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Abstract— With increasing use of higher-than-RTL specifi-
cations as the starting point of designs, a pressing need has
emerged for equivalence verification between a high-level (e.g.,
non-synthesizable software) model and RTL. Other papers in this
invited session discuss techniques for dealing with the sequential
aspects of this problem. This paper presents an introduction
to the main ideas for the combinational aspect: assuming we
are given two combinational descriptions, one high-level and one
RTL, how do we automatically and efficiently verify equivalence?

I. INTRODUCTION

Increasing complexity is forcing design to move above RTL.
Growing adoption of ESL, transaction-level models, MATLAB
models, and C-based HDLs are all examples of this trend.
The higher-level model is typically in software or a software-
like language, so equivalence verification between the high-
level software model and the RTL is needed, analogous to
the current use of RTL-to-gate combinational equivalence
verification.

The general problem of comparing a high-level model to
RTL is arbitrarily complex and ill-defined. For example, con-
sider the difficulty of comparing an instruction set architecture
(ISA) specification to an out-of-order, superscalar processor
implementation, or as an extreme example, comparing an
ideal, mathematical signal processing algorithm to a lossy,
imprecise implementation that is judged “good enough” based
on user studies.

To clarify the general problem, and to have a realistic
hope of creating automatic tools, it is helpful to break it
down into specific sub-problems and make some simplifying
assumptions. At the most abstract level, the questions are
what it means for the two models to be equivalent, and when
that equivalence is checked. For example, when comparing
an ISA specification to a superscalar processor implemen-
tation, “equivalence” usually means that the programmer-
visible state (e.g., architectural registers) is identical, and
the timing correspondence is complicated by the fact that
instructions can execute out-of-order and might not complete
due to misspeculation or exceptions. Other examples of timing
mismatches between a high-level and RTL model are untimed
transaction-level models, pipelining, and retiming. Once the
timing issues have been resolved, the next challenge is to
find the correspondence between the states of the two models.
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Fig. 1.  High-Level-vs-RTL Combinational Equivalence. We assume that
timing mismatches and equivalent-latch mappings between the high-level
and RTL model have already been computed, reducing the problem to
combinational equivalence. The software model might have complex control
and data flow (e.g., branches, function calls), but is assumed to behave
“combinationally”, i.e., compute a result given the inputs. Do the two models
compute the same result?

Often, the assumption is made that the two models are similar
enough that it is possible to find a mapping between latches
in the RTL and variables in the high-level model. With such
a mapping, the remaining problem reduces to checking, on
each clock cycle, the combinational equivalence of the two
models. Koelbl et al. provide a broad tutorial overview of
these issues and the general high-level-vs.-RTL equivalence
checking problem [12].

The other papers in this invited session discuss techniques
for dealing with the sequential aspects of the problem. This
paper presents an introduction to the main ideas for the
combinational aspect: assuming we are given two combi-
national descriptions, one high-level and one RTL, how do
we automatically and efficiently verify equivalence? (Fig. 1.)
This problem is the simplest and most fundamental, yet it
is still practically relevant, as many leading companies have
adopted a methodology that includes a cycle- and pin-accurate
high-level model to facilitate verification. The combinational
problem is also the foundation for more general equivalence-
checking approaches, since they all aim to reduce the general
problem to combinational equivalence.
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II. RTL-VS-GATE COMBINATIONAL EQUIVALENCE

We start by reviewing the problem of checking combina-
tional equivalence between RTL and gate-level models (or
equivalently, between two gate-level models, since RTL is
easily converted to gate-level). The problems and solutions
are analogous to high-level-vs.-RTL, and they can be more
simply understood using gate-level examples.

Consider the simple example in Fig. 2. We are given two
combinational circuits, with equivalent inputs, and want to
compute whether the outputs are always equivalent. The basic
approach to this problem is to use symbolic simulation [5] to
automatically compute the input/output relationship for each
circuit, and then compare these relations. Symbolic simulation
works like normal simulation — it applies inputs to the circuit,
and then simulates the behavior of each gate to compute
its output. However, the inputs are given as variables, so
the computed output is a symbolic expression in terms of
the inputs. Returning to Fig. 2, for the left-hand circuit, we
might compute b A ¢ as the “value” of the output of the
first AND gate, and then (b A ¢) A d as the value of the
wire labeled x, and finally a @ ((b A ¢) A d) for the output
wire £ (where @ denotes exclusive-OR). Similarly, we would
compute a @ (b A (¢ A d)) as the output of the right-hand
circuit. Verification then consists of proving (e.g., via Boolean
algebra) that these two expressions are equivalent.

