
RasP: An Area-efficient, On-chip Network

Simon Hollis, Simon W. Moore

Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD, UK.

Email: {Simon.Hollis, Simon.Moore}@cl.cam.ac.uk

Abstract— We present RasP, our asynchronous on-chip-
network, which uses high-speed pulse-based signalling tech-
niques. RasP offers numerous advantages over conventional
interconnects, such as clock-domain crossing and skew tolerance.
Most importantly, it features a very small global-wiring footprint.
This compact nature allows a system designer to give priority
to link bandwidth or signal-to-noise ratios, rather than being
restricted by lane areas.

We describe our point-to-point link and develop it into a fully-
routable system, with a repeater, router, arbiter and multiplexer.
Simulations give throughput figures of between 1Gbit/s and
700Mbit/s in a 0.18µm technology, depending on interconnect
length. We also show that it compares favourably in performance
and area to Bainbridge et al.’s Chain interconnect.

I. INTRODUCTION

The need for high-throughput, low-latency interconnect has

given rise to many advanced designs. Most use many wide

and parallel wires, for example as parallel buses. Whilst this

approach gives good performance, it is difficult to integrate

many copies onto the same die, since a large number of wires

need to be routed. Most IC implementations use Manhattan

Routing, and so opportunities for track crossover and turns

are limited. This is made worse by the fact that all corner

turns require an area equal to the square of the bus width.

This crowded environment, found on modern chips, is

not conducive to the simultaneous layout of several, wide

interconnection structures. Once the issue of how to route

so many wires has been solved, traces are often left in

close proximity, which causes the problem of crosstalk. The

magnitude of crosstalk seen between two wires is inversely

proportional to their separation. In Section III-A we will show

that, by reducing the number of interconnecting wires, we can

dramatically improve signal-integrity. The increase in signal

integrity is driven by a reduction in inter-wire capacitance.

This also increases throughput, since it reduces the RC product

of a wire. Ho quantifies this in his thesis [1], and finds that

the bandwidth of a wire is inversely proportional to wire pitch.

It is well known that increasing the spacing of wires reduces

crosstalk, but we are not always able to do so, due to routing

constraints. It is for this reason that area-efficient interconnects

are vital to the designer. In the following sections, we will

present our area-efficient interconnection system. Its efficiency

enables wider wire spacing, and hence a reduction of crosstalk

and increase in signal integrity.

First, we will present our point-to-point link, which provides

many benefits compared to more conventional designs. For in-

stance, it trivially tolerates clock domain crossing and process

variations. This feature come free with our use of clockless,

dual-rail logic. A key feature of our system is that it always

runs at the maximum possible speed for its environment, and

thus many bits can be transferred over our link in a single

cycle of its (conservatively) clocked counterparts. At the des-

tination, synchronisation is easily implemented using standard

techniques, but we pre-emptively generate control signals, and

so performance is not degraded by synchronisation.

All this makes our link an ideal candidate for the basis of

a Network-on-Chip (NoC) application, which we call RasP,

since multiple functional blocks can be connected, regardless

of their synchronicity or separation. Later, we will show how

multiple instances of our link can be combined to make such

a network.

Finally, we will evaluate our system in comparison to

Bainbridge et al.’s Chain interconnect implementation. We

show that our system is an improvement in throughput and,

more importantly, area and energy.

II. OUR POINT-TO-POINT LINKS

Before we consider our full interconnection system, we

introduce our basic point-to-point link. Based on the GasP

system [2] developed at Sun Microsystems, our link requires

only a single pair of wires to transmit an 8-bit word of data.

Data is first serialised from a synchronous input buffer, before

being transmitted bit-by-bit over the two wires, using dual-rail

encoding [3]. Once at the receiving end, data is de-serialised

and placed in a FIFO-like buffer, awaiting a synchronous con-

sumer. Transmission and reception are decoupled in time, the

transmitter and receiver being locally clocked. This allows our

system to straddle clock domain boundaries with no reduction

in efficiency or reliability. This Globally Asynchronous but

Locally Synchronous approach is known as GALS, and is a

common methodology to deal with systems with high clock

skew or long distance interconnect.

Our system’s GALS nature is produced by a combination of

local delay elements (Figs 3 and 5), and a completion detection

encoding [3] on the global wiring. We will see both of these

later, but now we illustrate an overview of our system as Fig. 1.

