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ABSTRACT 
Soft-core programmable processors on field-programmable gate 
arrays (FPGAs) can be custom synthesized to instantiate only 
those hardware units, such as multipliers and floating-point units, 
that an application requires to meet performance demands, thus 
minimizing soft-core size on the FPGA. Conjoining processors, 
meaning to share hardware units among two or more processors, 
can further reduce soft-core size, leaving more resources for other 
circuits such as custom coprocessors. Using Xilinx MicroBlaze 
coprocessors and standard embedded system benchmarks, we 
show that conjoining two processors can provide 16% processor 
size reductions on average, with less than 1% cycle count 
overhead. We introduce an efficient dynamic-programming-based 
exploration method to find the best custom instantiation of 
hardware units, considering both standalone and conjoined 
options, for soft-core processors.  

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: – 
Microprocessor/microcomputer applications, Real-time and 
embedded systems.  

General Terms 
Performance, Design, Experimentation. 

Keywords 
FPGAs, soft-core processors, conjoined processors, tuning, 
customization, parameterized platforms. 

1. INTRODUCTION 
Soft-core processors on field-programmable gate arrays (FPGAs) 
are an increasingly popular software implementation option in 
embedded computing systems. A soft-core FPGA processor is a 
synthesizable processor mapped onto the FPGA fabric, in contrast 
to a hard-core processor that is laid out next to the FPGA fabric. 
FPGA vendors tailor synthesizable processors, such as the Xilinx 
MicroBlaze or the Altera Nios, for FPGA implementation, 
resulting in processors having less size and performance overhead 
than a general synthesizable processor mapped to an FPGA 
[2][12]. Soft-core, as well as hard-core, processors on FPGAs 

enable reductions in system device counts by co-existing with 
custom processing circuits and glue logic on a single device. Soft-
core processors possess an additional advantage of being 
realizable on general-purpose FPGA devices, with those devices 
typically being lower cost than devices with hard cores due to 
mass production and hence economy of scale. Furthermore, soft-
core processors enable custom numbers of processors on a device, 
and custom interconnection structures among those processors – 
increasingly important features as multiprocessing systems grow 
in importance and diversity. 
Soft-core FPGA processors come with optional hardware units 
that may be instantiated, such as a multiplier, divider, barrel 
shifter, or floating-point unit. FPGA tools generate accompanying 
instructions, like a multiply instruction, to utilize an instantiated 
unit, and soft-core compilers then utilize those instructions rather 
than software library routines.  Because a soft-core user may map 
a single software application onto a soft-core, the user typically 
instantiates minimal hardware units to meet desired performance 
targets while minimizing the soft-core’s circuit size, a task known 
as customizing the soft-core. Such soft-core customization can 
reduce soft-core size by a factor of three compared to a core with 
all units instantiated. That reduction not only frees FPGA 
resources for use by other circuits co-existing on the FPGA, but 
also can enable use of smaller and hence lower-cost FPGA 
devices. Such reduction is magnified by the increasingly common 
situation of users mapping several or even dozens of soft-cores 
onto a single FPGA device [5][6][7][8][9], making soft-core 
customization even more critical to best utilize available FPGA 
resources.  Furthermore, our analyses have shown that reducing 
hardware units, in addition to reducing circuit size, can even 
improve performance, due to shorter critical paths in the soft-
core’s circuit and hence faster processor clock frequency. Because 
FPGAs typically support numerous clock frequencies within a 
single device, each processor on a device could conceivably be 
clocked at its fastest frequency.  
An important problem is to find, for a given application, the 
instantiation of possible hardware units that minimizes size while 
meeting performance constraints. Given the large number of 
possible configurations of hardware units, and the interactions 
among units, the problem is quite challenging.  
We can distinguish between two types of customizable 
processors. A customizable-instruction processor allows 
definition of custom-built hardware units and accompanying 
custom instructions, and is often referred to as an application-
specific instruction-set processor (ASIP). Examples include 
[1][3][4][10]0; Cong has investigated ASIPs specifically targeted 
to FPGAs [3]. A parameterized processor has specific pre-
determined parameters that can be set to particular values to 
create a custom processor instance. One type of parameter 
corresponds to instantiating a pre-determined hardware unit and 
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Figure 1: Conjoined processor example: (a) two separate 

processors each with a multiplier, (b) two conjoined 
processors sharing a single multiplier.      
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Divider 122 0 122 
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Unit 1018 4 2738 
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Full MicroBlaze 3010 7 5989 