Note that we can use any representation we choose for the
symbolic expressions, as long as we can construct the symbolic
expression for the output of any gate based on the symbolic
expressions for its inputs. For example, BDDs [4] showed
considerable promise for this purpose and are still one of the
most common representations for Boolean functions: they are
empirically compact and efficient for common functions, and
they are a canonical representation, so testing for logical equiv-
alence is trivial. Unfortunately, for real, industrial verification
problems, the BDDs grow too big to be computed. As an
alternative that avoids any space blow-up, we could introduce
a fresh variable name for each wire and have symbolic
simulation build up a set of constraints on the values of these
variables. Returning once again to Fig. 2, if we create new
variable names v; for all the internal wires, then we can derive
the set of constraints: (bAc = v1)A(viAd = v2)A(aBve = f)
for the left-hand circuit; and (¢ A d = wv3) A (b Avg =
v4)A(a®vg = g) for the right-hand circuit. We can conjoin all
these constraints together, along with the constraint (f # g),
and throw the whole formula at a SAT solver;! the formula is
unsatisfiable iff the two circuits are equivalent. This approach
has no space blow-up, but blows up in run time on industrial
verification problems instead.

The major practical breakthrough for combinational equiv-
alence checking was the idea of cutpoints [1], [3]. Given
two combinational circuits whose functional equivalence needs
to be verified, the cutpoint approach assumes that they are

'The state-of-the-art for SAT solvers changes rapidly. The website
http://www.satcompetition.org has results from periodic com-
petitions, as well as links to the major SAT reference sites, like
http://www.satlib.org and http://www.satlive.org.
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Fig. 2. Simple Cutpoint Example. To introduce cutpoint x, we first verify
that (b A ¢) A d is equivalent to b A (¢ A d). Then, we can verify that f is
equivalent to g because both are equal to a & x.
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Fig. 3. False Inequivalence. Cutpoint verification fails because f # g when
b =0 and x = 1. However, this is a false inequivalence, because if z = 1,
then b must be 1.

structurally similar, so the two circuits likely contain sub-
circuits that are also functionally equivalent. Accordingly, the
idea is to look for points in the two circuits that can be
proven to be equivalent. The equivalent logic is cut out of the
circuits and is replaced by a new primary input. (Fig. 2.) If
we can repeat this process all the way to the primary outputs,
we have proven the two circuits equivalent, thereby reducing
the original verification problem into a sequence of simpler
verification problems. Note that the method is conservative: if
we fail to prove the circuits equivalent, we cannot conclude
that they are inequivalent without further computation. (Fig. 3.)
Minimizing the cases where the method is unable to prove
the equivalence of equivalent circuits (called “false negatives”
or “false inequivalence”) has been an active research area.
In general, the solutions to this problem are ways to re-
introduce constraints on the cutpoints, either in advance [3]
or as needed [11], [14].

An important problem is heuristics to find good candidate
cutpoints, since a brute-force search of all possible cutpoints
is too expensive. A common approach starts with a quick
structural comparison to isolate differences between the two
circuits being compared (akin to the Unix utility diff).
Next, for each wire, a signature is computed that is its value
during (normal, non-symbolic) simulation of a few hundred or
thousand random inputs. Wires that have the same signature
are good candidate to attempt to prove equivalent and use as
cutpoints.

Overall, combinational equivalence checking is one of the
biggest success stories for formal verification, having com-
pletely supplanted the formerly time-consuming task of RTL-
vs.-gate-level simulation. To read further on this topic, some
good surveys include [11] and [10]. Here, we consider how
we can use these ideas for high-level-vs.-RTL combinational
equivalence checking.

III. ANALYZING A HIGH-LEVEL MODEL

When moving from RTL-vs.-gate to high-level-vs.-RTL, the
immediate question is what is different about the problem, and
the obvious answer is, “the high-level model.” In particular,
the key question is how to analyze a software model and derive



the input/output relationship, just as we did for a gate-level or
RTL model.

