
Studying a GALS FPGA Architecture Using a
Parameterized Automatic Design Flow

Xin Jia: Ranga Vemuri
University of Cincinnati

2600 Clifton Ave.
Cincinnati, OH, 45221

{jiax, ranga)Qccccs.uc.edu

ABSTRACT
Routing delays dominate other delays in c:iirrent FPGA de-
signs. \Vc have proposed a novel Globally Asynchronous
Locally Synchronous (GALS) FPGA architect,ure called the
GAPLA to deal with this problem. In tlie GAPLA arclii-
tectiire, The FPGA area is divided into 1oc:ally synchronoiis
blocks and the communications between them arc through
asynclironous 1/0 interfaces. automatic design flow is
developed for the GAPLA architectiire. Starting from be-
havioral description. a design is partitioned into smaller
modules arid fit to G.iPLA synchronous blocks. Tlic asyri-
chronous communications between modules are then sytlie-
sized. The CAD flow is parameterized in modeling the
GAPLA architecture. By rriariipulatirig the parameters, we
could study different factors of t,he designed GAPLA arclii-
tccturc. Our experimental results show an average of 20%
performance improvement c:oiild be achieved by the GAPLA
architecture.

1. INTRODUCTION
Routing delays have become a major roadblock for FPGA

performance arid tlie situation will only be worse when tech-
nology continues to scale arid FPGA chips continue to grow
large. Long routings not, only increase the wire delay it-
self, but also riccd to go through more routing switch boxes,
making tlie situation worse. For example. tlie Xilirix Vir-
texII ~ ~ 2 ~ 8 0 0 0 FPGA has a c:orner-to-c:orner interc:onnec:t
delay of around 15ns [l] . Different approaches of solving
this problem have bccri proposed. [2] arid [3] pipelines the
long interconnect de1a.y arid [I] proposes a svritliesis flow
synthesis flow to allow the long interc:onnec:t to run for sev-
eral clock cycles. In tliosc approaches, interconnects arc
t,reated as circuit, components instead of conventional wires.
The interc:onnec:t retiniing registers can be very expensive in
area which make their FPGA size several times bigger than
conventional FPGAs.

'The author is currently with hIentor Graphics Co

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD '06, Noaember 5-9, 2006, Sun Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ... $5.00.

Using asynchronous design is another possible solution.
Asynchronous design provides average-case performance. In
terms of interconnect delavs; performance is dictated bv tlie
average of the interc:onnec:t delays rather than the one with
worst delay. Hcricc the use of long routings docs not ncccs-
sarily lead to a significant performance penalty. \Vc designed
tlie GAPLA: a novel Globally ;Is,ynclironous Local1.v S,vn-
chronous Programmable Logic Array architecture. GALS
systems can be seen as synchronous logic blocks wrapped
in as,vnchronous I/O interfaces. Interconnects inside each
block is short and fast ~ which allows the synchronoiis logics
to run at, higher speed. Interconnects bet,ween synchronous
logic blocks have longer delay, but they will riot affect the
clock speed of the logic blocks arid only corrie into pic-
ture when there are c:ommiinic:atiois between sync:hronoiis
blocks. Therefore, performance improvement could be cx-
pect,ed.

An automatic design flow for tlie GAPLA architecture has
also been developed [5]. Starting from a behavioral c:irc:iiit
description, a design is first partitioned into smaller modules
where each module can fit int,o one synchronous block (also
c:alled asyn,ch,ron,ou.s
as,vnchronous corrirriuriicatioris between modules are gener-
ated and put into each module. .iftcr that, a coarse-grained
placer is used to place tlie modules to tlie GAPLA chip space
and c:onnec:tions between islands are routed. Each module is
then synthesized by calling existing FPG.i tools. The C.iD
flow is designed a s an auxiliary tool to study the GAPLA ar-

w e . It is parameterized in modeling the archi
Therefore, by changing the values of the architectlira1 pa-
rameters, we could study the effect of these factors. In this
paper, u-e report the results of our study of the GAPLA
architecture using the above CAD flow.