Figure 2: FPGA resource requirements for each instantiatable 
unit, and for the base and full MicroBlazes.  

Multiplier Processor 1 Processor 1

possibly an accompanying instruction, such as a multiplier unit 
and a multiply instruction, or a floating-point unit (FPU) and FP 
instructions. There may even be multiple versions of a unit, such 
as several multipliers that tradeoff speedup and size. Other 
parameters may relate to the size of the register file, the number 
of pipeline stages, the activation of data forwarding, the inclusion 
and configuration of cache, etc. Yiannacouras et al [14] showed 
the performance and size benefits of application-specific tuning of 
parameterized FPGA soft-core processors. The two types of 
customizable processors are not distinct; for example, Altera’s 
Nios soft-core processor supports both types of customization [2]. 
In this paper, we specifically consider parameterized processors 
consisting of pre-defined hardware units.  
Conjoining processors means to share hardware units between 
two (or more) processors. For example, two processors might 
share a single multiplier as shown in Figure 1(b), thus reducing 
total size of the two-processor system compared to each processor 
having its own multiplier as in Figure 1(a). Conjoining may result 
in performance overhead due to extra multiplexing and longer 
routing caused by conjoining. Performance overhead may also be 
caused by extra clock cycles due to contention for the shared unit, 
because if one processor requires use of the shared unit but 
another processor is already using the unit, the first processor may 
stall until the unit becomes available. Kumar [8] introduced 
conjoined processors and showed their benefits in multi-core 
desktop processor architectures. To the best of our knowledge, no 
soft-core FPGA vendor today supports conjoined processors. 
Thus, the data presented in this paper presents a case for future 
support of conjoinment. Conjoining processors may become an 
increasingly important consideration as soft-core processors 
continue to gain additional optional hardware units, such as 
multiply-accumulate units, vector processing units, and 
signal/image processing units like sum-of-absolute difference 
units. Furthermore, even while Moore’s Law eases size 
constraints, smaller FPGA devices tend to be lower cost and 
lower power, making system size minimization an important goal 
for multiprocessor systems implemented on FPGAs.  
In this paper, we provide results of an analysis showing that 
conjoining soft-core FPGA processors would yield very little 
clock cycle count overhead, while achieving significant size 
reductions, for a commercial soft-core processor executing 
standard embedded system benchmarks. We also develop an 
effective exploration method to automatically customize a two-
processor system of parameterized processors, considering non-
conjoined as well as conjoined options for every unit. 