Symbolic simulation is again the solution. For straight-
line code, symbolic simulation is easy, since an assignment
statement can be thought of as a gate, with the left-hand
side being the output. At each point in the program, we keep
track of the current symbolic expression for the value of each
variable, and we use these to compute symbolic expressions
for any computation that is done. For example, given the
sequence of statements:

a =
d =

b + ¢;
d + a;

we could simulate the first statement and compute by + cg as
the new value for variable a, where by and ¢y are the initial
values of b and c. Then, for the second assignment statement,
we compute the new value of d to be the sum of the current
values of d and a, namely do+ (bo+co). This simple approach
can be easily extended to handle arrays, structs, logical and
arithmetic operators, and even pointers (e.g., [6]).

Control flow is what distinguishes symbolic simulation of
software from hardware. The fundamental difference is that in
hardware, for any input, every gate output is driven to some
value, whereas in software, a given statement might execute
once, many times, or not at all, depending on branch and loop
conditions that affect the control flow. Seen another way, each
possible execution path through the software model produces
a different symbolic simulation. Accordingly, we modify the
symbolic simulation algorithm to track the conditions under
which the current execution path will execute. This can be
done by replacing the symbolic expressions with pairs of
symbolic expressions: the first is the same symbolic expression
as we have described already, the second is a Boolean-
valued expression that indicates under what conditions the
first expression is valid. Whenever the symbolic simulation
reaches a branch, it must continue to explore along both paths,
recording for each path the branch condition that was assumed.

For example, consider the simple software model and cor-
responding gate-level model in Figs. 4 and 5. Let us consider
symbolically simulating the path where the if condition
always evaluates to true. At first, the variables 1 and count
are both 0. After one pass through the loop body, count
gets incremented, but only under the assumption that key =
datal0], so it would have the symbolic value:

0+1 if key=datal0].

After another iteration, it would have the symbolic value:

0+1+4+1 if (key=datal0])A (key =data[l]),

and so forth. If we symbolically simulate all possible paths
through the software model, and prove equivalence to the
hardware model for each path, then we have proven equiv-
alence. Unfortunately, even this tiny example has 128 paths to
analyze, ignoring the loop tests. With a more complicated loop
structure, we would also have to consider at each iteration both
the path when the loop continues and the path when it exits.

int count matches (int key, int datal7])

{
int i, count = 0;
for (i=0; i<7; i++) {
if (key==datal[i]) count++;
}

return count;

Fig. 4. High-Level Software Model Example. The model is “combinational”:
given inputs, it computes a result. It can have local variables, but cannot retain
any state.
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Fig. 5. Hardware Model for Same Example. The comparators are each n-bits
wide. The full adders have sum and carry outputs labeled s and c, respectively.
Does this circuit compute the same function as Fig. 4?

(In simple loops as in this example, the symbolic simulator
can compute the exact value of the loop variable, so it knows
whether to continue the loop or not.) In general, the number
of paths grows too large, so symbolically simulating one path
at a time is not feasible on real verification problems.

Instead, we can try to merge execution paths, using con-
ditional expressions to keep track of the different values on
different paths. For example, after one iteration of the loop,
we can merge both paths from the first 1 £ condition, yielding
the symbolic expression for count:

ite(key = datal0],1,0)
where ite is the if-then-else operator. After another iteration,
count would have the symbolic expression:
ite(key = datall],
ite(key = data[0], 2,
ite(key = data[0], 1,

),

and so forth. Unfortunately, now our symbolic expressions are
growing exponentially. By merging paths, we have shifted the

1),
0)
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Fig. 6. Symbolic Simulation Using Circuit Graph Representation. The value of a variable at any point during the symbolic simulation is a pointer into the
circuit graph. New values are computed by adding gates connected to the existing gates that denote the current values of variables. For example, to increment
count, we would add a “+1” gate to the circuit, route the output of the current value for count to the new gate, and update the pointer for count to
point to the output of the new gate. (To improve readability, the graph drawn hasn’t had all structurally equivalent gates removed.)

computational blow-up from the number of paths to the size
of the symbolic expressions.

