
Scale in Chip Interconnect requires Network
Technology

Enno Wein
Arteris

The Network-on-Chip Company
2033 Gateway Place
San Jose, CA 95110

Email: enno.wein@arteris.com

Abstract— Continued scaling of CMOS has lead to a problem
of scale as gates are faster than light travelling across a chip.

Scalability used to be the hallmark of CMOS. Half the size,
double the speed, half the power etc..

Today, transistors can leak as much current as they drive,
and wires are no longer ”thin film technology” approximated by
plate capacitance over ground. Today wires are much thicker
than wide and have significantly more capacitance (-coupling)
with their neighbors than over ground.

A ”short” wire (from one gate to a neighboring one) can be
a stub of a few 100nm, while a long wire can connect an IP
block with a processor one centimeter away. That is a factor
of 100000, which represents a problem of scale and requires
fundamentally different solutions. Scalability can be addressed
by scaling existing techniques, while problems of scale require
new approaches.

We discuss problems of scale in the context of chip intercon-
nect.

I. INTRODUCTION

Scalability has always been the hallmark of CMOS. CMOS
has replaced bipolar technologies for digital processing (of
course by way of PMOS and NMOS) mainly because of its
scalability and simple operation. In a new process (-node)
almost every parameter changed for the better: Faster, less
power ... If you couldn’t easily get it to work, one option was
often to use the next technology and many problems were
solved. Or throw an additional metal layer at it.

Wires which used to be thin film technology and were thus
accurately approximated by plate capacitance over ground.
Today wires are much thicker than wide and have signifi-
cantly more capacitance (-coupling) with their neighbors than
over ground. In a new process (-node) almost all transistor
parameters used to be better than in the one it replaced while
not changing fundamentals thus making future performance
predictable. As we’re moving close to atomic dimensions tran-
sistors exhibit statistically significant variations of parameters
like drive strength due to a finite number of carriers in the
channel and non-linear temperature coefficients.

Continued scaling (usually by a factor of two each second
step) over time lead to drastically changed parameters.

A. The Problem Of Scale

For a few percent of change, usually scaling is not an issue
as solutions and algorithms can easily be tweaked. Larger

percentage (say, 50% to a few hundred%) typically means
trouble but solutions can still be adapted with potentially
significant effort. Once scaling reaches one to two orders
of magnitude, solutions, architectures and methods no longer
apply and have to be fundamentally changed.

The beauty of early ASIC technologies (e.g. gate array)
was that wires (resistance, even capacitance) were so little a
factor that they could simply be ignored in the design process.
Scaling technology has only a few years later led to a dominant
problem of scale: From being insignificant and ignored, wire
delay has moved up to be significant, even dominant by
far. Completely new techniques (e.g. timing driven place and
route, physical synthesis) were invented to solve the inherent
chicken-and-egg problem of not knowing the delay of a wire
due to physical design yet needing the information to design
the system in the first place. Between 1micron technology and
65nm/45nm the scale is about 20. Since chip sizes have not
changed but feature sizes have, the average ratio of chip level
wires to short wires has changed 20 fold. Today, a short wire
connecting to adjacent cells can be a stub of only a few 100nm,
while a long wire connecting an IP block to a processor can
be one centimeter long. That is a factor of 100000, which
represents a problem of scale and requires fundamentally
different solutions for the short wire (e.g. physical synthesis)
than for the long wire (communication protocol).

B. Short Conclusion

While local wires and transistors have scaled nicely (faster,
lower power), global wires have not. Instead they introduce
high amounts of unpredictability in all aspects of design -
including schedule. The scale between the two is many orders
of magnitude. Synthesis, timing driven place and route flows
with physical re-synthesis work very well for local scenarios
and achieve reasonable efficiency (in terms of circuit-speed,
turn-around time, schedule predictability etc.). For global sce-
narios these flows do not work at all and usually are not even
attempted. For global wiring, entirely different approaches are
used, which rely more on actual construction of the intercon-
nect, including length-dependent pipeline stage insertion etc.
Global wires are no longer measured in nanoseconds or delay
but rather in clock cycles because the delays introduced easily
exceed several clock cycles.

