
Simultaneous Control of Power/Ground Current, Wakeup Time and

Transistor Overhead in Power Gated Circuits

Yongho Lee, Deog-Kyoon Jeong, and Taewhan Kim

School of Electrical Engineering and Computer Science

Seoul National University, Korea

Abstract— Power gating in circuits is one of the effective tech-
nologies to allow low leakage and high performance operations.

This work aims to analyze and establish the relations between the
three important design parameters in power gated circuits: (i) the
maximum current flowing from/to power/ground (ii) the wakeup
(sleep to active mode transition) time delay and (iii) the number
of sleep transistors. With the understanding of relations between
the parameters, we propose solutions to the two problems: (1)
finding logic clusters and their wakeup schedule to minimize the
sleep transistor overhead under the constraints of wakeup time
and peak current and (2) finding logic clusters and their wakeup
schedule to minimize the wakeup time under the constraints of
peak current and the number of sleep transistors. From an
experimentation using ISCAS benchmarks, it is shown that our
proposed technique is able to explore the search space, finding
solutions with 65% ∼ 77% reduced number of sleep transistors
and 30% ∼ 36% reduced wakeup time delay, compared to the
results by the previous work.

I. INTRODUCTION

With the advance of technology, power supply voltage scal-

ing technique has been applied to reduce the dynamic power

because the dynamic power consumption is proportional to

the supply voltage quadratically. To maintain the performance,

threshold voltage (Vt) also should be scaled down. However,

this increases the subthreshold leakage exponentially. In nano-

meter technology, the increased leakage power dominates the

dynamic power. There are many approaches for reducing leak-

age power. Among them, the power gating technology using

MTCMOS (Multi-Threshold CMOS) provides a powerful and

effective leakage power reduction.

In this power gating technology, the three important design

parameters are the wakeup (from sleep to active mode tran-

sition) time, the amount of current flowing to ground when

the sleep transistors are turned on, and the sleep transistor

overhead. Note that reducing the wakeup time affects the

overall performance of the circuit, and reducing the peak

current flowing to ground when the sleep transistors are turned

on mitigates the noise on the power distributed network. Fur-

thermore, reducing the number of sleep transistors saves the

design area and also reduces the design complexity. Clearly,

there are trade offs between the number of sleep transistors

used, the peak current flowing to ground, and the transition

time from sleep to active mode.

For designing power gated circuits, most of the previous

work focused on controlling/optimizing one or two of the

parameters: the sleep transistor size [1], [2], [3], [4], the

ground bounce [5], [6] (i.e., maximum current flow), and

the wakeup time delay. Recently, the work in [7] proposed a

logic cell clustering method to reduce wakeup time delay. The

method partitioned the circuit into several clusters according to

the peak current and wakeup dependency constraints, followed

by scheduling the wakeup times of clusters. The limitation

of the method is that the wakeup delay cannot be fully

minimized due to the unawareness of the effects of the wakeup

dependency constraint and the sleep transistor overhead by

logic clustering on the wakeup delay.

This work addresses a new approach to the problem of

logic cell clustering for controlling peak current, wakeup time

delay, and sleep transistor overhead in power gated circuits.

Specifically, this work analyzes and establishes the relations

of the wakeup time delay, peak current, and the number of

sleep transistors with various sizes of clusters, and wakeup

time schedule.

II. OBSERVATIONS AND ANALYSES

This section covers key observations and analyses.

0 1n 2n 3n 4n 5n

0

50

100

150

200

250

300

3.24ns

0 1n 2n 3n 4n 5n

0

50

100

150

200

250

300

3.12ns

0 1n 2n 3n 4n 5n

0

50

100

150

200

250

300

(uA)

(d)(c)

(b)

t(sec)

(a)

3.32ns

0 1n 2n 3n 4n 5n

0

50

100

150

200

250

300

3.02ns

Fig. 1. Wakeup sink current profiles for various logic clusters of a chain
of 20 inverters: (a) using two clusters of same sizes; (b) using five clusters
of same sizes; (c) using ten clusters of same sizes; (d) using five clusters
of different (non-uniform) sizes. (We used HSPICE simulation using 130nm
technology.)