n d) . Then the c:ontrol sequences for

2. RELATED WORK
Several as,vnclironous FPGA architectures have beeri pro-

posed in t,he last, decade [6, 7, 8, 9; 111. Several of these ar-
chitectures adopt the GALS concept. STACC [7] is loosely
based on Slitherland's n3ic:ropipeline design. The dock sig-
nal of the data array is replaced by tlic handshaking control
signals of the timing array in a micropipeline like structure.
PCA [8] is a self-rec:onfigiirable programmable logic: architec
ture consisting of a laver of logic array arid a laver of built-in-
facilities. Data communications bctwccn logic blocks is rcal-
ized by a wormhole message passing mechanism tlirougli the
biiilt-in-fac:ilities which can be expensive in time. Royal et
a1 proposes another GALS FPGA architecture [ll] arid tlie
idea of using GALS architecture to limit, t,he impact of long

688

http://ranga)Qccccs.uc.edu

I 1 I +,- I + I I 1 I

Asynchronous
Island

Figure 1: Block diagram of GAPLA architecture.

interconnect wire delay on the total FPGA performanc:e.
But to our knowledge, no CAD tools ham been proposed
for those FPGA archit,ect,ures. In [13], an automatic syn-
thesis flow is proposed for the highly-pipelined asynchronoiis
FPGA of [9], which is a different asynchronoiis design style
to GALS. In [12], an automatic methodology to produce
GALS system is proposed. But the main focus of [12] is
t o aiitomatic:ally generated the GALS system from a higher
level circuit description, while in our research. tlie GALS
interface is a built-in feature of the GA4PLA FPGA. Our
research focuses on finding t,he optimal values for a set of

3. THE GAPLA ARCHITECTURE
Figure 1 gives a basic building t,ile of the GAPLA4 arclii-

tecture called an usynchwnous islonds. The GAPLA arclii-
tectiire is a mesh of asynchronoiis islands. Each island con-
tains a synchronous logic block arid 4 usynchronous wrup-
pers. Each wrapper cont,ains a local clock generator and
1/0 port c:ontrollers. The structure of the sync:hronoiis logic:
block can be any oftlie conventional F P G A structures. But
the size of each synchronous logic block must be big enough
t,o implement reasonable funct,ions. In our design, we adopt
the Virtex I1 logic: array structure. The 4 dock signals gen-
erated by tlie clock generators are all distributed into tlie
synchronous logic block. Logic tiles inside t,he synchronous
block can freely choose to connect to one of these clock sig-
nals. The 1ogic:s (:ontrolled by the same clock signal are
called a clock domuin. Thus, the size arid shape of each
clock domain of the GAPLA4 architecture is programmable
within the limit of a synchronous logic: block. The routing
resources between asvrichronous islands contain horizontal
arid vertical routing channels for both data arid handshak-
ing control signals. Adjacent, asynclironous islands are also

d to enable fast c:ommimic:ations. Please
refer to [4] for details oftlie architecture design.

The execution time of an application mapped on tlie GAPLA4

F P G A architecture consists of two parts: computation time
arid corrirriuriicatiori time. Corriputatiori time is tlie time for
synchronous logic blocks t,o finish t,he programmed compu-
tations. Cornrriuriicatiori time is the time consumed by the
as,vnchronous communications between logic blocks. Tlie
best performance of the GAPLA architectlire is the best
tradcoff between communication time and computation tirnc.
The architectural parameters which affect this tradcoff arc
as follows.

1

2

3

4.

Tlie size of a s,yriclirorious logic block. A large logic
block means more operations can be put into one clock
domain, which generally decreases the local clock spccd
and increases the overall c:ompiitation time. But the
corrirriuriicatiori time will decrease sirice more corrirriu-
nicat,ions mill be done synclironous inside a clock do-
main.

The number of asynchronous 1/0 ports for each asyn-
chronoiis island. Increasing the number of I/Os will
increase tlie area overhead but will lessen tlie I/O cori-
st,raints during the application part,it,ioning process which
could improve the logic usage of tlie logic block and

performance. Since our design of
llers are very simple arid has srriall

layout, areas, u-e can afford t,o add more 1/0 ports as
long as it will benefit t h stem performance.