2. CONJOINED PROCESSOR 
ARCHITECTURE  
Our experimental framework utilizes Xilinx MicroBlaze soft-core 
processors mapped to a Virtex II device on an ML310 board. The 
MicroBlaze is a parameterized soft-core processor, coming with 
the following hardware units that can be optionally instantiated 
using Xilinx’s Embedded Development Kit toolset: a multiplier, a 
divider, a floating-point unit, and a barrel shifter. Upon 
instantiating one (or more) units, the toolset generates an 
accompanying instruction (or instructions), which the MicroBlaze 
compiler may then use when generating code for an application. 
Furthermore, the MicroBlaze also has instruction and data caches 
that can be instantiated, which have possible sizes ranging from 0 
to 64 Kbytes. We will use the term base MicroBlaze to refer to a 
MicroBlaze with none of these optional hardware units 
instantiated, and the term configured MicroBlaze to refer to a 
MicroBlaze having a particular instantiation of the optional 
hardware units. A full MicroBlaze has all units instantiated. The 
toolset synthesizes a circuit for a configured MicroBlaze, with 
that circuit utilizing hard-core items on the FPGA when possible, 
such as hard-core multipliers (for the multiplier or floating-point 
units) or block RAMs (for cache). For such units, the toolset also 
synthesizes control logic circuits onto the FPGA fabric alongside 
e base MicroBlaze processor circuit, and some units, like the 
barrel shifter, consist entirely of such logic circuits on the fabric.  
Figure 2 provides size data for each of the MicroBlaze’s 
instantiatable hardware units and for base and full MicroBlazes. 
In discussing sizes, we need a straightforward way to describe the 
relative sizes of two configured MicroBlazes. Describing relative 
sizes is non-trivial because a MicroBlaze uses two types of 
hardware resources: lookup tables (LUTs), and hard-core 
multipliers.  (We presently do not consider cache, so we do not 
consider an FPGA’s block RAM hardware resources.) We thus 
define the concept of Equivalent LUTs for the multipliers for the 
purpose of describing relative sizes. A full MicroBlaze uses 3010 
regular LUTs and 7 hard-core multipliers. Assuming regular 
LUTs and hard-core multipliers to be equally important resources, 
then the 7 hard-core multipliers have an equivalent LUT value of 
3010, and one hard-core multiplier has an equivalent LUT value 
of 3010/7 = 430. An instantiatable unit or configured MicroBlaze 
thus has an equivalent LUT value equal to the number of regular 
LUTs used, plus the number of equivalent LUTs contributed by 
the hard-core multipliers used. For example, the floating point 
unit uses 1018 regular LUTs, and 4 hard-core multipliers worth 
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Figure 3: Sizes of two-processor systems with two separate 
units (sep), or one conjoined unit (conj). % size savings from 

conjoining are shown, showing significant savings.    

430 equivalent LUTs each, for a total of 1018+4*430 = 2738 
equivalent LUTs. A similar equivalent LUT concept was 
developed independently by researchers using Altera devices 
[14], lending confidence to the utility of the concept. We also 
recently found our equivalent LUT concept to correlate almost 
perfectly with Xilinx’s own equivalent gate concept.  
We use LUTs, and not configurable logic blocks (CLBs), as a 
measure of size, based on direct communications with the 
MicroBlaze design time indicating that LUTs are a more 
meaningful size measure than CLBs.  
Using equivalent LUTs, Figure 3 shows the size savings 
achievable by conjoining just one unit for two processors. 
Conjoining two or more units would result in further size savings. 
Conjoining all units would yield 65% size savings. .   
The next section addresses the key question of how much clock 
cycle count performance penalty is imposed by such conjoining. 

3. CONJOINED PROCESSOR 
PERFORMANCE OVERHEAD 
This section describes experiments to determine the clock cycle 
count performance overhead that would occur for standard 
benchmarks when conjoining two FPGA soft-core processors.  

3.1 Simulation Framework 
The MicroBlaze toolset includes a MicroBlaze simulator, which 
can generate instruction traces for any configured MicroBlaze. 
The MicroBlaze toolset does not support synthesis of conjoined 
processors (nor at this time does any soft-core processor toolset of 
any company that we are aware of), and hence that simulator does 
not simulate conjoined processors. We therefore developed a trace 
simulator that takes as input those instruction traces and 
configuration data including conjoinment information, and that 
outputs stall and cycle data. The trace simulator presently 
considers a two-processor system, and assumes that both 
processors operate at the same clock frequency. The trace 
simulator takes as input a list of conjoined hardware units. Each 
conjoined unit may have an access penalty associated with the 
unit, expressed in number of cycles. We pessimistically assume 
that every conjoined unit has a one cycle access penalty even 
when the unit is available, to account for checking of a busy flag. 
Schemes can be introduced to reduce the penalty well below one 
cycle on average [8]. 