Wider data paths can easily be made by aggregating multiple

links together.

The GasP system was originally designed to transmit two

contra-flowing control signals, request and acknowledge,

to asynchronous micropipeline [4] stages. To do this, it makes

use of a structure called a distributed inverter (reproduced

for clarity as Fig. 2), to allow a bi-directional flow of events

along a single wire. Sutherland et al. [2] call these wires state

conductors and, using distributed inverters as a foundation,

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

Fig. 1. Our Point-to-Point Link Block Diagram

long wire

data in

ack

data out bar

Fig. 2. A Distributed Inverter

they transmit events as logic pulses. Operation is very simple,

with self-resetting pulse generators at either end of a global

wire being triggered in strict alternation to produce a sequence

of data request and acknowledge signals. The two ends only

transition in opposing directions, and hence the two signals

are distinguishable.

The distributed inverter structure is also know as a single-

track structure, and previous work has demonstrated logical

operations using a 1-of-n encoding technique with single

tracks [5]. The issue of serialisation over long wires has,

however, not been properly addressed before.

GasP is extremely efficient as a control structure, but

unsuitable for data transfer since the state conductor is only

able to encode events (i.e. request and acknowledge), and not

discrete data values.

We use dual-rail encoding to give data semantics to our

links. It is an asynchronous (lacking a global clock) signalling

protocol [3] and is extremely robust, tolerating arbitrary delay

at any stage. Of the four states available, two represent

symbols 0 and 1, one is unused, and the final is an idle

state. The idle state is used because dual-rail is a return-

to-zero (RTZ) protocol. Dual-rail semantics are illustrated in

Table I. Dual-rail is often thought of as an area-expensive

style of interconnect, but our techniques drastically reduce its

area requirement. The other main drawback of conventional

dual-rail is that the RTZ phase costs an entire symbol in time,

reducing throughput.

We use pulses, which are naturally double-edged, to roll

this RTZ phase into the end of data bit symbols, dramatically

reducing its impact on throughput. GasP’s distributed inverter

concept gives us both pulse generation and bi-directional

abilities. The latter eliminates all control wires, reducing the

TABLE I

DUAL-RAIL SEMANTICS

Wire Values Meaning

00 Idle/Invalid data
01 0
10 1
11 Undefined/Error

TABLE II

INVERTED DUAL-RAIL SEMANTICS

Wire Values Meaning

00 Undefined/Error
01 1
10 0
11 Idle/Invalid data

wire count and power consumption of our system over that of

conventional dual-rail logic. In this way, our approach greatly

reduces area requirements. The edge-based signalling means

it is sufficient for an edge to be detected, without requiring

a full logical level. Therefore, our interconnection wires do

not need fully charging to signal information, and this results

in a performance increase compared to traditional, level-based

signalling. This relaxed approach to voltage levels means that

our drivers can be relatively weak given the length of wire.

Thus, our pulses are RC shaped, rather than with the sharp

edges of traditional circuits. This smoothing reduces peak

power consumption, as well a suppressing electromagnetic

emission, which helps design for EMC compatibility.

Since GasP uses logic 1 for the idle state, compared with

the logic 0 of dual-rail, we invert dual-rail’s normal semantics

to make it compatible with our approach. These, inverted,

semantics are shown in Table II. Detection of valid data is

easy: simply NAND together the inverted dual-rail output. We

do so for each receiver stage to produce a valid data signal.

Dual-rail logic is not new, but few attempts have been made

to operate it using pulses rather than logical levels. Nanya and

Kameda investigated the area some time ago [6], but they used

exotic quantum gates, rather than the standard CMOS we use.

Ho et al. use a dual GasP control-channel scheme [7], but the

data is still transmitted using a bundled-data technique [3],

rather than being serialised and sent over the same wires as

the control signals.

Since dual-rail logic runs free of any global clock and logic

areas far apart are those most likely to suffer from relative

clock skew problems, our approach is especially useful for

long distance interconnect. Transcending skew, it provides a

reliable channel. Implementation is therefore ideal for ASICs,

where a designer may not want to have to fully wrest with

the idea of exactly equalising global signal paths to all nodes,

or where power saving techniques such as voltage islands or

multiple clock domains are in use.

