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ABSTRACT
While the exact manufacturing process for nanoscale computing
devices is uncertain, it is abundantly clear that future technology
nodes will see an increase in defect rates. Therefore, it is of paramount
importance to construct new architectures and design methodolo-
gies that can tolerate large numbers of defects. Defect maps are a
necessity in the future design flows, and research on their practical
construction is essential. In this work, we study the use of Bloom
filters as a data structure for defect maps. We show that Bloom fil-
ters provide the right tradeoff between accuracy and space-efficiency.
In particular, they can help simplify the nanosystem design flow by
embedding defect information within the nanosystem delivered by
the manufacturers. We develop a novel nanoscale memory design
that uses this concept. It does not rely on a voting strategy, and
utilizes the device redundancy more effectively than existing ap-
proaches.
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1. INTRODUCTION
In research laboratories around the world, prototype nanoscale

devices have been constructed using bottom-up chemical assembly
instead of top-down lithography that has dominated VLSI manu-
facturing in the past decades. This progress brings the hope that in
the not too distant future, we will be able to create computing de-
vices with unprecedented density (1010 devices/cm2) that operate
in the THz frequency domain [3].

There are fundamental differences between traditional fabrica-
tion methods and the proposed nanoscale methods. Nanoscale man-
ufacturing techniques cannot replicate the complex structures seen
in today’s ASIC designs. Instead, future techniques favor regu-
lar, periodic and programable structures. This makes it natural for
nanoscale architectures to have a computation structure similar to
those found in current reconfigurable architectures. For instance,
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the crossbar structure is a simple reconfigurable realization that is
prevalent in many proposed nanoscale architectures [2, 4, 8, 16].

It is predicted that nanoscale devices will have high defect rates.
These defects can be roughly divided into two classes: (i) perma-
nent defects caused by inherent physics uncertainties in the manu-
facturing process, and (ii) transient faults due to lower noise toler-
ance or charge injection at reduced voltage and current levels. No-
body knows the eventual manufacturing failure rate for the nanoscale
devices. It is reported that self-assembly nanometer devices could
have defect rates as high as 10% [12]. This is much worse com-
pared to the one per billion defect rate found in current CMOS tech-
nology. In the near future, it is extremely unlikely that we will be
able to produce defect-free nanocomputing devices; current man-
ufacturing practices will not work since high defect rates and the
massive number of devices on a chip will result in a yield close to
0%. Therefore, any practical nanoscale computing system must be
able to cope with the possibilities of defects.

To address this problem, many defect-tolerant design methods
and architectures have been proposed [14]. These methods can be
classified into two categories. In the first approach [6, 11, 12],
defect tolerance is built into the system utilizing redundancy, e.g.
R-fold Module Redundancy (RMR) [13, 15]. Such approaches
can handle both permanent defects and transient faults; however,
they suffer from low reliability. Alternatively, reconfigurable meth-
ods [7, 9, 18] provide an attractive way to address defect toler-
ance [5]. The basic idea is to use reconfigurable techniques during
post-manufacturing design to avoid the defects. It is reported that
reconfiguration is the most effective technique, and is able to cope
with manufacturing defect rates of the order of 0.01 to 0.1 [13]. It
does not, however, effectively handle transient faults.

One of the key concepts in the reconfigurable approach is a de-
fect map [12] − a data structure that stores the locations of the de-
fective devices. Effective and efficient defect maps have not been
well studied, and are often treated as intermediate component in the
design flow [9, 12, 17]. In this work, we show that Bloom filters are
an ideal data structure for defect maps. We propose a novel defect-
tolerant nanoscale memory architecture by exploiting the Bloom
filters. The proposed design is more effective in using device re-
dundancy compared to traditional majority voting approaches.

We confine our discussion on permanent defect tolerance only.
Though it is possible to extend our method to handle transient faults,
it is outside the scope of this work. To our best knowledge, this is
the first attempt to utilize Bloom filters in defect-tolerant comput-
ing for nanoscale devices.

The paper is organized as follows. In order to better motivate our
study, the next section highlights the role of defect maps in the life-
cycle of a nanoscale computing system. We discuss the potential
impact of the Bloom filter on the nanoscale computing design flow,
particularly by embedding defect maps within nanoscale comput-
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Figure 1: Nanosystem lifecycle
(what mitigation methods can be used and how to apply them are greatly impacted by the lifecycle stages).

ing systems. Section 3 describes the fundamentals of Bloom fil-
ters, and how they can be used as defect maps. Following that, we
present a novel nanoscale memory design using defect maps imple-
mented with Bloom filters. We conclude with Section 5.