  A collision occurs when two processors need to use a conjoined 
unit in the same cycle. There are two types of collisions that can 
occur.  The first is when processor A is already using a unit and 
processor B needs to use that unit. This type of collision can only 
occur for multi-cycle units. All of the components in the 
MicroBlaze are multi-cycle, as shown in Figure 4. For such a 
collision, our simulator assumes that processor currently using the 
unit continues to use the component until finished. The second 
type of collision occurs when both processors want to start using a 
unit on the same cycle. In this case, we use a simple arbiter that 
uses a round-robin (alternating in the case of two processors) 
policy. In either type of collision, we pessimistically assume that 
the processor waiting for a unit will completely stall.  
Conjoining processors could potentially decrease the clock 
frequency of one or both processors, if the hardware required to 
share a conjoined unit lengthens the critical path. This decreased 
clock frequency could be minimized by placing the processors 
and the conjoined unit in such a way that the shared components 
are sitting between the two processors. As FPGAs do not 
presently support conjoined processors, we are presently unable to 
determine whether conjoining will actually impact frequency, and 
if so, to what extent. We plan to investigate this subject in the 
future through collaborations with an FPGA company. 

3.2 Speedups for Instantiatable Units 
We considered 10 applications from the EMBCC and Mediabench 
benchmark suites (aifir, BaseFP01, brev, bitmnp, canrdr, g3fax, 
g721_ps, matmul, ttsprk, ttblook) and one additional benchmark 
raytrace, for a total of 11 benchmarks. These benchmarks were 
chosen to show how the impact of the units varies over a wide 
range of benchmarks.  
Each benchmark has a “beginning” and an “end,” enclosed in a 
main loop whose iteration count can be varied. The beginning to 
end behavior may itself contain loops, but such behavior does not 
contain the infinite loop that often surrounds an embedded 
application. For each application, we first determined the number 
of cycles to execute the application from beginning to end (i.e., 
one main iteration) on a base processor. For each application, we 
also determined the number of cycles to execute one main 
iteration on a processor consisting of the base processor plus 
exactly one optional hardware unit, doing so for each possible 
hardware unit. Figure 5 shows the cycle data for one application, 
aifir, with that data consisting of the cycles on the base processor, 
and on all versions of the processor extended with one hardware 
unit. That figure shows that instantiating either a barrel shifter, or 
a multiplier, reduces the number of cycles needed to execute the 
application, and hence yields the speedups shown.  
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Figure 6 shows the speedup data we obtained by each hardware 
unit for every application, in addition to aifir. That figure shows 
substantial speedups, as high as 6.5 in some cases. The next 
question is therefore how much of that speedup would be lost if 
the unit yielding the speedup were conjoined with another 
processor whose application also needs that unit for speedups.  

3.3 Speedup Reductions due to Conjoining Units 
We considered all possible pairs of applications running on a two-
processor system, with one application per processor. Because 
applications have different runtimes, we increased the number of 
main loop iterations of the shorter application so that its runtime 
was longer than the longer application, and then we ran for the 
length of the originally longer application. For each application 
pair, we considered each optional hardware unit H. Considering 
the speedups shown in Figure 6, three possible situations exist 
among a pair of applications and the hardware unit H.  
One situation is that neither application derives a speedup benefit 
from instantiating H. In this situation, neither processor would 
instantiate H, so conjoinment is not possible. A second situation is 
that only one application derives a speedup from instantiating H. 
In this case, only that processor might instantiate H, so 
conjoinment need not be considered.  
The third situation is when both processors derive speedups from 

instantiating H. In this situation, conjoinment is an option to 
consider among five options: the processors share one H 
(conjoined), the processors each instantiate their own H, the first 
processor instantiates H but the second doesn’t, the second 
processor instantiates H but the first doesn’t, or neither processor 
instantiates H. This third situation, which we refer to as a 
conjoinable situation, is the only one for which we collected 
conjoinment data, because providing conjoinment data for the 
other two situations would have shown no speedup reductions and 
would have thus resulted in misleadingly low average 
performance overheads, i.e., in an exaggeration of the benefits of 
conjoinment.  