When combined into a larger system, the lack of need

for synchronicity makes composition of our systems elements

straightforward. This, combined with its low global wire area

requirement render it attractive for NoC implementations,

where communication channels are generally pre-reserved on

a floorplan — the reduction in area can allow more channels

or a higher bandwidth.

III. LONG WIRES

Long wires present a problem for all forms of interconnect.

Simplest of all, the finite speed of light causes two signals

TABLE III

COUPLING CAPACITANCES FOR CONFIGURATIONS OF A 3800µm TRACK

Configuration Cmutual Cgnd Ctotal

Minimally-spaced, no gnd 0.437pF — 0.437pF
Doubly-spaced, no gnd 0.224pF — 0.224pF
Triply-spaced, no gnd 0.162pF — 0.162pF
Minimally-spaced, gnd 0.538pF 0.203pF 0.741pF
Doubly-spaced, gnd 0.350pF 0.237pF 0.578pF
Triply-spaced, gnd 0.078pF 0.252pF 0.330pF
Minimally-spaced, gnd, M4&6 wires 0.346pF 0.293pF 0.639pF
Doubly-spaced, gnd, M4&6 wires 0.174pF 0.327pF 0.501pF
Minimally-spaced, guard wires, no gnd 0.059pF 0.389pF 0.448pF
Minimally-spaced, guard wires, gnd 0.011pF 0.527pF 0.538pF

arriving at two different on-chip locations to experience vary-

ing degrees of skew. This can result in data corruption if

these signals happen to arrive at an unexpected time, from

the point of view of the receiving circuitry (such as near a

clock transition). Equally relevant, the longer the wire, the

more global wiring metal it takes up, so we wish to minimise

the width and spacing of a channel’s trace, to allow others to

be routed. In our previous work [8], we show how our point-to-

point links are much more area-efficient than standard parallel

interconnects, and they form the basis of our approach here.

Signal integrity is also affected adversely by increases in

wire length. We notice attenuation due to resistive losses, and

increases in capacitance between both the wire and ground

and the wire and its neighbours (cross-coupling). The first

form of capacitance increases the delay of the signal; as does

the second which, more seriously, can also introduce a large

degree of noise, reducing signal integrity. Similarly, whilst

inductance can sharpen signals, it also causes coupling, and

impressing additional noise.

Using data from a UMC 0.18µm 1P6M process, a model

was created of likely interconnect structures. The capacitance

extraction program Quickcap [9] was then used to produce

capacitance values, both for line-to-substrate and line-to-

line coupling. Varying arrangements of line and location, on

several metal layers with varying distributions of neighbour

wires were simulated. This data was then placed in an

hspice [10] model of our full interconnection system, and

we display the results as Table III. In the table, Cmutual is

the inter-signal-wire capacitance, Cgnd is the wire-to-ground

capacitance, and Ctotal is the sum of the two. When we guard,

the shielding wires are connected to ground, explaining the

non-zero ground coupling, even when there is no ground plane.

We show capacitances for minimally, and doubly-spaced

metal 5 lines, with and without ground planes, and with and

without minimally-spaced wires in the neighbouring metals 4

& 6. Given these results, we chose to base our system’s model

on a wire configuration where signal wires were minimally-

spaced on metal 5, surrounded by fully-populated metal 4 and

metal 6 layers. This gives the worst-case system performance.

All the wires in our system act as transmission lines in

the RLC operating region [11], where line propagation delay

increases linearly with trace length. Our system is able to

adapt to such increases by varying the width of transmitted

pulses. Since our forward transmissions only cease once an

acknowledgement has been received (see §II), we merely need

to vary the width of the acknowledgement pulse: longer for a

longer line, and shorter for a shorter one. The optimal number

is proportional to signal flight time along the line: δ. This is

easily found from the line’s length l and its per-unit-length

characteristics of resistance, R̂, and capacitance, Ĉ, using the

simple formula δ = l
√

L̂Ĉ. Extraction of these for our

line, followed by simulation gave the propagation delay over

3800µm to be 559ps.†

Using our model, our system has been shown to operate

correctly over unrepeated wire lengths ranging from 750µm

to 5000µm. This is exactly the range of distances for which

our system is intended since, for distances shorter than 750µm,

local wiring is more likely to be used than the higher metal

layers we favour. Similarly, few long-distance interconnections

run unrepeated for as long as 5mm, and our system is no

different.