Tlie number of global routing channels. This factor not
only affect the routability of GAPLA architecture and
also affect the performance sirice the routing might be
congested arid need to detour if the routing resource is
limited which increases corrirriuriicatiori time.

CAD FLOW
The CAD flow is developed to automatically implement

designs to be the GAPLA FPGA. It is also used to inves-
tigate tlie architecture design. As rrieritioried above, perfor-
mance of t,he GAPLA is affect,ed by three groups of pararne-
ters. The CAD flow models the architectlire based on them
too. By given these param ' different values, we c:oiild
compare the irnplcrncntation results of a set of benchmarks
and get t,o know t,he effect of these parameters.

Figure 2 shows a block diagram of the overall CAD design
flow. The grev boxes are modules we proposed arid white
boxes arc modules using existing C.iD tools. Partitioning
is required first if tlie design is bigger than a given asyn-
chronous island. Controls for asynchronoiis c:ommiinic:ations
are then added t o each module to ensure functional correct-
ness. Aft,er that , each module is synt,hesized and place-and-
routed using existing FPG.i design tools. Also, all the rnod-
iiles are fed into a coarse-grained placer and router which
places each module to the GAPLA chip space arid finishes
the global routing bet,ween modules. Finally, a simulation
model of the design irnplcrncntcd on the G.iPLA architcc-
ture is formed for performance evaluation. If all the perfor-
mance constraints are met ~ the design is ac:c:omplished. In
the following subsections, we briefly explain each functional
module in the following.

4.1 Partitioning
IVlien partitioning a design int,o modules; we try to rnini-

mize the c:ommiinic:ation time between partitioned modules.
Also. partitioning is coritiucteti under two constraints: tlie
area constraint, where the area of each module must be less

689

Behavioral
description

I-
~ Partitioning t

(if needed)

Adding module
communication

control

Inter-island

1 Each module

, for each module? Inter-island
interconnections Intra-lsland

synthesis info

' I

A..
,,_---" Performance ..--.. Y
'"--..constraints met?

N
-._

Figure 2: Block diagram of CAD flow for GAPLA.

than the giveri area of a s,vnchronous block; the 1 / 0 cori-
strairit where the number of input/output ports must be
less than tlie give number of iriput/output ports per asyn-
c:hronoiis island.

To calculate the asynchronous cornrriuriicatiori time, ~ v e
first build a CDFG representat,ion of the design and edges in
the CDFG are given c:ommiinic:ation weights. The c:ommiini-
cation weight of an edge consists of two parts: its "(:onnnii-
riication frequency" arid its "length" . The corrmiunicatiori
frequency of an edge is defined as:

1 i'nitiul ml'ue

f (e)/n,, i f e i s inside a, branch,, m i s the
nurn,ber of liranch,e..s { f (e) =

The length of an edge l (e) is defined as follows: First, we do
Possible scheduling to tlie CDFG, and the
igricd to node i is denoted as c s (i) . Then:

1(ez3) = c.(i) ~ c.(j)

l (e) is used to localize all tlic interconnects. An edge which
spans more c:ontrol steps may have better chance of mapped
t o a long interconnects;. Therefore, it should be more 1ikel.v
t,o mapped to asynchronous communication channel. The
final weight of an edge for the partitioning is a weighted
combination offactors f (e) arid l (e) :

o arid
is the maximum communication frequency of all edges, 7nin(Z(e))
is minimum length of all edges.

Tlie GAPLA architecture allows multiple 1/0 ports of tlie
same clock domain to be active at, t,he same time. In this

arc user defined coefficient arid ci+p = 1. muz(f (e))

case; tlie time overhead for these asynchronous communi-
cations overlaps; which leads to performance benefits. Tlie
part,it,ioning algorit,hm should take advant,age of t,his and

tern in a way that the overlap among asyri-
chronous corrirriuriicatioris is maximized. But because parti-
tioning is done before the actiial system timing information
is obtained, an estimation method is required. TVc use the
factor N; tlic number of control steps where data transmis-
sioris across partitions are required, t o represent this.