 

Configuration Cycles Speedup vs. base

Base MicroBlaze 2,134,921 1 

Base + Barrel Shifter 1,833,752 1.16 

Base + Divider 2,134,920 1 

Base + Multiplier 1,849,715 1.15 

Base + FPU 2,134,921 1 

Figure 5: Cycle counts for one main iteration of the aifir 
benchmark, for a base MicroBlaze, and for a base 

MicroBlaze plus one unit.  The barrel shifter and multiplier 
each provide speedups over the base for this benchmark.   For every conjoinable situation encountered when considering all 

pairs of applications and every hardware unit, we determined the 
cycles each application required from beginning to end, but this 
time assuming that the hardware unit was shared among the two 
processors running those two applications. Recall that we 
pessimistically assume every access to a shared unit, even in the 
absence of a collision, has a one-cycle access penalty 
incorporated in a unit’s cycle latency in Figure 4. Because a 
shared unit could be busy when an application required that unit, 
the number of cycles for a particular application could increase 
over the cycles shown in Figure 4, i.e., sharing a unit may result 
in processor stalls. For example, Figure 7 shows the stalls 
computed by our trace simulator when sharing a barrel shifter 
between two particular benchmarks, chosen for the figure due to 
their resulting in one of the most stalls of any pair (note that the 
stalls are not very frequent even for that pair).  Note that the one-
cycle access penalty for a shared unit is also shown as a stall 
cycle.  
We computed the speedups (over a base processor) for each 
application for every conjoinable situation considering each 
pairing with another application and each hardware unit, and 
compared those speedups with the earlier-computed speedups of 
Figure 6 for each hardware unit without any conjoining. We 
define the performance overhead of conjoinment as the ratio of 
the unconjoined speedup minus the conjoined speedup, divided by 
the unconjoined speedup, times 100%. Thus, if conjoining yields 
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Figure 7: Stalls (shown as filled regions) determined by the simulator using a shared barrel shifter, for the brev, bitmnp pairing of 
benchmarks. This example involves one of the highest amounts of interference of all the examples considered.   

brev 

bitmnp 

697



0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

(br
ev

),c
an

rdr

bre
v,(

ca
nrd

r)

(br
ev

),b
itm

np

bre
v,(

bit
mnp

)

(br
ev

),b
rev

bre
v,(

bre
v)

(bi
tm

np
),c

an
rdr

bit
mnp

,(c
an

rdr
)

(bi
tm

np
),b

itm
np

bit
mnp

,(b
itm

np
)

(ca
nrd

r),
ca

nrd
r

ca
nrd

r,(c
an

rdr
)

Sp
ee

du
p

Conjoined
Unconjoined

 
Figure 8: Application speedups for six pairings of applications, for conjoined and unconjoined barrel shifter cases. Only 

applications that benefit from the barrel shifter (i.e., for which an unconjoined barrel shifter provides a speedup of 1.3 or more) 
are shown. The benchmark  in parentheses is the one from that pair whose speedup is shown in the bar above. The figure shows 