• Relations between logic clusters and wakeup time: Fig. 1

shows what the current profiles and the wakeup time delays

look like for various numbers and sizes of logic clusters.

Fig. 1(a) shows the wakeup current profile when the logic

circuit of 20 chained inverters is partitioned into two logic

clusters of almost equal sizes and they are waked up sequen-

tially by using their own sleep transistors. The wakeup time

is about 3.24ns and the peak current is around 270uA. On the

other hand, Fig. 1(b) shows the wakeup current profile when

the circuit is partitioned into five clusters of equal sizes and

they are waked up sequentially, using five sleep transistors of

the same size as that used in Fig. 1(a). Note that the wakeup

time is reduced from 3.24ns to 3.12ns using the same peak

current as that in Fig. 1(a). The reduction of wakeup time

indicates that increasing the number of logic clusters provides

a higher chance of shortening the wakeup time delay due

to the short time interval of current flow through each sleep

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 169

transistor. However as shown in Fig. 1(c), using too many logic

clusters increases the wakeup time delay (from 3.12ns for five

clusters to 3.32ns for ten clusters). This is mainly because

of the high increase of the additional current by the sleep

transistors. This implies an optimal logic clustering strategy

is required to minimize the wakeup time delay. In addition,

Fig. 1(d) shows another current profile when five logic clusters

are used as that in Fig. 1(b), but their clustering sizes are not

the same. The wakeup time is now reduced to 3.02ns. The

data shown in Fig. 1(d) clearly indicate that an optimal logic

clustering should consider not only the number of clusters but

also the sizes of clusters.

U1

U8 U10

U9

U7

U6

U5

U4

U3

U2

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0 1n 2n 3n 4n

0

50

100

150

200

250

300

(uA)

t(sec)

 Better Clustering

 Clustering by [7]

2.64ns
3.02ns

Fig. 2. Example showing the effect of the wakeup dependency on wakeup
time: (a) logic circuit for clustering; (b) wakeup current profiles for the logic
clusters by [7] and a better partitioning.

• Wakeup dependency constraint of logic clustering:

Recently, the work in [7] proposed a logic clustering

methodology whose objective is to reduce the wakeup time.

The clustering procedure was controlled and guided by the

peak current and the wakeup dependency constraints. The

wakeup dependency constraint refers to satisfy the logic

clustering so that two gates connected by a net with 0-state in

sleep mode should be in the different clusters. Otherwise, the

logic clusters generate short circuit current when waked up.

It used a greedy clustering approach. The limitation is that it

unnecessarily generates too many clusters even the clustering

completely eliminates the possible short circuit current during

the wakeup time period. For example, Fig. 2(b) shows two

current profiles of two logic clusterings for the circuit in

Fig. 2(a) where with given states of primary inputs and peak

current constraint, the work in [7] generates four clusters

{U1,U2}, {U3,U4,U5}, {U7,U8}, {U6,U9,U10} (shown

by four solid circles in Fig. 2(a)) to satisfy the wakeup

dependency constraint (for avoiding short circuit current),

resulting in 3.02ns of wakeup time while the clustering result

of two clusters {U1,U3,U4,U5,U8}, {U2,U6,U7,U9,U10}
(partitioned by the dotted line in Fig. 2(a)) reduces the

wakeup time to 2.64ns. Note that for the latter clustering,

there are violations of wakeup dependency constraint at

U1 → U3, U1 → U4, U5 → U8, U2 → U6, U2 → U7,

U7 → U9 and U7 → U10. This comparison indicates that

strictly satisfying the wakeup dependency in clustering is not

a primary condition. Instead, it is beneficial to explore the

sizes and numbers of logic clusters as a primary objective and

to minimize the violations of wakeup dependency constraint

as many as possible as a secondary objective.