2. NANOSYSTEM LIFECYCLE AND DEFECT
MAPS

A computing device goes through different stages from being
manufactured to providing service. These stages greatly constrain
the defect-tolerant paradigms that can be practically realized. To
understand the related issues, we provide a view of nanosystem
lifecycle in Figure 1. The lifecycle is roughly partitioned into three
stages: manufacturing, development, and service; each of the stages
has a major stakeholder associated with it, the chip manufacturer,
the application designer, and the end user, respectively.

Defect mitigation methods available at each stage are limited. In
the manufacturing stage, only methods such as RMR and NAND-
demultiplexing [6] are feasible as application information is not
available then. On the other hand, at the development stage the
application designer typically goes through an iterative design, test
and verification process to finalize the product. Most likely, the
designer will purchase a fabricated programmable nanoscale com-
puting device from the manufacturer, and will be limited from per-
forming circuit level mitigation. Here defect tolerance based on
configuration is the primary approach. The biggest limitation at
this stage is perhaps the time and money needed to perform full
scale defect detection. This is caused by:

• The prohibitive cost of buying and operating test equipment;
• The immense amount of time required to perform defect de-

tection.
• The limitation on expertise. Application designers deal with

the underlying computing devices using higher level abstract
models, and they may not have the device level knowledge;

Because of these limitations, ideally, the manufacturer shall pro-
vide defect information to the designer. For the designer, it is also
desired to have a system architecture and a set of design tools that
mask these defects as much as possible and handles them transpar-
ently in the design process. This allows the designer to focus on
application specific issues.

With this view, some existing defect-tolerant methods based on
reconfiguration may be difficult to apply in future practice. For ex-
ample, the framework proposed in [7, 9] requires a deeply coupled

approach of nanoscale defect handling and a high level behavior de-
scription of the application represented in a control data flow graph.
This requires close collaboration and knowledge sharing between
application designers and manufacturers.

Alternatively, we believe a more practical approach is to use a
defect map as the bridge between the manufacturing and the design
stages in order to address defect tolerance problem. The locations
of defective devices are recorded in the defect map, which is gener-
ated once during the manufacturer’s testing and validation process.
Providing this map helps to enable a transparent design stage where
the defects can be handled automatically by the design tools.

More attractive, with a space-efficient defect map, it is possible
to embed the defect map within a nanoscale computing system and
deliver them together. We envision that such systems are realized
with hybrid architectures similar to the ones developed in [4, 16],
where defect maps are stored with reliable CMOS technology.

Such on-chip defect maps are especially useful during the de-
velopment stage. With system specific defect maps embedded on
the same chip, the most important benefit is to enable a better de-
fect tolerant design flow. Without providing such maps, the final
mapping of a design is proceeded by a defect test and diagnosis
process on each computing device in order to obtain the critical de-
fect information, and afterwards configure the design around these
defects using a mapping tool. This is prohibitive in practice, as we
described previously. One could argue that the defect map could
be provided as off-the-chip files by the manufacturers. This is def-
initely a possible solution in labs with sophisticated database sup-
port to keep track of the individual defect map for each device.
However, it is hardly practical for systems that require field recon-
figurability after product deployment.

On the other hand, by using a space-efficient defect map embed-
ded on the same chip, the application design flow could be greatly
simplified. It provides a system specific bridge between the man-
ufacturing and the development stage. Existing design tools en-
hanced with querying capability of the defect map can be applied
directly by the application designer. This saves the trouble for the
designer to examine defects in a system-by-system manner, which
is costly, time consuming and distractive. Also it eliminates the
requirement to purchase expensive setups in order to perform such
tests. It is foreseeable such an enhancement will greatly improve
the productivity of the design process and reduce cost incurred for
managing defect information through the lifecycle of the nanosys-
tem.
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Moreover, having an embedded defect map in the deployed sys-
tem is beneficial for self-testing and reconfiguration in the field,
which makes field reconfigurability more feasible. For example,
the reconfiguration approaches suggested in [12] and [9] both need
to locate a valid area on the nanosystem and configure the nanoscale
devices in this area as the initial testing circuitry. With an accom-
panying defect map, we can speed up this process and also guide
the testing process with previously obtained defect information.

In order for defect maps to be an integral part of the design flow,
its implementation must meet certain requirements. We identify the
following criteria for a practical implementation of defect maps:

1. It must be space efficient for a huge number of devices.
2. It must support random access to be efficient for any real use.
3. It must be accurate;it should not allow false negatives, which

will wrongfully report a defective device to be functional.