Thus; the overall cost function of the partitioning algo-
rithm is formed as:

F = N x x , ~ i (e ~ ~) ,

wliere node i , j belong to d i f f e r e n t partitions.

A simulated aririealirig algorithm is used as tlie partitioning
algorithm. After one iteration of partitioning, each parti-
tion is synthesized (logic synthesis without doing placement
and routing) separately. The partitions that meets t,he area
and I/O constraints are treated as an individual partition
in the final result. The partitions that still violate the area
and I/O constraints are further partitioned using the above
algorithm.

4.2 Asynchronous Communication Control
To add asynchronous communications, we need to provide

a proper sequence of control values for tlic control signals of
tlie corresponding asynchronous 1 / 0 port controllers. Tlie
asynchronoiis handshaking process is aiitomatic:ally man-
aged by the built-in asynchronous FSMs inside the 1/0 port
controllers based or1 these signals. Therefore, we need t o
know at what c,vcle an asyrichrorious corrirriuriicatiori should
take place. To gather this information, operations inside
each module are scheduled first.

We use ari As-Soon-As-Possible (ASAP) algoritlirri to sched-
ule each module in order t o get the best performance. Be-
cause of t,he archit,ect,ure design, t,he inter-module asynchronous
communications block both tlic sender's and receiver's opcr-
ations. Thus. deadlock situation could occur after scliedul-
ing. Deadlock o(:(:iirs when two or more c:ommiinic:ating pro-
cesses waiting for each other's data in order to continue cx-
ecut,ing. It can be solved by const,ructing Communicat,ion
Deperidericv Graph (CDG) [14]. A CDG contains all tlie
c:ommiinic:ation nodes of the sy . And a directed arch
between two corrmiunicatiori no n a CDG iff there is a
sequent,ial dependency bet,ween the two nodes in any of the

m. The dependencies of c:ommiinic:a-
tiori nodes iri the constructed CDG are enforced in all tlie
processes of the system by adding durnrny control edges to
the processes. A4fter adding these edges, an ASA4P schedul-
ing algorithm is used to schedule each process and deadlock
is avoided.

The outputs of the scheduling are cycle-accurate descrip-
tions for each modiile. After scheduling, we know exactly a t
what c:yc:le data needs to be sent to or received from other
modules. Therefore, the control signals for the asynchronous
communications can be added accordingly.

4.3 Module Placement and Routing
The placer will place each module t,o an asynchronous

island. The optimization goal during placement is to mini-
mize tlie total corrirriuriicatiori cost between modules;. Sirice
each communicat,ion edge carries a communicat,ion weight,

690

as explained before, the goal of the placer is thus to:

ex11
ex12

where node i, j belongs to different modules. D,, is the dis-
t,ance between t,he clock domains where node i , j are placed.

Since the affect of global routing on the system perfor-
riiarice is great1.v reduced. a simple arid fast line-search based
router [15] is used to route the asynchronous communica-
t,ions t,o the global routing channels of GAPLA FPGA. The
inter-module routing resoiirc:es are represented by two matri-
ces Horixorital Routing Sources (HRS) arid Vertical Routing
Sources (VRS). The two matrices can be initialized at run
time to model different configurations of the GAPLA arch-

lire. Nets are picked up onc:e a t a time from the netlist
arid routed. For rnultiple-terrriirial riets, the two terrriirials
with the longest hIanhattan distance are routed first.

