
Un/DoPack: Re-Clustering of Large System-on-Chip
Designs with Interconnect Variation for Low-Cost FPGAs

Marvin Tom, David Leong, Guy Lemieux
Dept of Electrical & Computer Engineering, University of British Columbia

{ marvint | davel | lemieux } @ ece.ubc.ca

ABSTRACT
FPGA device area is dominated by interconnect, so low-cost
FPGA architectures often have reduced interconnect capacity.
This limited routing capacity creates a hard channel width
constraint that can make it difficult for CAD tools to successfully
map a circuit into these devices. Instead of migrating a design to a
high-cost, resource-rich architecture that is easier to route, we
present a cheaper alternative: a fully automated CAD flow
(Un/DoPack) that finds local regions of high interconnect demand
and reduces it by spreading out the logic in that region. This is
done by introducing whitespace in the form of empty logic
elements (LEs) within the configurable logic blocks (CLBs) of the
congested region. After spreading, the congested region occupies
more routing channels and so obtains access to greater aggregate
interconnect capacity. Although this has the side effect of using
more CLBs, it has the advantage of lowering peak interconnect
demands and making a previously-unroutable circuit routable. We
also design a new set of synthetic benchmark circuits that model
interconnect variation within a large design. Using these
benchmarks, we show that circuits with high interconnect
variation require FPGA devices to have large channel widths.
However, since congestion of such circuits is localized,
Un/DoPack is very good at reducing the peak demands of circuits
with high interconnect variation. Our results suggest that even for
an average Rent exponent of 0.62 (a modest value), a large
variation of this exponent within a design will also require FPGAs
to have large channel widths. Thus, it is crucial to study
interconnect variation of benchmark circuits when designing low-
cost FPGAs. Previous research studying interconnect properties
focuses on average Rent exponent values of each design, but we
believe new work should study variation as well. For circuits with
high interconnect variation, we demonstrate that channel widths
can be reduced by up to ~40% with only ~10% increase in area.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]:
Design Aids

General Terms: Algorithms, Design, Experimentation

Keywords: Field-Programmable Gate Arrays (FPGA),
Clustering, Packing, Channel Width Constraints

1. INTRODUCTION
As FPGAs increase in capacity and capability, it is common to
offer separate low-cost and resource-rich families. For a similar
number of logic elements (LEs), the low-cost families often have
less embedded memory, embedded multipliers, and routing tracks.
This is demonstrated by Table 1, where the low-cost Cyclone
family offers significant savings. Unfortunately, some designs
may fit within the Cyclone LE and memory capacity limits but not
within the routing capacity limits. This can be solved by switching
to the resource-rich family at ~4x the cost. Instead, it is preferable
to stay in the low-cost family and use the same or next-larger
device (at ~2x cost). To do this, the FPGA CAD must meet the
device routing capacity by targeting a hard channel width
constraint. Since interconnect use of a design varies spatially with
placement, this can be done by spreading out regions of peak
demand to use fewer routing tracks but more CLBs [1][2][3][4].
More CLBs in a local region occupy more routing channels,
increasing the aggregate routing capacity available to that region.
This reduces the interconnect demand in each individual channel
and eliminates the peak, allowing the entire FPGA channel width
to shrink and save area. This paper presents an algorithmic way of
reducing the minimum routable channel width (MRCW) of a logic
design by inserting whitespace in the form of empty LEs into
congested areas. Whitespace is inserted by identifying a congested
region of CLBs, fully unpacking the CLBs of that region into its
constituent LEs, and then re-packing these LEs into new CLB
clusters so they are “less full” than before. This process of
inserting whitespace into each CLB is called depopulating.
We believe this to be the first automated FPGA CAD flow which
iteratively strives to meet fixed channel width and fixed array size
constraints using standard CAD algorithms.
Large System-on-Chip (SoC) designs are often created by
combining several IP blocks, each of which is tightly connected
internally. To represent this type of design, we created synthetic
benchmark circuits and varied the local Rent exponent of each IP
block. A large Rent exponent generally translates into high
interconnect demand for an IP block. Using these benchmarks, we
observe that SoC designs containing high variation in the Rent
parameters of their constituent IP blocks require large MRCW
values, but these same circuits are also the most amenable to our
flow for reducing channel widths. Thus, MRCW of an SoC design
can be reduced by taking advantage of its interconnect variation.

