon Park, FL, December 2004 [21]. In the first
gated to other nodes. In this way, Bombilla allows new prgemonstration, we deployed 50 Mica-2 sensors on a grass
grams to be forwarded and installed quickly through a ngf514 and reprogrammed all the sensors with Lites code [22].
work. However, there is severe limitation on the sort of a@; the second demonstration, we showed that MNP scaled
plications that can be built. well in a larger network of 100 XSM sensors.

The approaches we mentioned so far use CSMA-based MﬁCMNP, some nodes are selected to transmit the code

protocol. We can also build up a reprogramming Servigereas others can “sleep” to save power and to prevent inter-
based on TDMA (e.g., [8,9]). A TDMA-based protocol progerence. This effectively reduces the idle listening problem.

vides the advantages that a node transmits messages onydiihowed that this approach helps us in significantly reduc-



ing the energy usage. Moreover, we can adjust the power Platform Tools and Design Methods for Network Embedded Sensors

level used in the advertisement message based on the remain{SPOTS)April 2005, to appear. _

ing battery level. Thus, a node whose battery level is low] P. Lle\tl)IIS’ N. '-Ie?_y M. ;Nelf_hv ?nd D. Cull!ef-t, TOSSgni Acgwate ?nd
H3H H H H _ Scalable simulation of entire tinyos applications. Hroceedings o

(e'g." if it became a sender in previous repr_ogrammlng) ad the First ACM Conference on Embedded Networked Sensor Systems

vertises with lower power level. Therefore, itis likely to have  (sensys 2003).0s Angeles, CA, November 2003.

only a small number of followers and, hence, it will lose ing} 3. w. Hui and D. Culler. The dynamic behavior of a data dissemi-

the sender selection. It follows that with this modification, = nation protocol for network programming at scale.Piroceedings of

the probability that sensor forwards the code to others de- the second International Conference on Embedded Networked Sensor

pends on its remaining battery level. With this modificationm :ysstezslk(seﬁsyz iopvs;l't'mc&;’PMiﬂry:?Ed’ 2024’ tcl’(appear' _
- s : ] . S. Kulkarni and L. Wang. : Multihop network reprogramming
the responsibility of transmitting the code will be evenly di service for sensor networks. Technical Report MSU-CSE-04-19, De-

vided among the sensors. partment of Computer Science, Michigan State University, May 2004.

Our simulation focused on the energy consumption during ré&] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol

programming process, of which idle Iistening and messages for erelegs sensor network#n Proceedings of the 21st Internat_lonal
.. d . h . Annual Joint Conference of the IEEE Computer and Communications

transmissions an r_eceptlons are, the t.WO ma](?r_sources. We Societies (INFOCOM)ages 1567—1576, June 2002.

showed that by turning off a node’s radio when it is not transy s s Kulkarni and M. Arumugam. SS-TDMA: A self-stabilizing MAC

mitting or receiving, we can greatly reduce the idle listening ~ for sensor networks. I8ensor Network OperationkEEE Press, 2004,

time. Further, because our sender selection protocol reducesto appear.

message collisions as well as the hidden terminal probld#®] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update

we did not observe the dynamic behavior (reported in [6]) mechanism for wireless sensor networks. Technical report, UCLA,

. . . 2003.
where the propagation speed in the center is less than Ffﬁt S-J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz. A scal-
along the edge. able approach for reliable downstream data delivery in wireless sensor

i i « ” i networks. In Proceedings of the ACM International Symposium on
Nodes running MNP are put Into sleep .State OCC(_:IS_IOI’Ially Mobile Ad Hoc Networking and Computing (MobiHppages 78-89,
and wake up when the sleeping timer fires. Deciding the .y 5004,

sleeping period is a trade off. If a node wakes up frequently 8 p | eyis and D. Culler. Mét A tiny virtual machine for sensor net-
lot of energy is wasted on idle listening and turning on and off ~ works. Inthe 10th international conference on architectural support
radio. But if a node sleeps for too long time, it may miss the for programming languages and operating systems (ASPLOZ0B?.
advertisements sent by its neighbors. One promising optld® N. Reijers and K. Langendoen. Efficient code distribution in wireless
is to combine MNP with time scheduling mechanisms such sensor networks. Ithe 2nd ACM international conference on Wireless
as TDMA, so that each node can sleep and wake up at _ sensor netowrks and applicatiqrieptember 2003.
defined V! | d d il pd h d .p Fﬁ% J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based pro-
enne t'me S O.tS, and a node will send the advertisements (ocos for disseminating information in wireless sensor networks. vol-
only when its neighbors are awake. ume 8, pages 169-185, 2002.
Although MNP was designed as a code dissemination pro sr-gglé\‘rk Yr-]'g-nrgg_’rgva\gfdfreet”' ;'lld g Sheu. Ih;‘?&gﬁﬁggémfm
. . . PR 1 | WOrK. 1 u
fr?l' (Ijt Ctan, bte used”to dlssemtmate anﬁ/ Sor_t of data. tB?/((jil\f[Idlng International Conference on Mobile Computing and NetworkBegat-
€ data Into small segments, we allow Incremental data up- tle, Washington, August 1999.
dates. Moreover, in the scenario that several subsets of[tl8¢ c. intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
network exist, rather than sending the data to the entire net- scalable and robust communication paradigm for sensor networks. In
work, we can send different types of data to several disjoint or Mobile Computing and Networkingages 56-67, 2000.
non-disjoint subsets of the network. In this case, our sendfe’t ‘é‘f’ﬁC'?én'*tec'gﬁqemﬁ?cva%ggﬁr‘gg)ffmfﬁ”\;vifgisz- rﬁi‘?‘c'%ksfésnhsr(‘)?”hem)erﬂy'
selection algorithm needs to be EXtendEd_u_) take, Into accqunt In the 33rd Hawaii International Conference on System Scignces
all these messages types, for example, giving different prior- 2000.

ities to different types of messages. [18] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information
networking architecture and applicatiohBEE Personel Communica-
tion Magazine 8(4):52-59, August 2001.
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