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

This paper suggest that a packet-based switched intercon-
nect offers an architectural solution to the global wire problem.

Enno Wein
Hot Summer of 2006

II. PHYSICAL PROBLEMS OF SCALE

A. Copper and Aluminum

Only a few years ago, a problem with continued scaling
was exemplified by the need to switch from aluminum to
copper for interconnect due to aluminum’s higher resistance.
In the beginning of ASIC resistance was not a factor (typically
was not even considered, CMOS was a purely ”capacitive”
technology). But due to continued scaling, current density
increased to the point that the resistance of aluminum intercon-
nect became a significant limitation. Tweaking of parameters
(e.g. increasing wire cross-section) no longer helped so a
fundamental change had to be made: The industry moved
copper wires, despite significant technological challenges and
cost (E.g. Tungsten Plugs to prevent copper diffusion and
reduce contact resistance). Since the introduction of copper
(about .25um node) we continued scaling, we’re now at 65nm
moving towards 45nm. We’ve already used up the copper
advantage and we’re running out of lower resistance metals.

B. Crosscoupling

Crosscoupling (ratio of coupling capacity between neighbor-
ing wires to ground capacity of each individual wire) scales
between process nodes by the square for the capacitive part of
the equation and additionally with increasing resistance. For
short wires, cross-coupling is not a factor but for long wires
it has become the overwhelming part of the delay equation. A
major portion of the actual cross-coupling (delay and noise) is
unpredictable because it depends on the switching of neighbor-
ing signals (Miller effect or Miller number). With inductance
becoming more important, even switching of signals further
away than from immediate neighbors becomes a factor.

C. Processor speed and ASIC speed

In the ”early days”, processors and ASICs ran at similar
speeds. It was not untypical to design an ASIC of 25MHz on
a workstation with a 40MHz processor. (Timing analysis was
done by manually counting the number of elements in a path
and keeping all branches of a clock tree similar) Today we
have reached 3.4GHz in processors, but ASICs are typically
not clocked at more than 200MHz. The reason is not that
ASIC is using slower technology (current ASIC technology
is 90nm moving to 65nm) than processor (current standard
offering processors are 130nm and 90nm). The reason instead
is design. Processors use more aggressive datapath designsand
avoid long wires. (Of course there’s more techniques that make
processor fast, but controlling wires is predominant)

D. Block versus global speed

ASICs on the other hand are typically limited not so much
by the speed with which individual blocks can be clocked
(process technology paired with aggressive, mature synthesis

software and good design style from years of experience
enable quite fast modules) but by the speed the global inter-
connect between blocks can run. Long wires are of course
the main limiting factor, worsened by the unpredictability
of physical effects during the design/synthesis steps (actual
length, capacity, resistance, cross coupling, neighbor switching
etc.) which are typically overcome by over-design of driver
strength, repeater stages etc. . All of those effects typically
slow down the top level of an ASIC much more than the
individual modules or IP’s.

E. EDA industry solves problems of scale

Some specific examples of theses solutions are 1

• Design and quantization (Mathlab)
• Simulation and modelling (CoWare SystemC)
• Entry, Control and Dataflow synthesis (Bluespec System

Verilog)
• Hardware implementation (Synopsys Design Compiler)
• Physical implementation (Magma Blast Platform)
• Verification (Cadence Assura)
• Test (Mentor ATPG)
Each of the above are examples of solving a problem

of scale after significant scaling (e.g. synthesis replacing
schematic entry when designs became too big) has rendered
previous solutions too cumbersome, inefficient or simply no
longer feasible. These of course include all aspects of design
and manufacturing.

F. Network-on-Chip to solve Interconnect Problem of Scale

The above examples point out the need for a System
(or Top-) Level interconnect solution which addresses these
problems of scale. A top level interconnect solution must
reduce the number and length of global wires while improving
the speed from the 100-300MHz range into the 1GHz range.

This can be achieved by a network based on point-to-
point, single fanout wires that can be kept short utilizing a
hierarchical, distributed, localized switch fabric.

III. SYSTEM SCALE

The point-to-point switch fabric pointed out in the last
chapter has system implications which will be analyzed in
this chapter.