3000 5820 20.14 17.15 2296
4000 7537 19.39 17.05 3491

4.4 Performance Simulation
Simulation is used to estimate the performanc:e of the de-

sign irnplcmcntcd on G.$PLA architecture. From the syri-
t,hesis results of each module, the information about the
clock frequency for each module is obtained. From the mod-
ule placer arid router, tlie iriforrriatiori about tlie placerrient
position of each module and the interconnect delays bet,ween
modules are obtained. These information toget,her with the
c:yc:le-ac:c:iirate VHDL descriptions of each module is fed into
our VHDL simulation model of the G.$PLA. The GAPLA
simulation model contains t,he models for t,he pausible local
clock generators, the 1/0 port controllers, and the inter-
island routing chaririels. The local clock generators are pro-
grarnrncd to the corresponding clock frequencies of the mod-
ules. The modules are wrapped by the asynchronous inter-

d through the routing channels, c:ompos-
irig a sirnulation model of tlie circuit irriplerrieritatiori. Input
t,races are t,hen read t,o t,he model and t,he performance can
be observed.

5. ARCHITECTURE PARAMETERS

5.1 Studying Methodology
To study these parameters, we need to implement a set

of bericlirriarks on different corifiguratioris of thern. Our
benc:hmark set consists of 1 2 synthetic: benchmarks gen-
erated by TGFF [lo]. TGFF generates Directed .$cyclic
Graphs (DAGS) with different number of nodes and connec-
tivity intensities. We then assign each node an arithmetic:
operatiori arid generate a VHDL description code from each
graph as a benchmark. Thus, all the benchmarks arc corm
put,ation intensive ones wit,h few or no control flow which are
the cases for most FPGA applications. To exc:liide the fa(:-
tor of multipliers. only additiori arid subtractiori operations
are assigned. Table 1 gives the statistics for the benchmark
set arid their irnplcrncntation results on a \'irtcx I1 FPG.$.

It is time forbidden to study the three parameters a t the
same time. Therefore, tlie parameters are deterrriiried orie
by one. The size of a logic block is studied first since it is
the single most important parameters for the GAPLA archi-
tecture. To do that ; tlie riurriber of I/Os per clock dorriairi
arid the routing capacities between modules are assumed to
be infinite. Thus, the 1/0 constraint,s during part,it,ioning

'Y
sirice tlie routing tiistarice can be estimated as the hlariliat-
t,an distance between terminals. After the size of a logic

are lifted and the routing proc

I I
Figure 3:
the benchmark set for different logic block sizes.

Average Performance improvements on

Table 1: Implementation results on the Virtex I1
FPGA

ex9 I 2000 1 3836 I 16.13 I 11.19 I 1610
ex10 I 2500 1 4192 I 17.02 I 11.20 I 1634

block is chosen, t,he number of I/Os per clock domain can
be determined by looking into the partitioning results since,
as explained before, tlie riurriber of I/Os per clock dorriairi
could be fairly large without incurring huge area overhead.
A4fter t,hat, t,he global routing capacities is determined by
running the router on the after-placement benchmarks with
tlie first two parameters fixed ori tlie GAPLA FPGA. Tlie
experimental results are explained in tlie following Subsec-
tions.

5.2 Size of a Synchronous Logic Block
For every benchmark, 6 different sizes for a logic block

are tried. They are 36, 64, 100, 144, 256, 400 (in t,erms of
CLBs). The performancx improvement of all the 1 2 bench-
marks are surnrnarized in Figure 4. Tlie average perfor-
mance improvement for all 12 benchmarks is given in Fig-
ure 3. From the results, the GAPLA FPGA with logic block
size 256 CLBs delivers the biggest performance improvement
or1 average for all the 12 benclirnarks. Thus, the size of a
logic block is chosen to be 256 CLBs. The results also show
that GAPLA FPGA could not give sound performance i n -
proverrierit for srriall applications like ex1 to ex4. If orilv tlie
last 8 benchmarks are considered, t,he average performance
improvements could be more t,han 28%. The Average per-
formance improvement for the last 8 benchmarks are also
sliowri in Figure 3.

5.3 I/Os Per Asynchronous Island

691

Figure 4: The effect of logic block size on performance of the GAPLA FPGA.

for all
cases

41 40 19.58 19.59

As rricritioricd before; the area of a I/O port controller is
relatively small. Therefore, a reasonably large number of
I/Os can be integrated. In the last subsection, the size of
a logic block is clioseri as 256 CLBs arid during the experi-
ments, the riurnhcr of I/Os per clock domain arc considered
t,o be always sufficient,. The actual 1/0 requirement,s for the
benchmark set with logic: block size 256 CLBs are siimma-
rized in Table 2.