Many techniques have been proposed to avoid this blow-up.
For example, as we saw in gate-level equivalence checking,
we can introduce fresh variable names for the result of each
assignment along an execution path, reducing expression size
blow-up (e.g., [2]) at the expense of much greater time
verifying equivalence (e.g., [8]). Heuristic, local simplification
of sub-expressions can be highly effective in some applica-
tions [7], [8]. Perhaps the most elegant solution, though, is to
use a maximally shared circuit graph to represent the symbolic
expressions [13]. In this approach, the “symbolic expression”
is simply a pointer into a circuit that is built gradually during
symbolic simulation. To symbolically simulate a computation,
a new “gate” is added to the circuit, and wires are added to
supply the arguments from the current value of the variables.
Fig. 6 illustrates this process for a few iterations of our running
example (Fig. 4). To keep the graph compact, before any new
gate is added, a hash table is consulted to see if a structurally
equivalent (same inputs and same operator) gate exists already;
if so, the existing gate is reused.

Symbolic simulation with maximally shared circuit graphs
essentially reduces the high-level-vs.-RTL equivalence check-
ing problem to a gate-level problem. At that point, we can try
to use our existing RTL- and gate-level techniques, mentioned
earlier. For high-level models that are not foo high-level, this
approach works very well. As the software model becomes
more complex or more high-level, however, several problems
emerge. The first problem is that the circuit graph is not
conducive for quickly proving outputs to be valid (stuck-at-1)
or unsatisfiable (stuck-at-0). This means that if the software
model has loops that are more complex than in our simple
example, it is very hard to compute when the symbolic
simulation can stop. On the other hand, if we try to convert
the logic for loop tests into BDDs or SAT, we will have a

blow-up in memory or run time. Similarly, it can be expensive
to compute the logical conditions that determine what values
are possible at which points in the program, e.g., to show that
certain paths are infeasible. Finally, since the circuit graph will
grow with the size of the software model with loops unrolled,
it can still blow up in size before we can apply gate-level
cutpoints. Accordingly, the next step is to try to apply the idea
of cutpoints directly to the software model, before constructing
an entire circuit graph from the software.

IV. CUTPOINTS FOR SOFTWARE

In recent work, we have proposed a way to introduce
cutpoints during the analysis of the software, rather than
afterwards [9]. A cutpoint in the software is defined as some
part of the program state at some point during the symbolic
simulation that is provably equal to some point in the hardware
model (definition adapted from [8]). If we find a cutpoint,
we can cut out the corresponding parts of the software and
hardware models and insert a new input in its place, exactly
as in RTL or gate-level cutpoints. Successful verification with
the cutpoints proves the two models equivalent.

For example, returning to the models in Figs. 4 and 5,
when the symbolic simulation reaches the if condition on
the first iteration key = data[0], this condition is provably
equivalent to the output of the topmost comparator in Fig. 5.
Accordingly, we could replace the comparison with a fresh
Boolean variable/input x0, as shown in Figs. 7 and 8. Con-
tinuing this process will replace all of the comparators in the
hardware model with new cutpoints xi. The software model
is processed into a circuit graph representation, as in Fig. 6.
Combined with the cutpoint insertion, the result is the circuit
in Fig. 9. Clearly, cutpoints can potentially greatly simplify
the equivalence-checking problem.

As a more realistic test, we tried the cutpoint technique on
an industrial challenge problem: verifying the equivalence of a



int count matches (..., int x0, ...)
int i, count = 0;
if (x0) count++;
for (i=1; i<7; i++) {
if (key==datal[i]) count++;

}

return count;

Fig. 7.  Software Model After First Cutpoint. An actual implementation
wouldn’t rewrite the software as shown here, but simply insert the cutpoint
x0 in the circuit graph model being constructed.
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Fig. 8. Hardware Model After First Cutpoint. The equivalent comparator
has been removed and replaced by a new input x0, as in Fig. 7.

high-level specification versus a gate-level implementation of
an Intel IA-32 instruction-length decoder. The software model
has complex control flow, with many branches and loops
whose iteration count and stride depends on the input data. It is
completely serial, essentially parsing each instruction one after
another. The hardware model has very different architecture,
simultaneously attempting to decode an instruction at each
possible alignment in the input buffer, and then using a priority
network to determine which decodings are valid. Fig. 10 shows
results comparing verification with and without cutpoints.
(Details of this experiment are available in [9].)