A. Global Control and Arbitration

Typical ASIC design style is state machine based, which
is perfect for block design and due to legacy of scaling and
integration of ”old” designs has been carried over to top level
design as well. Top Level design has until recently not been
given special consideration, it has only been an extension
of block design at the next hierarchical level. Due to the
effects of long wires and top-level timing, arbitration and

1Disclaimer: The author is not trying to classify EDA software into
”buckets” - rather just giving a few examples of problems of scale and software
solution. There are more problems that have been solved and there are more
software solutions for the same and other topics. By mentioning a specific
solution or vendor, no implication is made as far as quality, preference, market
or any other facet is concerned

global control (state memory) have become major limiting
factors both in terms of speed and complexity. Since control
and arbitration require at least one global signaling process
against and orthogonal to dataflow it adds one dimension of
complexity to the timing problem. Inserting pipeline stages
where needed to break clock cycle problems is not possible
without causing significant changes in global control state
machines. Typical bus based top level designs suffer from
these as busses rely on complex arbitration, control and timing
schemes to work properly.

B. Algorithmic Depth

First integrated Circuits contained a single gate, for exam-
ple an ”AND” gate. For packaging and price, several were
integrated into a package, for example 3 ”AND” gates in a
DIL package with 12 connections. The algorithmic depth of
this is very low, it is a very predictable, deterministic system
as under all circumstances it is very clear what the result
is for a given input and even the time it takes the system
to respond is very predictable. A complex, current algorithm
which can be synthesized and verified in itself contains several
ten-thousands of those in equivalent gates and over the last
twenty years an entire industry (EDA) has been formed around
solving the resulting problems of scale. Synthesis, Layout,
Timing etc. software worth many millions of dollars has been
developed and sold, many companies have grown large and
powerful or failed and disappeared just based on solving very
specific, individual parts of the resulting problems of scale
(E.g. Synopsys in the case of synthesis over schematic entry).
The problem of scale (enabled by process scaling) which has
been solved here is the one of algorithmic depth - in other
words how many atomic sub-pieces are required to express a
single algorithm, for example a deblocking filter for an H.264
decoder.

C. Determinism

By Scaling of the first designs (15 years ago, small ASICs
implementing direct algorithms like for example a Reed
Solomon chip) to today’s complexity by one to two orders of
magnitude (E.g. Complete 4th generation wireless base station
chip) we have run out of scalability - several parameters have
changed so much that a different kind of solution has become
imperative. In this case, one major difference is determinism.

1) Simple Algorithms: ASIC/chip technology used to be
fully deterministic in the sense that they implemented small
algorithms with clearly defined, simple input and output data
which was usually very simple in format and content. The
algorithms were direct and straightforward and directly imple-
mented in hardware. The clock cycle accurate behavior was
exactly predictable due to the directnes of the algorithms.

2) Complex Algorithms: Today’s System On Chip typically
implement multiple layers of communication, integrating hard-
ware and software components and are usually configurable
to span a wide variety of parameters or even functionality. In-
put/Output data as well as control is usually very complex and
moves back and forth between hardware and software portions

of the system multiple times. Whether specific sub-algorithms
are executed by hardware or software often dynamically varies
depending on parameters and context.

3) Input and Output Streams: The input/output stream of
a Reed Solomon chip is very deterministic and the algorithm
can be expressed deterministically with state-machines, local
storage and the input/output behavior can be predicted exactly
(including exact clock cycle delay etc.). Often those algorithms
relied on a single piece of data being present every single clock
cycle and would in turn deliver a single piece of data on every
clock cycle at the output.

An entire wireless base station system is fundamentally not
deterministic in the same way. It is impossible to predict under
all circumstances the exact clock-cycle accurate input/output
behavior of the system - nor is that expected or even necessary.
(This is not to be confused with cycle-accurate simulation in
RTL or gate level, which can of course be done and will be
correct, but is not useful for system development as the com-
plexity would necessitate overly long simulations especially
when including actual software and operating system running
on processor cores)

D. Determinism of the Interconnect

The system designer of today’s systems is usually not
interested in clock-cycle behavior. Instead it is important for
the system to ensure certain requirements (latency, throughput,
power consumption etc.) are met and a competitive solution
is created (cost, features, functionality). The result is that at
hardware level (Top level of the actual chip) the system is not
deterministic in terms of actual clock cycles and even order
of events. For example, a CPU core can ask for a memory
block a little earlier or a little later with respect to a stream of
digital video data coming into the device from outside because
those processes are fundamentally asynchronous in nature (not
necessarily in a clock-domain way, but from the system point
of view).