A. Signal-integrity

A major motivation for producing area-efficient designs is

concern over signal integrity. Closely spaced wires couple

capacitively (so-called cross-coupling), and the closer they are,

the stronger the coupling. Cross-coupling produces two effects,

both of them unwanted: the retarding of signals, and the

creation of noise. As an example of the latter, in our system,

a minimally-spaced 3.8mm wire is able to impress crosstalk

noise of 44% of vdd on a neighbour. This is a dangerous

value, and one must take special measures to ensure that it

does not cause a problem. This crosstalk is the main reason

that our system fails to transmit data correctly at unrepeated

wire lengths of over 5mm.

From Table III, we see that simply doubly-spacing the

two signal wires in our system gave a decrease in mutual

capacitance (and hence crosstalk) from 44% of vdd to 26%

of vdd in the basic case and, in most cases around a 50%

reduction. Whilst shielding wires were shown to reduce the

crosstalk dramatically, the total capacitance was still high,

slowing down signal propagation and degrading potential

throughput benefits from reduced crosstalk.

Since capacitive coupling decreases with the distance be-

tween two wires, area-efficient designs can offer wider spac-

ing, resulting in reduced cross-coupling through increased

separation. Alternatively, this space can be used to insert

shielding wires, but we have already seen that we are better

off without, and merely increasing spacing, since shielding

increases capacitance as well as reducing noise.

B. Repeaters

Signal integrity is not the only thing impeded by long

wires. Performance is also decreased due to the impact of

an increased delay. The delay of a line is responsible not only

for end-to-end latency of a system, but also for throughput in

a system where acknowledgements are required (such as ours

†This figure may seem large for 3.8mm, but recall that this particular line
was simulated with multiple, minimally-spaced neighbours and, thus, has a
very high capacitance, and so signals are strongly retarded.

delay

long wire

long wire

in

out

Fig. 3. A Standard GasP Repeater

— the performance of a computer network using a sliding

window protocol with window size of one is a good example

of this [12]). Hence, the throughput of a section of our system

is, indeed, limited by the delay (and hence length) of its wires.

There are two approaches to ameliorating this problem: reduce

the delay; or segment the wires, producing multiple sections

with lower unit delays. Repeaters do both.

The delay of a line can be minimised by the technique

of optimal repeater-insertion [1], [13]. This is a well-known

approach, and reduces the delay of a signal travelling down

a long wire by placing repeaters of optimal sizes at opti-

mal locations. Repeaters are interesting in our GasP-based

approach since we require bi-directional communication, and

repeaters traditionally offer only uni-directional operation. To

solve this problem, and also that of the critical impact of ac-

knowledgements on the performance of our system, we choose

to pipeline, rather than repeat. In this approach, we split a long

wire at intervals with repeaters, and also add elements that

provide a full signalling-protocol cycle (they consume the data

and re-transmit it, but also provide an backwards-propagating

acknowledgement signal). Our technique is similar to the one

used by Ho et al. to pipeline an asynchronous channel [7].

Our approach therefore increases system performance, as well

as boosting signal integrity.

We now describe two varieties of repeater, suitable for use

with our interconnect: the first is stateless and is based on

a single GasP pipeline control stage, and the second is a

stateful design using D-type latches. We illustrate the former

as Fig. 3, and the latter as Fig. 4. We use the first for logic-

buffering applications, and the second for wire repeating. Note

that we choose to add a set of dedicated reset p-type pull-

ups on the input of the second, rather than logically ANDing

the reset signal into the acknowledge p-types. This choice is

made to eliminate an additional gate delay on the reverse,

acknowledgement, path; we believe the parasitic delay from

the additional p-types to be less than the corresponding logical

overhead. The pulse generators both generate low pulses, and

are based on the simple edge detector circuit in Johnson and

Graham’s book [14, p.181]. Depending on the polarity of the

input, we use either a NOR-based design, (Fig. 5(a)), or a

NAND-based one, (Fig. 5(b)). In our stateful repeater. the

latency of the D-latch is less critical to throughput than the fact

its inclusion allows local acknowledgements to be generated.