III. SIMULTANEOUS CONTROL OF PEAK CURRENT,

WAKEUP TIME, AND SLEEP TRANSISTORS

Based on the analyses, we propose a graph based approach,

called PowerG-ctr, to the two problems:

(Problem 1) Finding logic clusters and their wakeup schedule

that minimize the number of sleep transistors while satisfying

the wakeup time and peak current constraints;

(Problem 2) Finding logic clusters and their wakeup schedule

that minimize the wakeup time delay while satisfying the

constraints of peak current and the number of sleep transistors.

A. The Proposed Approach

Let Imax be the limit of peak current flowing through a sleep

transistor when the sleep transistor is turned on. Let C and

S (C) be the set of partitioned clusters of a given circuit C

and the wakeup schedule of the clusters in C , respectively,

and Twakeup(S (C)) be the delay required for waking up all the

logic clusters in C while satisfying Imax.

Algorithm for solving problem 1: The value of Imax and the

wakeup delay limit, denoted as Tmax, are given to be satisfied.

The proposed algorithm is an iterative one. Initially, the entire

circuit C is considered as one logic cluster. That is, C = {C}.

We then measure the current profile of S (C) under the Imax

constraint. If Twakeup(·) ≤ Tmax, then we found a solution

and stop the process. If not, we partition C into two logic

clusters. Suppose C1 and C2 are two partitioned clusters of

C so that C = {C1,C2} and S (C) = C1 → C2. Then, we

measure the current profile of S (C) under the Imax constraint

to check the wakeup time delay. If Twakeup(·) ≤ Tmax, then we

stop and found a solution. Otherwise, the partitioning process

repeats until the Tmax constraint is satisfied or the value of

Twakeup(·) does not decrease any more. Here, the core part of

the procedure that greatly affects the quality of results is the

partitioning of logic circuit.

• Circuit partitioning: Suppose C is {· · · ,Ci,C j,Ck, · · · } and

S (C) is · · · → Ci → C j → Ck → ··· in the previous itera-

tion of our algorithm. The cluster to be partitioned in the

current iteration is the largest sized cluster in C . Suppose

|C j| = max{· · · , |Ci|, |C j|, |Ck|, · · · }, and C j1 and C j2 are the

two partitioned clusters with data dependency from C j1 to

C j2. Then, the updated cluster set and schedule become C

= {· · · ,Ci,C j1,C j2,Ck, · · · } and S = · · · →Ci → C j1 → C j2 →
Ck → ··· . In the following, we describe our partitioning

procedure.

The objective of the partitioning is to eliminate the possible

short circuit currents that occur when the sleep transistors are

turned on to wake up the circuits of clusters. For example, we

want to partition the circuit in Fig. 3. Suppose that the logic

170

Fig. 3. Example showing the transformation of circuit into a graph to
formulate the circuit partitioning problem into an equivalent max. clique
finding problem in a graph: (a) circuit C to be partitioned; (b) network N(V,A)
transformed from C; (c) graph G(V ′

,E) transformed from N(V,A).

states of the gates specified in Fig. 3(a) are the states that are to

be retained when the circuit is waked up. Then, there will be

current flows from the nets that are to be in 0-state. Those

nets are (g1,g3,g4) (g4,g6,g7) and (g5,g7) in Fig. 3(a).

Consequently, to minimize the short circuit current that occurs

on the gates connected from/to those nets, partitioning should

cut those nets that are to be 0-state as many as possible

while satisfying the data dependency constraint in the partition

(i.e., creating no data dependency cycle among the partitioned

clusters).

We formulate the partitioning problem into the problem of

finding a maximum clique in a graph. We first transform circuit

C to be partitioned into a network N(V,A). Each node in V

represents a distinct gate in C. There is an arc (v,w) in A if

and only if there is a net that is to be in 0-state after when C

is waked up, and that v and w correspond to the gates that

are connected from and connected to the net, respectively.

Fig. 3(b) shows N(V,A) of C in Fig. 3(a) where the arcs

are shown with solid lines. Then, N(V,A) is used to derive

a graph representation G(V ′
,E). Each node in V ′ represents

a distinct arc in N(V,A), and there is an edge (x,y) in E if

and only if the two arcs in N(V,A) corresponding to x and y

have no flow dependency from one to the other. For example,

Fig. 3(c) shows G(V ′
,E) for the network N(V,A) in Fig. 3(b).