Of course one of the goals of the system operation is
to synchronize the processes (the CPU will perform certain
operations every time a specific event occurs in the incoming
data) but even that synchronization will be at a transactional
level. In other words it is not necessary nor desired that the
CPU performs a tasks at an exact clock cycle. Rather it has
a time window in which tasks need to be performed in order
not to disturb system performance.

Specifically, most CPU processes are interrupt driven, which
means that their execution is a complex system of interrupt-
creation, interrupt masking/handling, context switching, load-
ing of application code, loading of data, execution while
loading potential additional data, storage of results etc. .

Each of those steps are systematic operations in themselves
often sharing the same resources (e.g. memory subsystem, chip
interconnect) with the original process (which likely continues
other tasks in realtime). It becomes very clear that those
systems are too complex to be deterministic in their exact
behavior.

Thus - it seems obvious that each subsystem should not be
required to be deterministic in an exact state fashion, rather it is
obvious that each subsystem should be expected to guarantee
(within reason) that it will be capable under all reasonable
cases to perform within the required system parameters.

E. Quality Of Service ”QoS”
For the interconnect subsystem (which can easily be the

most complex of all subsystems) this performance guarantee
is called Quality of Service. A guarantee to execute a certain
operation in three clock cycles is not Quality of Service
because it is not meaningful from a system point of view. A
guarantee that a cpu dataflow has the lowest possible, reliable
latency while a realtime traffic (e.g. voice or live camera
stream) gets a guaranteed, specific throughput or bandwidth is
considered a Quality of Service Guarantee. A few nanoseconds
of latency are not important for the camera picture (because
it would not be noticed) but the flow must not be stalled as
that would be a noticeable loss or freeze of picture.

F. Development cost up, Component cost down
Today’s system on chip have reached complexity (in terms

of gates, transistors, functions) that exceeds that of former
mainframes, yet the selling price is in the ten dollar range,
while mainframes were sold for millions of dollars. The
development cost of such complex systems is of course in the
ten million dollar range, obviously that can only be justified
by huge quantities sold, which in turn can only be achieved
by many people actually liking and utilizing the product.

1) Features: The bigger the market in terms of potential
buyers, the more ”opinions” about the essential features of a
product and the more unpredictable the required feature set.
This results in faster changing product cycles and the changes
are more fundamental. A new generation of mainframe had a
few new/changed instructions based on the input of a handful
of users based on their thorough usage experience. A typical
SoC has a feature set trying to capture large markets with
very unpredictable behavior, competing products and constant
adjustments to emerging standards, hype etc. . For example a
typical change from one revision of a mobile phone system
to the next is to add a digital camera. That’s like saying the
next version of mainframe computer should be able to walk
and the marketing person in charge would have been walked
on the spot.

This results in frequent, fundamental changes of systems
which require exchange of entire subsystems with potentially
significantly changed system behavior. Standard top level
design practices (ad hoc communication design linking one
block to another or bus systems) fail to implement the required
flexibility in a timely, reliable and predictable manner because
each change which can cause changes in the exact timing and
order of events can break the global control and arbitration
processes/flows and expectations.

IV. PACKET BASED NETWORK

The packet based network is a solution to the above men-
tioned problems of scale, mainly due to a single quality:

A. Self-contained packets

Because each packet in a point-to-point packet-switched
network carries all required information (sender address, re-
ceiver address, quality of service etc.) there is no requirement
for global control. No process is required that keeps track of
exactly where a packet is, how it is routed, how long it takes,
who sent it and so on. The exact (clock-cycle-) time that a
packet arrives at the receiver is not important and therefore
not required.

B. Local Arbitration

The Quality of Service class of the packet is evaluated at
each point in the network for local arbitration. All control
for arbitration is distributed to local switches which decide
based on quality of service and age of packets their priority
with respect to others and thereby determine the arbitration of
shared resources.