that conjoinment only has a small impact on the speedup provided by the barrel shifter.       
a speedup of 1.7 whereas unconjoined execution yielded a 
speedup of 2.0, the overhead would be 100%*(2.0-1.7)/2.0 = 
15%. We again point out that this performance overhead is with 
respect to cycle count only, and does not presently consider 
potential lengthening of the clock cycle caused by conjoinment.  
Figure 13 shows the conjoinment performance overheads for all 
pairs of applications, for each hardware unit, only showing data 
for conjoinable situations (as defined earlier). The data shows that 
conjoinment results in very small performance overheads, usually 
1% or less, occasionally about 5%, and only in a couple cases 
around 16% (which happened to involve a barrel shifter). In other 
words, most of the benefit of instantiating a unit is preserved even 
when the unit is conjoined.  
Figure 8 shows the data specifically for a barrel shifter unit, and 
only for six “significant” pairs for which a barrel shift yielded 
speedups of 1.3 or more. Other pairs are omitted as they do not 
use the barrel shifter much and thus do not provide interesting 
data points. The figure again shows that conjoinment has only 
modest performance overhead. Plots for other units are similar, 
actually better – we showed the barrel shifter since it exhibited 
the most performance overhead compared to all other units.  
Figure 9 shows the barrel shifter utilization for the same six pairs 
of benchmarks, showing that unit utilization is 40% on average, 
and over 50% in some cases. Yet even with such relatively high 
utilization, performance overheads were relatively small. The 
early example in Figure 7 for one of the highest overhead 
situations (brev/bitmnp sharing a barrel shifter) – even with 53% 
utilization (37 of 70 cycles), stalls are infrequent. Similar patterns 
occur for other example application pairs; in fact, other pairs 

exhibit even fewer stalls.  

4. EXPLORATION METHOD FOR THE 
TWO-PROCESSOR UNIT-
INSTANTIATION WITH CONJOINING 
PROBLEM 
The previous section showed that conjoining soft-core processors 
could potentially yield significant size savings with small or no 
performance overhead in most cases. In this section, we introduce 
an automated exploration method for determining the best 
instantiation of units for two processors, with conjoining 
considered.  

4.1 Problem Definition  
Given a pair of applications running on the two processors, and a 
total size constraint, the two-processor unit-instantiation with 
conjoining problem is to find the instantiation of units that gives 
the greatest average speedup while not exceeding the size 
constraint.  
We consider all four earlier-mentioned instantiatable unit types: 
barrel shifter, divider, multiplier, and FPU. Each unit type has 
five possible instantiations for two processors A and B: no 
instantiation, instantiated for A, instantiated for B, instantiated for 
A and instantiated for B (i.e., instantiated twice), and instantiated 
for both A and B (i.e., instantiated once but shared – conjoined). 
The complete solution space is thus 5*5*5*5, or 625 possible 
instantiations. Each unit has a size as shown in Figure 2. Each 
processor executes one application repeatedly. Performance 
speedup for a given instantiation of units is computed as described 
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in Section 3.2 for each application relative to a base processor, 
and averaged for a given pair to obtain a single speedup value.  

4.2 Disjunctively-Constrained Knapsack Solution 
We determined that the two-processor unit-instantiation problem 
could be approximately mapped to a variation of the 0-1 knapsack 
problem. The 0-1 knapsack problem consists of a set of items, 
with each item having a profit and a weight, and a total weight 
constraint on the knapsack. The problem is to choose which items 
to assign to the knapsack such that profit is maximized while not 
violating the weight constraint.  
The key to the problem mapping involves noting that each unit 
can be considered to be an item in the knapsack problem, with 
instantiating a unit corresponding to adding the item to the 
knapsack. Ignoring conjoinment for the moment, eight “items” 
would exist: barrel shifter for processor A, divider for A, 
multiplier for A, FPU for A, barrel shifter for processor B, divider 
for B, multiplier for B, and FPU for B. An item’s weight would be 
the corresponding unit’s size from Figure 2. An item’s profit 
would be the speedup increment (i.e., the speedup amount above 
1.0) that the corresponding unit provides over a base processor for 
the given application, shown in Figure 6 (e.g., if a multiplier 
speeds up the application by 1.3x, the profit would be 0.3). This 
mapping is approximate because speedup increments are not 
necessarily additive – if a barrel shifter provides a speedup of 
1.2x, and a multiplier of 1.3x, instantiating both a barrel shifter 
and multiplier might yield a speedup less than 1.5x, such as 1.4x, 
due to overlapping functionality (e.g., a multiplier may be used 
for shifting).  However, we examined all pairs of units for all 
applications, and found that adding speedup increments had an 
average inaccuracy of 5.9% (though the worst case was 26% 
between the multiplier and divider), which we considered 
acceptable.  
With the above mapping, we could solve the two-processor unit-
instantiation problem using a well-known dynamic programming 