Note that there are edges between a and b and between a and c

because there is no flow dependency in N(V,A), but there is no

edge between b and c and between b and d because there are

paths from b to c and from b to d in N(V,A). Then, from the

transformed graph G(V ′E), we find a clique of maximum size.

The nodes of the clique will be the net to be cut in partitioning

C. For example, the maximum clique in Fig. 3(c) is (a,c,d,e)
and the corresponding cut of partitioning C and N(V,A) are

shown as dotted line in Figs. 3(a) and (b). Since the problem

of finding a maximal clique is NP-complete, our algorithm

uses the efficient clique partitioning heuristic proposed in [8].

Algorithm for solving problem 2: The value of Imax and the

maximum number of clusters (or maximum number of sleep

transistors), denoted as Nmax, are given to be satisfied. The

proposed algorithm is essentially the same as that for solving

problem 1. The only difference is the condition of stopping

iteration. For this case, the iteration of partitioning stops when

the number of clusters equals to Nmax or there is no further

reduction on the value of Twakeup(S (C)).

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm PowerG-ctr in

C++ and tested it on a set of ISCAS benchmark circuits [9] to

assess its effectiveness. All experiments were run on a 2.8GHz

Intel processor equipped with 1GB of RAM. Each of the

circuits is decomposed using the logic gates of INV, NAND2,

NOR2, XOR2 and XNOR2. To simulate the characteristics of

sleep transistor, 130nm standard cell HSPICE library is used.

0 1 2 3 4 5 6 7 8 9
8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5
Twakeup[ns]

cluster

 c880
 c1908
 c2670
 c5315

Fig. 4. Curves showing the design trade-offs between Twakeup and the number
of clusters in Table I.

0 1 2 3 4 5 6 7 8 9

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Twakeup[ns]

cluster

 c880
 c1908
 c2670
 c5315

Fig. 5. Curves showing the design trade-offs between Twakeup and the number
of clusters in Table II.

Tables I and II show the comparisons of the numbers of

logic clusters and the wakeup times used by the conventional

method [7] (denoted as CONV) and by our PowerG-ctr by

varying the sleep transistor size. The sleep transistor size used

in Table I is roughly 1.5% of the total sum of the widths of

gates in the circuit. The sleep transistor size used in Table II

was then set by multiplying 2 times to that used in Table I.

Under the peak current constraint, PowerG-ctr is applied

to each circuit to explore the sleep transistor overhead and

the wakeup time during the logic partitioning process. Imax

and width in the second column of tables represent the peak

171

TABLE I

COMPARISONS OF THE SLEEP TRANSISTOR OVERHEAD (BY THE NUMBER OF CLUSTERS) AND THE WAKEUP TIME BETWEEN THE RESULTS PRODUCED BY

CONV [7] AND PowerG-ctr UNDER width CONSTRAINT.

difference

CONV [7] PowerG-ctr PowerG−ctr

CONV

circuit Imax[mA] (width[um]) #clusters Twakeup(ns) #clusters Twakeup(ns) #clusters Twakeup

C432 0.95 (1.5) 4 9.79 3 7.44 0.75 0.76

C880 1.56 (2.5) 9 11.96 4 10.52 0.44 0.88

C1355 1.55 (2.5) 15 12.50 3 7.86 0.20 0.63

C1908 1.55 (2.5) 14 12.18 7 9.32 0.50 0.77

C2670 3.15 (5) 16 12.65 3 8.61 0.19 0.68

C3540 6.36 (10) 19 15.20 4 9.67 0.21 0.64

C5315 6.37 (10) 17 14.80 5 9.66 0.29 0.65

C7552 6.37 (10) 18 18.69 4 11.70 0.22 0.63

Avg. 0.35 0.70

TABLE II

COMPARISONS OF THE SLEEP TRANSISTOR OVERHEAD (BY THE NUMBER OF CLUSTERS) AND THE WAKEUP TIME BETWEEN THE RESULTS PRODUCED BY

CONV [7] AND PowerG-ctr UNDER width = TWO TIMES OF width IN TABLE I.