This eliminates any need for time consuming, error prone
and wiring intense global arbitration.

C. Determinism through Quality of Service

By specification of quality of service for traffic classes and
appropriate network design, exactly the appropriate level of
determinism is achieved without the requirement of individual
busses for low latency or guaranteed throughput by over-
designing busses.

The system’s need for the right data in the right time
window (rather than at a specific, but randomly determined
irrelevant clock-cycle) is exactly fulfilled as long as the
network is designed to actually guarantee the required quality
of service parameter.

D. Flexibility in the (re-)design process

A network which does not rely on exact clock-cycle behav-
ior, but rather the expected information to be present in the
appropriate time window is flexible for even major changes as
long as the system as a whole has the appropriate information
sources and sinks and the quality of service expectation and
needs are fulfilled.

Even a significant change does not affect a part of the
system which is not related to it because no expectation
for cycle-accurate behavior (which could be disturbed by the
unrelated change) exists.

In other words, entire subsystems can be removed, added or
exchanged without upsetting the system. Just like in Internet:
A user can come online, an entire country can be added or
drop out temporarily - that does not affect unrelated traffic.

V. SCALE IN REAL LIFE

A. Kitchen and Living Room

To walk from the living room to the kitchen (assuming a
regular size house) takes about 20 seconds. A typical Silicon
Valley commute of 30 miles would take all day to walk at 3
miles per hour each direction. Opening the garage door, getting
in and out of the car, starting (mirrors, belts...) takes one or
two minutes, but the car’s speed quickly makes up for the

startup time over walking - even in Silicon Valley commute
traffic.

B. California and Europe

A return-trip from California to Europe of about 12000
miles would take four weeks by car (if there was a road),
require three oil services and one set of tires. While it takes
a few hours to get to the airport, check in, security , wait for
the start, potential connecting flights etc. - still the plane beats
driving by far. Even the cost is significantly lower than using
the car ($1000 for the return ticket), while the car would cost
more just for gas. (Not even mentioning value-loss, service,
tires and sustain the human life for four weeks)

C. Driving to Europe

This example points out that there’s startup (cost and time)
for going to the next level of transportation, but due to orders
of magnitude of difference in speed (actually efficiency) that
cost quickly amortizes if the solution fits the scale of the prob-
lem. Staying with the lower form for too long would become
prohibitively inefficient very quickly. On the other hand it is
easily obvious that using the higher level of transportation for
too low a problem would be foolish (flight to shopping center,
car to the kitchen).

This also shows that in many cases even a scale mismatch
of only one order of magnitude means that there’s no solution
at all.

VI. SCALE IN MULTIPROCESSOR SYSTEMS

Cache Coherency is one of the big topics in multiprocessor
systems. Many clever protocols have been invented (Berkeley,
Firefly, Dragon, Illinois, MOESI etc.) but the main idea is
typically bus snooping - in the sense that one processor
”listens” to the bus activity that another processor initiates
to determine whether its own copy of a datablock is clean (or
actual) or no longer valid as another processor has updated the
data contained in the cache block. A system like that works
well for a few, small processors with few threads, but is not
scalable to large systems with many concurrent, asynchronous
operations. The system also raises security concerns in systems
which are more and more complex, software operated and
likely targets for malicious code or at least prone to bugs
as data seperation cannot be guaranteed. The multi-faceted
communication and state keeping is complex in itself and
when scaled to more elements becomes very hard to maintain
and verify.

VII. SUMMARY

Today’s electronic systems are being integrated on one or a
few circuits and contain multiple processor/software elements
along with a plethora of hardware, configurable IP, specialized
processor, firmware, memories and high-speed connectivity
with high level protocols. Trying to hook them all up with
simple busses or ad-hoc wiring is like trying to drive a car
across the atlantic.

Due to several different effects of scale as explained above,
individual busses and wires are way too complex, error prone,

unpredictable in terms of signal integrity, slow, hard to verify
etc. At the same time the actual system operation has grown
in complexity to being very indeterminist in nature. Systems
can no longer rely on bus-techniques like snooping therefore
the need for the clock-cycle determinism and functionality of
direct busses and wires has gone away, at least at the higher
levels of SoCs.