We have already seen that the propagation delay of our

a0

a1

NOR pulse
generator

D Q

PRE

reset_bar
D Q

PRE
d_in valid

z0

z1

NAND pulse
generator

reset_bar

All p-types are very strong

Fig. 4. Our Stateful RasP Stage Repeater

delay

level in
pulse out

(a) The NOR Pulse Generator

delay

level in
pulse out

(b) The NAND Pulse Generator

Fig. 5. The Two Types of Pulse Generator

unrepeated wire is 559ps. In comparison, if buffered with

optimally placed repeaters (in our case two of them), the total

propagation delay becomes 186ps [15, p.221]. The forward

and backward logic delays of our stateful repeaters are equal,

at approximately 400ps. These latencies correspond to just

over four fan-out-4 delays in our technology. This is a large

figure for a repeater, but recall that our system transfers data in

byte-long bursts, and so latency is less important than the fact

that throughput is boosted by the repeaters. The total wire time

for a bit then becomes around 600ps in the forward case, and

1.2ns in the full-cycle case. Hence, the repeater logic overhead

means that repeated and unrepeated lines have similar total

delays at the 3.8mm length. However, repeaters do reduce the

overall delay for lengths greater than this.

With data from our hspice simulations, we show in Fig. 6

how the transmission time for a single byte decreases as we

add additional repeaters, up until the optimal number (which,

for 3800µm is two). After this point, latency increases again

because the repeater delay becomes more significant than the

wire delay. We clearly see that the minimum transmission time

is when we use two repeaters. This also corresponds to the

smallest distance between our two curves, their separation

indicating the propagation delay of the wires. The ‘Logic

overhead’ plot shows the delay of all the logic in our system,

and it is clear that the delay from inserting additional repeaters

increases linearly, as would be expected for a line which is

almost optimally repeated. Similarly, the time taken to transmit

the whole data word increases linearly with wire length.

In Fig. 7 we show how the cycle time of a single bit passing

to, and being acknowledged by, a repeater stage varies with

the length of the interconnect to be travelled. The linearity

clearly illustrates our line’s RLC characteristic.

IV. A NETWORK OF POINT-TO-POINT LINKS

A natural extension of a point-to-point link is to make data

routable to a number of destinations. This NoC approach is

becoming increasingly popular with system designers since it

obviates the need for a large number of custom-routed data

paths, and has a regular structure and a predictable nature.

Number of repeaters
0 1 2 3 4

Ti
m

e
(n

s)

7

8

9

10

11

12

13

14
Logic overhead
Total time to transmit eight bits

Fig. 6. Transmission Characteristics for a Byte over 3800µm, for Varying
Numbers of Repeaters

Wire length (um)
0 1000 2000 3000 4000 5000

Ti
m

e
(n

s)

0

2

4

6

8

10

12

14
Byte transmission time
Bit cycle time

Fig. 7. Bit Delays for Our Repeater with Varying Interconnect Lengths

Our point-to-point links have demonstrated that we can

transfer data at high speed, and over large distances, on-chip,

without requiring a large area. We will now illustrate how

several can be combined into a chip-area network, without

compromising the low-area and high throughput benefits.

We model our NoC design on that of Bainbridge’s Chain

interconnect [16]. We chose this basis since we too offer an

asynchronous data path, and use similar routing elements.

Like them, we present a router, arbiter and multiplexer for

our form of interconnect; we have already presented the

equivalent of Bainbridge’s ‘pipe-latch’ as our stateful repeater

in Section III-B. We name our system RasP: a Routable asP-

based interconnect. It has cutting-edge performance and, like

Chain, is modular, with no composition problems due to its

arbitrary tolerance of clock skew due to local handshaking.

A. Our RasP router

Key to our RasP system is a router element, shown as Fig. 8.

It takes destination address information and a single data input

channel, and chooses one of four output channels to route

that data to. For simplicity, we illustrate operation with two

address wires indicating one of four routes by their states. In a

larger system, the first transmitted data word could be used to

indicate one of 256 possible routes; or, we could convert the

two address wires to a fully-fledged point-to-point link, serially

transferring a long address. We show the schematic for the

‘north’ output channel. This logic is repeated for each of the

four routable directions, with a central route controller shown

with dashed lines. Our simplified address wires are steered

with AND gates, from the same enable signals, since they

do not use our pulse-based protocol. In our small example,

data_in_0

data_in_1

reset_bar

data_valid

north_0p-types are very strong

north_1

delay

one-of-four
decoder

address0

address1

enable_north
enable_east
enable_south

enable_west

address_north0

address_north1

Fig. 8. Our RasP Router

where we have only four possible destinations, the address

does not actually need to be routed to the following stage, but

we have included the circuitry to indicate how this may be

accomplished for larger systems.