For the result,s, the average number of I/Os required per

Table 3: Resynthesis results under 1 / 0 constraints
for benchmarks violating these constraints

8 iriuut ports arid 8 outuut uorts per wrauucr
case I part. I (:ommu. c:ost I exec:. time I Perf. Impv.
ex8 I 14 I 366 -2.16

I I I I

ex12 I 37 I 1841 I 2882 I -7.42
10 input ports and 10 output ports per wrapper

ex12 I 31 I 1554 I 2719 I -1.34

asynchronoiis island is around 20 and maximum is around
40. Because there are 4 asyriclirorious wrappers per island,
the riurnhcr should be divided by 4 to get the I/O rcyuirc-
ment per asynchronous wrapper. We t,ried two configura-
tions: 8 input ports, 8 oiitpiit ports per wrapper and 10
input ports, 10 output ports per wrapper. Iri the first case,
four benchmark irnplerneIit,atioIis violate the 1/0 const,raints
(cx8, cxl0, cx l l , cx12). Iri the second case, only oric bench-
mark implementation violates the 1/0 constraints (ex12).
These benchrnarks are re-svritliesized under the 1/0 cori-
straints and the results are given in Tabel 3. The perfor-
mance improvements are (:ompared with the implementa-
tiori results in GAPLA with logic block size 256 CLBs arid
without the I/O constraints.

R o m t,he result,s, there are very small differences between
the two c:onfigiirations. Therefore, we choose the first (:om
figuration, i.e., 8 input ports arid 8 output ports per asvri-
chronous wrapper. As for the dat,a mires; we give an aver-

692

Table 4: Performance evaluation after routing

ex12 I - I - I 13.0 I 15.6 I 16.5 I 16.5
Avn. I - I - I 17.8 1 18.1 1 18.6 I 18.6

age of 16 data wires per communicat,ion channel as in our
benc:hmarks. Therefore, the total number of data wires per
asynchronous wrapper comes t o 256.

5.4 Routings Between Asynchronous Islands
Previous experiments assume that the global asynchronous

routing channels are sufficient and therefore each net can use
the shorted connection route. In this Subsection, ~ v e study
the impact of asynchronous routing channels on the pcrfor-
mance of the GAPLA FPGA architecture. The first two
sets of arc:hitec:tiiral parameters are fixed, namely 256CLBs
per logic block and each asynchronous wrapper contains 8
input ports arid 8 output ports arid 256 data wires. After
routing, the asynchronoiis c:ommiinic:ation time is more a(:-
curat,e based on the actual routing pat,h. The experiments
arc conducted for different routing configurations (in tcrrns
of riurriber of as,yriclirorious corrirriuriicatiori channels). Tlie
experimental results are given in Table 4. In the table, ”P.1”
represents the performance improvcmcnts cornpared to the
synchronous implementation on a \‘irt,ex I1 FPGA4. Tlie en-
tries marked with ”-” mean that tlie routing is incomplete
under the corresponding c:onfigiiration.

The results show that if the global
ing structure has less t,han 20 channels, some of t,he bench-
marks can not he siic:c:essfiilly routed. After that , all the
benc:hmarks (:an be routed. And increasing the number of
asynchronous tracks only has slight impact on the system
performance (less than 1 percent on average). A4nd increas-
ing the number of global asynchronoiis routing diannels will
greatlv increase tlie area overliead of tlie GAPLA arcliitec-
t,ure, t,herefore, we choose 20 channels for the global rout-
ing struct,ure. We also assume that,, on average, each asyn-
c:hronoiis channel has 16 bits of data wires. Therefore, the
total nurnhcr of global data wires is 320.