difference

CONV [7] PowerG-ctr PowerG−ctr

CONV

circuit Imax[mA] (width[um]) #clusters Twakeup(ns) #clusters Twakeup(ns) #clusters Twakeup

C432 1.8 (3) 4 6.26 3 4.44 0.75 0.71

C880 3 (5) 9 7.93 2 6.34 0.22 0.80

C1355 3 (5) 15 7.66 2 4.86 0.13 0.63

C1908 3 (5) 14 9.41 2 5.83 0.14 0.62

C2670 6.4 (10) 16 9.40 2 5.77 0.13 0.61

C3540 12 (20) 19 12.60 3 7.06 0.16 0.56

C5315 12 (20) 17 11.03 3 6.61 0.18 0.60

C7552 12 (20) 18 14.06 3 7.75 0.17 0.55

Avg. 0.23 0.64

(maximum) discharged current that is allowed through sleep

transistor and the width of sleep transistor corresponding to the

peak current, respectively. As shown in the tables, the numbers

of clusters (#clusters in tables) used by [7] are 3 to 4 times

more than that by PowerG-ctr while its wakeup times (Twakeup

in tables) are 40% to 60% longer than that by PowerG-

ctr. This clearly indicates that PowerG-ctr which performs a

systematic exploration of the effects of logic clustering on the

wakeup time and sleep transistor overhead is very effective.

The curves in Figs. 4 and 5 show the design trade-offs

between the values of Twakeup and the numbers of clusters

for benchmarks C880, C1908, C2670, C5315 using the Imax

constraints in Tables I and II, respectively. The comparisons

of the curves indicate that whatever the Imax values are, the

shape of curves are similar, but the curves are shifted to the

left as the Imax value increases. This means that as the Imax

value increases, the wakeup time is shorten and the number

of sleep transistor used decreases.

V. CONCLUSION

This work presented a logic clustering based solution to

the problem of controlling/optimizing the power gating pa-

rameters. This work solved two problems: (1) finding logic

clusters and their wakeup schedule to minimize the sleep

transistor overhead under the constraints of wakeup time and

peak current, and (2) finding logic clusters and their wakeup

schedule to minimize the wakeup time under the constraints

of peak current and the number of sleep transistors. It was

shown that our proposed techniques were very effective.

VI. ACKNOWLEDGMENT

The work was supported by Nano IP/SoC Promotion Group

of Seoul R&BD Program, IT-SoC Program, System IC2010

project of Korea Ministry of Knowledge Economy, the Korea

Science and Engineering Foundation (KOSEF) grant funded

by the Korea government (No. R01-2007-000-20891-0), and

the Korea Ministry of Knowledge Economy (MKE) under the

Information Technology Research Center (ITRC) support pro-

gram supervised by the Institute for Information Technology

Advancement (IITA) (IITA-2008-C1090-0804-0009).

REFERENCES

[1] J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor sizing issues
and tool for multi-threshold CMOS technology,” DAC, 1997.

[2] D. Chiou, S. Chen, S.Chang, and C. Yeh, “Timing driven power gating,”
DAC, 2006.

[3] F. Li, and L. He, “Maximum current estimation considering power
gating,” ISLPED, 2001.

[4] A. Sagahyroon, and F. Aloul, “Maximum power-up current estimation
in combinational CMOS circuits,” Proc. of IEEE/ACM Mediterranean
Electrotechnical Conference, 2006.

[5] S. Kim, S. Kosonocky, and D. Knebel, “Understanding and minimizing
ground bounce during mode transition of power gating structures,”
ISLPED, 2003.

[6] C. Long, and L. He, “Distributed sleep transistor network for power
reduction,” DAC, 2003.

[7] A. Abdollahi, F. Fallah, and M. Pedram, “An effective power mode
transition technique in MTCMOS circuits,” DAC, 2005.

[8] C-J. Tseng, D. Siewiorek, “Automated Synthesis of Data Paths in Digital
Systems,” TCAD, Vol. 5, 1986.

[9] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran,” ISCAS, 1985.

172

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