B. Our RasP arbiter / multiplexer

Since multiplexing in RasP simply involves connecting

the two merging wires together, we can trivially merge the

outputs of our arbiter. This eliminates the need for a separate

multiplexer, as is used in the Chain architecture.

At the heart of our arbiter (shown as Fig. 9) is a two-

way mutual-exclusion (MUTEX) element, which takes in two

request signals, req0 and req1, and grants at most one of

gnt0 and gnt1. If both requests are asserted simultaneously,

one channel will be chosen at random to be granted and, when

the request is de-asserted, the other grant will be enabled.

This property ensures a degree of fairness: once one input

channel has had a packet transmitted, the other one will get

to transmit, if it is waiting. Our arbiter’s data lines are not

latched, and operate by enabling transmission gates on one

of the output directions. To ensure signal integrity following

these pass transistors, we recommend the immediate use of a

GasP-style repeater (Fig. 3), to boost line levels.

Like Chain, we arbitrate on a per-word basis, in order to

reduce the arbitration overhead. After arbitration on the first

bit of a word, the output path is enabled until the end of

the word. A counter tracks the number of bits transmitted

since arbitration began, and only releases the MUTEX request

after all eight bits of a data word have been transmitted. This

approach increases the amount of logic, but removes the need

for another global wire, signalling ‘end-of-packet’. For wider

data paths, where we aggregate multiple point-to-point links,

the counter should not be clocked until all data wires are

showing valid data signals.

An interesting feature of our arbiter is the operation of

the transmission gates: they are driven asymmetrically. Our

inverted dual-rail protocol uses low pulses in the forward

p-types are very strong

b0

b1
reset_bar

MUTEX

req0

req1 gnt1

gnt0

a0

a1
reset_bar

de
la

y
de

la
y

z0

z1

3-bit counter

q0

q1

q2

clk

3-bit counter

q0

q1

q2

clk

Fig. 9. Our RasP Arbiter-cum-multiplexer

direction, and high ones in the backward. This places the n-

type pass transistors on the critical forward path, and the p-

type on the equally-critical backward one. Hence, we activate

the n-type pass transistors immediately after a grant signal

is produced, to allow the fastest possible data propagation.

Activation of the p-types is more interesting: since they are

not critical on the forward path, we can afford to delay their

activation after receiving data. However, they must remain on

for a period after the backward-going acknowledge signal is

detected, to ensure it has time to charge the input line fully.

This involves a period of time where the MUTEX’s request

line is reset since all wires have gone high locally, and so the

data valid signal will be de-asserted. Ordinarily, this would

remove the grant, and hence de-activate the transmission line,

but we insert a delay to keep it activated for a time sufficient

to charge the input line. We were able to do this by delaying

its activation for the same time after valid, forward-going data

is detected on an input, and performance is unaffected.

C. An introduction to the Chain interconnect system

The Chain interconnection system [16] was developed by

Bainbridge et al. as a flexible way of connecting together

multiple IP blocks on a single die. By means of comparison,

single-track schemes merge elements of Chain and RasP [5].

The Chain approach is to use an asynchronous logic style

[3], which allows them to connect together multiple blocks,

regardless of whether they share a common clock frequency.

It is precisely this advantage, given by asynchronous logic,

which makes is so attractive for NoC applications. However,

nothing ever comes for free, and asynchronous logic is no

different: the price paid for clock independence is area and,

potentially, power. Asynchronous logic typically takes around

twice the area of more conventional types. Amazingly, this

does not always entail a power disadvantage, since asyn-

chronous designs consume switching power only when there

is data to be processed.