One straight forward way is to use a flat data structure such as a
two-dimensional matrix for the crossbar architecture, where each
bit indicates whether a specific nanoscale device is defective. This
approach satisfies the random access and accuracy requirements,
however, it is not space efficient. For one billion (109) devices,
assuming no extra bits are needed to maintain such a structure, it
requires 125 MBytes! One may use a compression technique such
as the Run-Length Encoding to reduce the space usage. However,
this will spoil the random accessibility requirement.

Unfortunately, the implementation of defect maps has received
little attention in previous literature. Some possible reasons for
the lack of study in this area are: 1) it is commonly believed that
the size of the defect maps for the nanoscale fabric would be pro-
hibitively large; and 2) it is commonly believed that the entire de-
sign flow has to be customized per nanochip, which results in a
radical shift from conventional design methods where all logic and
physical design tools have to redeveloped [17]. In the following,
we attempt to demonstrate that these are not necessarily true and it
is possible to construct space-efficient defect maps for high density
and high defect rate (a billion devices, 10% defect rate) nanoscale
chips with only modest changes in existing tool chains.

3. DEFECT MAPS USING BLOOM FILTERS
A Bloom filter is a simple space-efficient randomized data struc-

ture for representing a static set in order to support approximate
membership queries [1]. The main idea is to achieve space ef-
ficiency by allowing false positives with a low probability in the
membership query. That is, for a query on element x, when the
Bloom filter says that x is not in the set, the answer is always cor-
rect. However, when it says x belongs to the set, it may be wrong
with a small probability. This is extremely useful when most el-
ements are not in the set of interest. More importantly, it offers
flexible ways to adjust the tradeoff between the space and the rate
of false positives. Bloom filters have been widely used in database
software, and have recently started receiving intensive attention in
networking applications.

The implementation of a Bloom filter is quite simple. It repre-
sents a set A = a1, a2, . . . , an of n stored elements as a vector v
of m bits, where initially all the bits are set to 0. Associated with
the Bloom filter are k independent hash functions H1, H2, . . . , Hk,
each with a range of 1, . . . , m. For every element a to be stored,
the bits at positions H1(a), H2(a), . . . , Hk(a) in v are set to 1.
A particular bit might be set to 1 multiple times but only the first
one is effective. Later, to determine whether x is in the set, the
bits at positions H1(x),H2(x), . . . , Hk(x) are checked. If any of
them is 0, then certainly x is not in the set A. This guarantees
that no false negative will be returned. However, a false positive

is possible when the bits of x happen to be all set by previously
stored elements. For a fixed n, the parameters k and m can be ad-
justed to tradeoff between the size of the filter and the false positive
probability. Generally, the false positive probability decreases as k
increases or m/n increases.

We can use a Bloom filter to store all the addresses of the de-
fective devices. Clearly it meets the random access requirement by
simply performing hashing on the incoming locations. It achieves
great space-efficiency with a small one-side (false positive) error
rate. The error rate is justified by the abundance of devices in
nanoscale computing systems, which simply results in functional
devices to be marked as defective. Moreover, we can determinis-
tically make tradeoffs by adjusting the number of hash functions,
the bit size derived from the defect rate of the specific nanoscale
realization, and the application requirements.

defect map false
rate m/n k size positive savings
0.01 10 5 12.5 0.009 90.0%
0.02 10 5 25.0 0.009 80.0%
0.03 10 5 37.5 0.009 70.0%
0.04 10 5 50.0 0.009 60.0%
0.05 8 5 50.0 0.022 60.0%
0.06 8 5 60.0 0.022 52.0%
0.07 7 5 61.2 0.035 51.0%
0.08 6 4 60.0 0.056 52.0%
0.09 6 4 67.5 0.056 46.0%
0.10 6 4 75.0 0.056 40.0%

Table 1: Tradeoffs on using Bloom filters as defect maps.
(Computation is done for 109 devices. Map size is in MBytes. )

Consider a nanosystem that contains 109 devices with a defect
rate of 5%. This implies that 5 × 107 devices are defective. With a
m/n ratio of 8 bits, and 5 hash functions, we can construct a defect
map using 50 Mbytes with a false positive error of 2.17%. This is a
60% reduction on the storage space required compared with the flat
implementation. In Table 1, we provide a list of possible tradeoffs
for defect rates from 0.01 to 0.1. It can be seen, with modest false
positive rates, we are able to shrink the size of the defect maps by
40% to 90% compared with the trivial, flat implementation. This
makes it more feasible to be embedded within a nanosystem.