solution to the 0-1 knapsack problem.  
Extending the mapping to consider conjoinment, we can introduce 
new “items” in addition to those eight listed above: barrel shifter 
for processors A and B (i.e., one barrel shifter shared by both 
processors – conjoined), divider for both A and B, multiplier for 
both A and B, and FPU for both A and B, for twelve items total. 
However, this extension is not complete, because these items 
corresponding to conjoined units cannot co-exist in the knapsack 
with items corresponding to non-conjoined units. For example, we 
cannot have a multiplier for A, and a multiplier for A and B, both 
in the solution – either the multiplier is for A, or the multiplier is 
shared by A and B. Fortunately, the disjunctively constrained 
knapsack problem [13] extends 0-1 knapsack to prohibit certain 
combinations of items from appearing in the knapsack. We thus 
specify the prohibited combinations, and apply the algorithm 
described in [13]. The algorithm is known to be “pseudo-
polynomial,” and effectively quadratic, proportional to the 
number of items times the size of the knapsack.  
Note that, although the used algorithm optimally solves the 
knapsack problem, the solution is not necessarily optimal for the 
two-processor unit-instantiation problem, because the mapping of 
that problem to knapsack was approximate, due to the additive 
speedup increment approximation.   

5. RESULTS 
We obtained solutions for all pairs of our 11 applications (thus, 
121 pairs), using our knapsack approach, and using exhaustive 
search. Due to space limitations, we show results for eight 
representative pairs, shown in Figure 10. The pairs were selected 
to show the multiple types of applications.  BaseFP01 and tblook 
both require a floating point unit for large speedups, while bitmnp 
and canrdr rely on the barrel shifter and multiplier.  With these 
pairings, we can see how our solution works over the entire search 
space. We imposed a size constraint guaranteed to “hurt”  
somewhat by not allowing all units from which an application 
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Figure 10: Solutions obtained by exhaustive (optimal) and knapsack algorithms, for eight randomly-selected application pairs, and 
an area constraint set to 80% of the area of the best configuration. The knapsack algorithm finds near-optimal solutions for seven 

of the eight pairs (circled), doing poorly on one pair (the two non-circled points).     
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Figure 11: Speedup of the chosen benchmark pairs, using the 

80% of the best configuration size constraint.    
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Figure 12: Size reductions for chosen benchmark pairs. 

benefits, by first determining for each application what units 
provide speedup, summing the sizes for each processor having 
those units, and setting the size constraint to 80% of that size. 
Figure 11 shows that the knapsack approach usually obtains near-
optimal solutions, sometimes having slightly worse speedup 
(barely discernible in the figure) and/or slightly worse size 
(though always satisfying the size constraint, of course). The one 
sub-optimal case involves the large FPU and occurs due to the 
additive speedup increment assumption – we plan to investigate 
improvements to reduce this sub-optimality, where such a 
solution would likely involve modifications for large units not 
obeying the additive assumption. Average speedup was within 1% 
of optimal.  
Figure 12 shows the size savings obtained by using conjoinment 
versus not considering conjoinment. Knapsack achieves nearly 
the same size savings as exhaustive search, yielding size savings 
of 16% on average. 
Runtimes of the dynamic programming algorithm were under one 
second in all cases. That time does not include a fixed initial setup 
time required to obtain size data for each unit through synthesis 
(requiring tens of minutes), and simulations to determine speedup 
increments for each unit (requiring seconds). 