A. Quality Of Service

Instead, a new need has arisen - the need for quality of
service of communication classes between functional units,
without being bogged down by individual protocol or speed
mismatches.

Quality of Service (QoS) means that each part or user of
the system has specific communication requirements which
can potentially be quite different in nature:
• Guaranteed Throughput This means that the traffic class

has to transport a certain amount of data in a given time
period and it would be very detrimental for the system
(e.g. picture dropping out) if this amount could not be
guaranteed. Latency is typically not very important in
this class as long as the time window of throughput is
not violated.

• Low latency This is the ”Firefighter” class - the traffic
has high priority and needs to get to the desitination as
soon as possible. It is important that the amount of traffic
for this class (throughput) is fairly low otherwise it would
block other traffic heavily (imagine all trucks on the road
having firefighter privileges, we’d be standing in traffic
even more)

• High Bandwidth Lots of traffic - but no particular latency
or throughput guarantee, sometimes called ”best effort”.

Years ago, this need has come up with the rise of global
communication, internet and the growing connection and ab-
straction of different communication means (telephone, e-mail,
high speed data like video etc.) and scalability (Many Millions
of users). The only feasible (because scalable and universal)
way has shown to be a packet-based network (the internet).

It becomes increasingly obvious that the packet-based net-
work is also the most useful solution for the increasing need
for universal, scalable and reliable communication for today’s
systems, which are typically integrated onto a single chip.

Therefore, the initial cost of packetization in terms of
latency (checkin and security lines at the airport) and packet
overhead (pilot deck, flight crew) is much less than the
increased cost of system maintenance, signal integrity related
project dalays, verification overhead (tires, gas, maintenance,
cost of living, risk when driving a car across the atlantic).

VIII. CONCLUSION

The Packet based Network on Chip can be scaled to any
size and is therefore future proof.

A. Standard IP socket formats

Standard IP socket formats (e.g. OCP) are a good start
to make IP’s and processors universally useful and provide

for easy adjustment to individual system’s needs rather than
standard bus formats and protocols.

1) IP reuse: Often standard bus protocols (e.g. AXI) can
be redefined to standard socket and therefore reuse IP that is
based on the former bus standards without change.

The packet based network-on-chip enables the mix-and-
match of different protocols for attached IP’s as it inherently
translates the protocols while packetizing and de-packetizing.

B. Timing

Due to the point-to-point nature of a packet switched
network (like WAN, LAN) and the abscence of global control
schemes (fully self contained packets including all signalling,
flow control etc.) the system is resilient against any kind of
timing related issues. Therefore, longer wires, higher capacity,
higher resistance or any other effect can easily be dealt with by
inserting appropriate pipeline stages without disturbing system
functionality (of course adding latency, though).

C. Wire Efficiency

Point-to-Point wiring is easy to handle in physical design
and can therefore be efficiently driven to much higher speeds
(e.g. 1GHz in 90nm) achieving much higher wire effiency than
standard techniques. Obviously, a link which runs at 1GHz
needs only 20% of the wires of a link which runs at only
200MHz to achieve the same throughput. The actual real-time
latency is the same even if a few pipeline stages are added in
the higher frequency link.

D. Signal Integrity

Since cross coupling related signal integrity are not fre-
quency related, rather length, resistance and slew rate related
a shorter, faster clocked link with fewer (spacing!) wires is less
prone to signal deration than the low frequency, more parallel
wires standard one.

E. Power Saving Modes

A point-to-point, packet based network lends itself perfectly
to advanced power saving techniques like voltage islands and
power-off regions since it provides a very structured and clean
communication to islands and regions. Outstanding transac-
tions can be tracked easily and hence ensure that regions are
only powered down when there’s no more outstanding trans-
actions required to complete from the to-be-powered-down
domain. The same goes for the case when a domain/IP/region
is actually powered down. The network can naturally protect
against faulty requests to a powered-down region which would
otherwise cause a system to hang or crash.