One may question the effectiveness of using multiple hashing
functions and whether it is practical. This concern is justified as
most hash functions involve modulation. Furthermore, hashing is
the only non-trivial operation that the Bloom filter requires, there-
fore any optimization on this step will translate into great gains.
Recently, Kirsch et al. reported [10] progress on this topic. Their
key idea is borrowed from the classic hashing literature that uses
two hash functions h1(x) and h2(x) to simulate additional hash
functions gi in the form gi(x) = h1(x) + ih2(x), where i is hash
function index.

By leveraging this method, they have shown that a Bloom filter
can be implemented using only two pseudorandom hash functions
h1 and h2 without any noticeable increase in the asymptotic false
positive probability for Bloom filters of fixed size with reasonable
parameters. This is a significant result. It indicates that for a single
Bloom filter with k hash functions, we only need to compute two
modulations and the remaining hashes can be quickly calculated
using addition/subtraction recursively on these two values. This
result may greatly simplify hardware implementations.

4. REDUNDANT NANOSCALE MEMORY
A nanoscale memory architecture based on defect maps using

Bloom filters is illustrated in Figure 2. In this design, we use the
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Figure 2: Defect tolerant memory using defect maps based on Bloom
filters. (BFs are defect maps associated with nanoscale modules.)

popular crossbar realization [2, 16, 4] for the nanoscale implemen-
tation. Each memory module has its own defect map, denoted as
BFs in Figure 2, implemented using a Bloom filter with reliable
CMOS technology. They store the location information of defec-
tive devices in each of the nanoscale modules. The nanoscale mem-
ory cells in each module are organized as a two-dimensional matrix
in the similar way as FPGA. Each cell can be addressed using an ad-
dress tuple (x, y) with indices of the row and column, respectively.
The defect tolerance in the proposed architecture is achieved by
providing multiple nanoscale modules that share the same address
space. In Figure 2, three such modules are included.

The address bus provides a transparent view for the external ap-
plication. It hides the nanoscale redundancy. Assuming that the
each modules has 2n memory cells, the bus will have n address
lines to provide full access to any cell in every nanoscale module.
To the application, the internal redundancy is hidden and the whole
architecture is treated as a memory chip with 2n cells.

For each read/write operation on address (x, y), we first query
the Bloom filters of all the nanoscale modules using the incoming
address. It will provide a true/false report (with false positive) for
each module on whether the cell (x, y) is defective. Then, simple
selection circuitry is used to allow or disallow the read/write oper-
ation on a specific module. For example, in Figure 2, the nanoscale
device for location (x, y) in Nano-Module2 is reported to be defec-
tive (indicated with a solid box), while the other two with the same
address are normal. For a write operation, the selection logic will
perform memory write at location (x, y) for both Nano-Module1
and Nano-Module3 so to keep maximal redundancy. For a read op-
eration, the content of one of the working cells, either from Nano-
Module1 or Nano-Module3, is picked randomly as the output.

The proposed design differs in principle from traditional approaches
using NAND-demutiplexing or RMR, though they may have the
same number of nanoscale cells. Instead of using majority voting
or cascaded defect control, our design works as a filter by using
information obtained from the defect maps. There is no need to
have odd number module duplications in our design. Actually, if
we use two or any other number of modules in Figure 2, the same
process can be carried without modification. This makes it flexible
and more suitable in practice.

Moreover, the proposed architecture compensates the false pos-
itive inherited from Bloom filter. One just needs notice that even
though for each module the false positive rate is the same p, it is
much less likely the all the modules would have defects on exactly
same locations. Since the system would work if any chip works at

the requested address, it has better chance to provide a higher suc-
cessful rate than using one chip with single Bloom filter. For ex-
ample, compare the above design with a classic triple redundancy
approach using reliable majority voting gates, for a defect rate of
5%, we have a failure rate for a given address at (0.05)3 ≈ 0.01%

while the later is at: 1−
„

2
3

«
(0.95)2(0.05)−(0.95)3 ≈ 0.73%.

In this case, our design is about two orders of magnitude better in
operation failure rate.

5. CONCLUSION
By connecting existing defect tolerant methods with the lifecy-

cle of nanosystems, we suggest that the defect map is an impor-
tant concept for bridging manufacturing and development stages.
We demonstrate that it is possible to construct space-efficient, ran-
domly accessible defect maps for high density and high defect rate
nanosystems with very small sacrifice in accuracy using Bloom fil-
ters.To our best knowledge, this is the first time that anyone has
suggested using the Bloom filter in nanosystem architecture. Fur-
thermore, we propose to embed a nanocomputing fabric and it’s
associated defect map on the same chip, and illustrate its advantage
over the traditional design flow. Moreover, we present a new defect
tolerant memory architecture combining defect maps with module
level redundancy, and show that it is advantageous over traditional
majority voting approaches.
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