Chain is no different from any other asynchronous design:

it has a high area overhead, mainly because it uses one-of-

four encoding [3], which requires four data wires to transmit

two bits of data. Further, they add two control wires, bringing

TABLE IV

RASP COMPARED TO CHAIN, UNREPEATED

Characteristic RasP Chain

No. of wires 2 6
Bits/cycle 1 2
Bit cycle time, zero-length wire 0.83ns 1.56ns
Bit cycle time, 3800µm wire 1.25ns 3.89ns
Time for 8 bits, zero-length wire 6.64ns 6.24ns
Time for 8 bits, 3800µm wire 11.3ns 15.6ns
Throughput with zero-length wire 1.20Gbit/s 1.28Gbit/s
Throughput with 3800µm wire 707Mbit/s 513Mbit/s

Wire area (metal 5) for 3800µm 1,596µm
2 5,852µm

2

Logic area 5,984µm
2 552µm

2

the total to six wires (for only two bits of data). Chain,

unfortunately, suffers performance penalties: asynchronous

designs are based on C-elements, state-holding multiple-input

gates. C-elements are generally slow, and so Chain’s latency

and cycle times are dominated by these sluggish components.

According to our simulations, the cycle time of a Chain stage

is a minimum of 1.56ns, compared with only 0.83ns for our

design, where we avoid C-elements.

V. EVALUATION OF PERFORMANCE

For fairness of comparison, we present not only our own

results, but those from an implementation of Chain in our pro-

cess. We chose to re-implement Chain to bring the technology

values up-to-date, to give a fair comparison.

A. Our Point-to-point Link

Table IV shows the performance of an unrepeated point-

to-point link, which forms the basis of the RasP architecture,

against that of a basic Chain link. We show both 3800µm

and zero-length links. Since RasP only functions correctly for

lengths of 750µm and above, we use this figure rather than

zero (for the RasP results only). We see that, for a zero-length

path, the Chain architecture performs better than RasP. This

is mainly since GasP has a minimum pulse-width limit, but

Chain uses a simple ack cycle. Once we move on to a long

wire, however, RasP’s tolerance to delay means that its cycle

time increase is only 50%, compared to an increase of 150%

for Chain. This naturally impacts upon Chain’s performance

more heavily, and this is shown with its decrease in throughput

over this wire to 513Mbit/s, compared to RasP’s 707Mbit/s.

The table also gives area estimates for both RasP and Chain.

At the 3800µm point, the total logic and wire amounts are

similar, but note that, while Chain is mainly using global metal

wiring, which scales with line length, RasP’s size is mainly a

fixed serialisation / de-serialisation overhead. Thus, at longer

distances, RasP’s area will be substantially lower than that of

a Chain implementation. Since global on-chip interconnects

are typically of at least the distance we consider, our sys-

tem presents a smaller total footprint than Chain for typical

applications. Further, it always saves significant quantities of

precious global metal. Our previous work [8] has also shown

that, for real-world bus widths of 32 bits, and duplex links,

RasP occupies just under a third of the area of a standard

parallel interconnect; and, even for shorter lengths, RasP is

Data
Source

RouterData
Source

Repeater

Data
Source

Data
Source

Data
Source

Data
Sink

Arbiter
/ MUX

long wirelong wire

Fig. 10. Our Complex System Test Setup

TABLE V

COMPLEX SYSTEM PERFORMANCE FOR RASP AND CHAIN

Characteristic RasP Chain

First bit latency, zero-length wire 3.37ns 1.51ns
First bit latency, 3800µm wire 3.73ns 4.87ns
Byte latency, zero-length wire 7.57ns 6.04ns
Byte latency, 3800µm wire 12.1ns 19.48ns
Throughput with zero-length wire 1.03Gbit/s 1.32Gbit/s
Throughput with 3800µm wire 661Mbit/s 411Mbit/s
Repeater energy for a 3800µm wire 0.67pJ/bit/mm 0.86pJ/bit/mm

always more competitive than a parallel interconnect. All these

results show the area-efficiency of our system, enabling the

routing of multiple RasP links in the space afforded to just

one parallel or Chain interconnection.

B. Our Full RasP System

We now consider a more complex system, using all the

components of our RasP system. We take a data source,

feeding a router, and being routed out onto a long (3800µm)

wire. This wire is split in half by a repeater, before going

into an arbiter and multiplexer, and finally being consumed

by a data sink. We illustrate this configuration as Fig. 10.