F. Power Consumption

In terms of power consumption there are several factors to
be recognized. The first is that a point-to-point network sends
traffic only to exactly the correct target, therefore only the
actual target and the link to the target toggle. In a multi-fanout
system all attached targets toggle and need to perform at least
address checking to see whether a broadcast is for them.

The second factor is frequency. At first glance higher
frequency means higher power consumption. While that is
correct, it is really the amount of actual information that counts
(due to the toggling of wires) that determines the actual current
requirement. Therefore, two links with the same throughput
and data, but one running at high speed with few wires and
one running at low speed with many wires will consume
roughly the same amount of power. Since fewer wires have not
only proportionally less capacitance (due to them being fewer)
but can be spaced further and therefor have less coupling
capacitance, the high speed link should actually come out
ahead in terms of power consumption.

G. Reliability and yield

Since a wire, which is not needed and therefore not built
cannot break, the yield of faster systems with less wires will
be higher and with the same argument the long term reliability
will be higher.

H. Redundancy

The resources saved by higher wire efficiency can partially
used or redundancy. In a packet based network with config-
urable routing through switches, faulty links (for example after
metal migration) can be replaced by a redundent counter-part
and therefore the system’s reliability and life span can be
increased significantly.

I. Graceful degradation

Often redundancy can be achieved not only by additional
links but by simple multi-route topologies which use all routes
while the system has no faults and in the presence of faults
reduce some quality of service classes while still guaranteeing
others. This means that a device instead of failing completely
after the first breakage or fault could instead only reduce
features (e.g. movie camera no longer operational in the cell
phone, but the phone function is still operational).

J. Asynchronous operation

Since packet based networks are fully self-contained and
there’s no need for global control or arbitration they lend them-
selves naturally for asynchronous operation. That means that
synchronization elements (GALS - Globally Asynchronous,
Locally Synchronous) can be inserted at any point in the net-
work without loss of control (just single clock-cycle latency).

1) Clock Uncertainty: This enables elimination of clock
uncertainty problems related to process/temperature/voltage
related local speed differences. Clock uncertainty is a signif-
icant design methodology headache in large deep-submicron
systems.

K. Latency

A main perceived drawback to packet based networks is
increased latency due to packetization and routing.

On a typical chip (12mm or so on a side) long, global
connections can easily measure 10mm - that translates to a
delay in the range of 10 nanoseconds. At one gigahertz of
system operating frequency that is equivalent to 10 clock

cycles. Packetization and de-packetization take about 2 clock
cycles each, a network hop (switch) takes about 1-2 cycles
each including driving a length of wire. Overall, therefore the
additional delay necessarily introduced by a packet based net-
work hardly exceeds the physical delay of a long connection.

Significant latency can be introduced by arbitration (e.g. in
bus systems) or routing methodology, see next chapter.

L. Packet Routing Styles

1) Store And Forward: The internet as the premier example
of packet switched networks uses store-and-forward routing
because the latency introduced by storing an entire packet is
in similar order of magnitude of the time it takes the packets to
travel across the network anyways (limited essentially by the
speed of light or electrical signals over up to several thousand
miles).

2) Wormhole Routing: For on-chip application, the store-
and-forward routing style would introduce too much latency
as a packet is potentially several ten to hundred clock-cycles
long but the network is in the centimeter range in size.
Therefore on chip, a low-latency routing technique must be
employed. In a wormhole routing scheme, the first word of a
packet contains the receiver address and the quality of service
information. The routing decision is immediately taken based
on that information, thus introducing only one clock cycle of
latency for the operation.

3) Cut-Through Routing: Since in wormhole routing the
packet is typically ”longer” than the network (i.e. the receiver
is already receiving the first words of a packet while the sender
is still sending the last words of the same packets) all inter-
mdediate, shared network resources (e.g. links) are blocked by
that traffic.In order to prevent stalling other traffic, additional
memory can be used to enable buffering of intermediate packet
contents. That does not change the routing decision, it is
still wormhole (the first word determines the routing decision
which is immediately taken) but it enables a packet to ”cut
through” the network even in the event of intermittent stalls.

REFERENCES

[1] H.B. Bakoglu, IBM Corporation, Circuits, Interconnections, and Packag-
ing for VLSI Addison-Weslay Publishing Company 1990.