While the promise of software cutpoints is clear, there are
many remaining challenges. The biggest problem is how to
find good candidate cutpoints. As with RTL and gate-level
cutpoints, a heuristic search for similar structure still works
and was the technique used in the preceding experiment.
Unfortunately, the main technique for RTL and gate-level
cutpoints — random simulation to generate signatures —
doesn’t work for software cutpoints. The problem is that a
given random input causes only a single path in the software
to be executed. Since there is an exponential number of paths

value of count
before first iteration

value of count
after first iteration

value of count
after second iteration

value of count
after last iteration

Fig. 9. Circuit Graph Generated From Software Model With Cutpoints. All
the comparator logic has been cut away and replaced by new inputs xi.

w/o Cutpoints with Cutpoints
Example Time | Mem Time | Mem
TOY-8 0.02s 56MB 0.01s | 56MB
TOY-16 5.35s 56MB 0.02s | 56MB
TOY-32 mem out 0.06s | 56MB
EX20-8 0.28s 61MB 0.11s | 58MB
EX20-16 89.01s | 1746MB 0.24s | 60MB
EX20-32 mem out 0.53s | 64MB
EX20-64 mem out 1.35s | 72MB
EX97-8 1.46s 92MB 0.51s | 64MB
EX97-16 1187.72s | 1800MB 1.10s | 73MB
EX97-32 mem out 2.35s 95MB
EX97-64 mem out 5.41s | 136MB
EX251-12 309.18s | 1843MB 0.64s | 66MB
EX251-16 mem out 1.09s | 71MB
EX251-32 mem out 7.45s | 170MB
EX251-64 mem out || 16.81s | 327MB
Fig. 10.  Sample Results Showing Effect of Cutpoints. Each example is a

differently scaled version of an IA-32 instruction-length decoder. The number
after the dash is the size of the input buffer. The TOY examples have only 6
highly-simplified instructions for a fictitious machine with 2-bit “bytes”. The
other examples are for subsets of actual IA-32 instructions, with the number
indicating how many instructions are implemented. The largest examples
support instruction lengths from 1-11 bytes with a wide range of prefixes and
addressing modes. The benefits of cutpoints are clear. (Results are from [9].)



(or more, if we consider looping), computing good signatures
requires a prohibitively large number of runs. Good heuris-
tics for finding candidate software cutpoints is an important
direction for future research.

V. FUTURE DIRECTIONS

We have seen a brief survey of the main ideas behind high-
level-vs.-RTL combinational equivalence verification. This in-
troductory treatment does not imply that this is all there is on
this topic. On the contrary, much additional research has been
done, and much more remains to be done.

As mentioned already, heuristics for finding good candidate
software cutpoints is an important direction for future research.
One possibility is to use random simulation, but bias the ran-
dom simulation to explore more paths and find a way to extract
signature information for paths not taken. Another possibility
is to use program analysis and optimization techniques to try
to derive more information about the software model, and use
that information to screen possible cutpoints.

More generally, program analysis and optimization tech-
niques might improve other aspects of the symbolic simu-
lation. For example, a major mismatch between combina-
tional software models and hardware models is the amount
of parallelism: the software models tend to be very serial,
for ease of understanding, whereas the hardware models are
parallel for performance. Researchers in high-level synthesis
and optimizing compilers have long worked on extracting
parallelism from sequential descriptions, so techniques from
those areas may help expose similarities between the high-
level software and RTL hardware models.

More sophisticated program analysis techniques will likely
be needed for another reason: handling richer control flow
and data structures. The techniques presented here work well
for moderately complex software. More generally, however,
software that has loops or recursion that can’t be statically
unrolled, or complex heap-allocated storage, cannot be handled
currently. Harnessing existing, or developing new, specialized
techniques for summarizing loops and recursive functions and
for reasoning about heap storage might greatly expand the
range of high-level software models that can be verified.

This article has largely ignored the problem of false inequiv-
alence, because nothing has been published specifically for re-
solving false inequivalence for high-level-vs.-RTL. Obviously,

all the techniques for RTL-vs.-gate-level false inequivalence
handling are still applicable, but there might be software-
specific techniques as well.
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