Performance for such a system via both implementations is

given in Table V. We see a similar performance pattern to

that of the point-to-point links: Chain just beats RasP for

a zero-length wire implementation, but RasP’s performance

is better at longer wire lengths. Both systems experience a

performance boost over the raw point-to-point link since the

long wire is pipelined. Much of Chain’s bad performance is

as a result of the over-prevalence of C-elements [3] in their

design. C-elements are state-holding elements and, even after

heavy optimisation, are slow gates. More critically, Chain

requires full-swing transitions on wires to signal. RasP is

able to function with voltage swings as small as vdd/2. This

enables a large improvement in performance for RasP over

long distances, where transition time is dominated by the RC

delay of the wires.

Finally, if we consider a single repeater link, in energy-per-

bit performance, RasP is able to transfer bits for only 78% the

energy required by Chain.

VI. CONCLUSIONS

We have presented our routable, GasP-based system, which

we call RasP. We have shown that it constitutes an area-

efficient, point-to-point link, featuring high throughput and

a low global-metal footprint. We have shown how this link

can be extended into a fully-routed NoC system, and have

presented a repeater, router and arbiter / multiplexer for this

purpose. The full RasP system maintains the area-efficiency

of its constituent links, and is a great improvement over

traditional parallel interconnects.

Simulations have illustrated the usefulness of repeaters over

long distances, and have demonstrated that our system offers a

higher throughput-per-unit-area than the similar Chain system.

The reduction in metal area provided by our solution greatly

helps routing, by offering more freedom to designers; and

also enables reductions in crosstalk or increases in throughput.

Further advantages of our system over traditional interconnects

include arbitrary clock-domain crossing and ease of compo-

sition due to clock-skew tolerance. It is therefore ideal for

NoC applications, where multiple IP blocks may need to be

connected, or for ASICs where a predictable communication

structure is needed.

Measured throughput of our system operates over a sliding

scale with interconnect length, between just over 1Gbit/s for

short wires to around 700Mbit/s over 3800µm, unrepeated, on

a 0.18µm technology.

REFERENCES

[1] R. Ho, “On-chip wires: Scaling and efficiency,” Ph.D. dissertation,
Department of Electrical Engineering, Stanford Universiy, Aug 2003.

[2] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in
Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems. IEEE Computer Society Press, Mar. 2001, pp.
46–53.

[3] J. Sparsø and S. Furber, Eds., Principles of Asyncronous Circuit Design:

A Systems Perspective. Kluwer Academic Publishers, Boston, 2001.
[4] I. E. Sutherland, “Micropipelines (the Turing award lecture).” Comm.

A.C.M., vol. 32, no. 6, pp. 720–738, June 1989.
[5] M. Ferretti and P. Beerel, “Single-track asynchronous pipeline templates

using 1-of-n encoding,” in Proc. Design, Automation and Test in Europe

(DATE), 2002.
[6] T. Nanya and Y. Kameda, “Pulse-driven delay-insensitive circuits us-

ing single-flux-quantum devices,” in Proc. International Conference of

Computer Design, 1996.
[7] R. Ho, J. Gainsley, and R. Drost, “Long wires and asynchronous

control,” in Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems. IEEE Computer Society Press,
Apr. 2004, pp. 240–249.

[8] S. Hollis and S. W. Moore, “An area-efficient, pulse-based interconnect,”
in Proc. International Symposium on Circuits and Systems (ISCAS), May
2006.

[9] Magma Design Automation Ltd., “Quickcap.” [Online]. Available:
http://www.magma-da.com

[10] Synopsis(R), “hspice.” [Online]. Available:
http://www.synopsys.com/products/mixedsignal/hspice/hspice.html

[11] H. Johnson and M. Graham, High-speed Digital Design: A Handbook

of Black Magic. Prentice Hall, 1993.
[12] A. S. Tanenbaum, Computer Networks. Prentice Hall, 1981.
[13] Y. I. Ismail and E. G. Friedman, “Repeater insertion in RLC lines for

minimum propagation delay,” in Proc. IEEE International Symposium

on Circuits and Systems (ISCAS), May 1999.
[14] R. J. Tocci, Digital Systems: Principles & Applications, 6th Edition.

Prentice Hall, 1995.
[15] N. H. Weste and D. Harris, CMOS VLSI Design (Third Edition). Wesley,

2005.
[16] J. Bainbridge and S. Furber, “CHAIN: A delay-insensitive chip area

interconnect,” IEEE Micro, vol. 22, pp. 16–23, 2002.