5.5 Area Overhead
Haven chosen tlie parameters, we estimated the area over-

head of t,he GAPLA architecture by implementing the build-
ing components of the architecture in silicon. The area ovcr-
head is estimated to be at 19.9%. (Detailed estimation is
riot shown due to page limitation.)

6. CONCLUSIONS

of each s,vnchronous logic block, the number of I/Os per
as,vnchronous island; arid tlie number of routing channels
between island, using t,he parameterized CA4D tools. From
the experimental results, the following values arc chosen for
these parameters: 256CLBs per logic block, 8 input ports, 8
output ports, 256 data mires per asynchronous u-rapper, and
20 global routing channels arid 320 global data wires. The
area overhead of the GAPLA architecture using this (:om
figuration is around 19.9%. Tlie average performance irri-
provement for all the benchmarks is 17.8%. If only the large
benchmarks, which arc suitable for the GAPLA FPGA; arc
considered, tlie average performance improvement on tlie
last 8 benchmarks is 25.4%.

REFERENCES
Jason Cong, Y. Fan; et al. Architecture arid synthesis
for multi-c:yc:le c:ommiinic:ations. In Proc. Int. Sym,p.
Phy.sical Design, Apr. 2003.
Tl’illiarn Tsu, Andre Dchon, et al. High-speed,
hierarchical synchronous reconfigurable array. In Proc.
Ink Sym,y. Field Progro,mmable Gate Arrays, 1999.
Akshay Sharma, Katherine Compton, et al. Exploration
of pipclincd FPGA interconnect structures. In Proc.
Int. Symp. Field Programmable Gate Arrays, 2004.
Xin Jia, Ranga Vemuri. A novel asynchronous FPGA
architectlire design and its performanc: evaluation. .
Proc. Iat. W o r k s h o p Field Pro!pmrri,ublr. Logic a n d
Applications, 2005.
Xin Jia, Ranga Vemuri. CAD tools for a globally
asynchronous 1oc:ally synchronoiis FPGA architectiire. .
Proc. I g t h Int. co,rkf. VLSI Dr.siyrkj India, 2006.
S . Hauck, S. Burns, G.Borriello, C. Ebeling. A FPGA
for irnplernent,ing asynchronous circuit,s. In IEEE
Design & Test of Cornyuters Vol. 11, S o . 3, Fall 1994.
R.obert Pa,vne. Self-tirneti FPGA svsterris. In h t .
W o r k s h o p Field Pro!pmrri,ublr. Logic a n d A p p l i c ~ t i o ~ ~ ~
1995.
R. Konishi, I. Hidcyuki, et al. PCA-1: a fully
asynchronous self-reconfigurable LSI. In Int. Symp.
Async/vrono,us Cirrxuits urkd sys tems h h r . 2001.
John Teifel: Rajit Manoliar. Highly pipelined
asynchronous FPGAs. In Proc. Int.Symp. Field
Programmable Gate Arrays Feb. 2004.

[lo] R.P.Dick, D.L.Rhodes, W.Wo1f. TGFF:task graphs for
free. In Proc. Ind. W o r k h o p Hardiiinre/SoftiiJare
Codes ip Mar. 1998.

locally synchronous FPGA architectures. In Int.
Works h,op Field Program,m,a b 1 e Logic
2003.

globally asynchronous locally synchronous
Proc. EMSOFT, 2002.

[13] Sorig Peng, et al. Automated synthesis for
asyriclirorious FPGAs. In Proc. FCCM, 2005.

[14] D. Filo: D. C. Kii: S. Coelho, and G. Micheli.
Interface optimization for concurrent
t,iming constraint,s. IEEE Trans. VLSI, 1(3), Sept. 1993.

the (:ontinous plane. . Proc. Design, Aikmat ion , Con,f.,
1969.

[ll] Andrew R.oya1, Peter Cheung. Golbally as,vnchronous

[12] A. Girault, C. Meriier. Automatic production of

[15] D. Hight,ou-er. A4 solut,ion t,o line-routing problem on

In this paper. we studied three sets of critical arcliitec-
t,ural paramet,ers of the GAPLA4 FGPA4, namely the size

693

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