6. CONCLUSIONS 
While customizing soft-core FPGA processors by custom-
instantiating datapath units provides for good speedups and 
efficient size usage, we showed that conjoining processors by 
sharing those units further reduces size with little impact on 
speedup. We developed an effective dynamic programming 
method for automatically finding a good instantiation of units, 
including conjoined units, for two processors. We showed that 
considering conjoined units yields 16% average size savings with 
less than 1% speedup penalty, even using pessimistic performance 
assumptions.  
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bs: 0.84% bs: 0.21% bs: 5.82% bs: 5.71% bs: 1.45% bs: 0.71% bs: 1.51% bs: 0.87% bs: 0.33% bs: 0.36% bs: 0.56%
div: div: div: div: div: div: div: div: div: div: div: 1.21%

mul: 1.01% mul: 0.34% mul: 1.40% mul: 0.78% mul: 1.63% mul: 0.33% mul: 0.60% mul: 1.08% mul: 0.33% mul: 1.11% mul: 1.11%
fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu:
bs: 0.80% bs: 0.16% bs: 5.76% bs: 5.70% bs: 1.41% bs: 0.67% bs: 1.47% bs: 0.82% bs: 0.28% bs: 0.31%

div: div: div: div: div: div: div: div: div: div:
mul: 0.80% mul: 0.17% mul: 1.20% mul: 0.59% mul: 1.41% mul: 0.16% mul: 0.42% mul: 0.89% mul: 0.16% mul: 0.34%
fpu: fpu: 0.27% fpu: fpu: fpu: fpu: fpu: fpu: fpu: 0.10% fpu: 0.19%
bs: 0.75% bs: 0.13% bs: 5.70% bs: 5.59% bs: 1.36% bs: 0.63% bs: 1.42% bs: 0.79% bs: 0.47%

div: div: div: div: div: div: div: div: div:
mul: 0.61% mul: 0.01% mul: 0.98% mul: 0.41% mul: 1.17% mul: 0.00% mul: 0.24% mul: 0.68% mul: 0.00%
fpu: fpu: 0.38% fpu: fpu: fpu: fpu: fpu: fpu: fpu: 0.73%
bs: 1.32% bs: 0.66% bs: 6.87% bs: 6.58% bs: 2.00% bs: 1.21% bs: 2.07% bs: 1.53%

div: div: div: div: div: div: div: div:
mul: 1.44% mul: 0.69% mul: 1.79% mul: 1.17% mul: 2.09% mul: 0.68% mul: 0.98% mul: 1.35%
fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu:
bs: 1.16% bs: 0.51% bs: 6.42% bs: 6.26% bs: 1.80% bs: 1.87% bs: 4.03%

div: div: div: div: div: div: div:
mul: 0.90% mul: 0.25% mul: 1.30% mul: 0.69% mul: 1.51% mul: 0.25% mul: 0.48%
fpu: fpu: fpu: fpu: fpu: fpu: fpu:
bs: 1.16% bs: 0.51% bs: 6.42% bs: 6.26% bs: 1.80% bs: 0.99%

div: div: div: div: div: div:
mul: 0.61% mul: 0.01% mul: 0.98% mul: 0.98% mul: 0.41% mul: 0.01%
fpu: fpu: fpu: fpu: fpu: fpu:
bs: 1.95% bs: 1.21% bs: 7.92% bs: 7.60% bs: 2.41%

div: div: div: div: div:
mul: 2.02% mul: 1.18% mul: 2.58% mul: 1.74% mul: 2.34%
fpu: fpu: fpu: fpu: fpu:
bs: 6.55% bs: 5.32% bs: 16.51% bs: 13.10%

div: div: div: div:
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fpu: fpu: fpu: fpu:
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Figure 13: Performance overhead for conjoined units for all pairs of applications. The % shown is the performance overhead caused by 
stalls due to conjoined unit contention and by 1 extra cycle for accessing a conjoined unit (even without contention), versus using non-

conjoined units (with no extra cycle for access).  The overheads are the average of the two overheads of the applications in a pair.  
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