Table 1: Features and Costs of Two FPGA Families

Altera Device LEs Memory Multi-
pliers Routing Price

(2005)
Cyclone 1C12 12,060 234 kb 0 80 $56
Stratix 1S10 10,570 899 kb 48 232 $190
Cyclone 1C20 20,060 288 kb 0 80 $100
Stratix 1S20 18,460 1,630 kb 80 232 $350

This research has been enabled by the use of WestGrid computing
resources, which are funded in part by the Canada Foundation for
Innovation, Alberta Innovation and Science, BC Advanced Education, and
the participating research institutions. WestGrid equipment is provided by
IBM, Hewlett Packard and SGI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011…$5.00

680

2. BACKGROUND AND RELATED WORK
The logic capacity of an FPGA can be measured by the number of
configurable logic blocks (CLBs) which are fixed-sized clusters of
LEs, consisting of LUTs and flip-flops. Logic capacity can also
determined by the logical dimensions of the CLB array. Routing
capacity is determined by the channel width of the device, i.e., the
number of wiring tracks in each channel. We define the minimum
routable channel width (MRCW) of a circuit as the minimum
channel width an FPGA architecture must have to route a given
circuit. The maximum MRCW (max MRCW) is defined as the
MRCW required without any depopulation.
Normally, FPGA tools fully pack CLBs with the maximum
number of LEs they can hold to achieve 100% logic utilization.
Previous work [1][2][3][5] has shown that a trade-off exists
between interconnect demand and the logic-utilization of a circuit.
DeHon [1] showed that the total area required by a circuit could
be reduced by balancing logic utilization and routing elements.
However, this work assumed a hierarchical interconnect structure
(where interconnect capacities are easy to compute) which is not
representative of modern commercial mesh-based FPGAs. Tessier
[2] presented a uniform depopulation technique, but this quickly
leads to area increases because regions with low interconnect
demand are also depopulated. Tom [3] presented a manual method
to non-uniformly depopulate congested regions, but that technique
relies on the design hierarchy, which is not always available, to
partition the design into depopulation regions. Although [3]
targets a channel width constraint, it frequently produces solutions
that exceed the constraint. Singh [5] attempts to balance
interconnect demand using a Rent-based constraint during
clustering. However, there is no way to control the amount of
depopulation that occurs or to target hard channel width
constraints.
Independence, an FPGA placement tool by Sharma [4], targets
hard channel width and array size constraints. By using the router
tool as an inner loop during placement, it runs 4 orders of
magnitude slower than regular tools [4]. In comparison, our tool
flow is much faster and can work with most existing cluster, place
and route tools. Also, Independence inserts entire CLBs as
whitespace and leaves already-clustered CLBs intact, while our
flow actively re-clusters to insert individual LEs as whitespace.

3. UN/DO PACK CAD FLOW
Un/DoPack reduces the MRCW by iteratively performing non-
uniform cluster depopulation which effectively inserts whitespace
(unused LEs) into CLBs located in high congestion areas. Figure1
describes the overall Un/DoPack flow. Details of each step are
discussed below.
There are 4 inputs to Un/DoPack: the circuit description, the
architecture description, the hard channel width constraint
(interconnect capacity) and the array size constraint (logic
capacity). For a given array size M, there are M2 CLBs – we shall
assume this is enough to fit the initial clustered solution.
The region in dashed box of Figure1 is the traditional academic
FPGA CAD flow which uses SIS / FlowMap [6] and VPR [7]. If
the traditional CAD flow fails to produce a routed solution with
the given channel width constraint, the iterative portion of
Un/DoPack is invoked to reduce the MRCW.
The iterative portion of Un/DoPack has 4 discrete steps. First, the
UnPack step determines which portion of the circuit is congested
and fully unpacks the CLBs in this region. Second, the DoPack

step clusters all of the unpacked LEs with a smaller cluster size
constraint. Third, a new placement is computed. Fourth, a final
route is performed again to determine the new interconnect usage.
UnPack, DoPack, and the Place and Route steps are further
discussed below.

Circuit Description
Architecture Description

Channel Width Constraint
Array Size Constraint

Synthesize and
Technology Map
(SIS / Flowmap)

Cluster
(iRAC Replica)

Placement
(VPR)

Routing
(VPR)

Channel Width
Constraint Met?

Array Size
Limits Reached?

Success!

Congestion
Calculator
(UnPack)

Incremental
Cluster

(DoPack)

Fast Placement
(Incremental

or VPR)

Routing
(VPR)

Channel Width
Constraint Met?

Failure

Yes Yes

Yes

No

No No

Figure1: CAD Flow

3.1 UnPack: Congestion Calculator
UnPack is the congestion calculator. It determines the size of the
depopulation region and the amount of depopulation for the
region. The depopulation amount is controlled by formulating a
new cluster size constraint to be used in the clustering tool. The
new cluster size must be smaller than the current average LEs
per CLB of the region to ensure that some depopulation occurs
through the production of more CLBs. Details about which CLBs
are chosen as part of the depopulation region and how to compute
the new cluster size constraint are discussed below.

Following a failed routing attempt, UnPack creates a congestion
map based on the final routed solution. The congestion map is
created computing a CLB congestion label with the maximum
local channel width required in each of the 4 routing channels
adjacent to the CLB. Note that some wires may have multiple
nets assigned to it from the failed (illegal) routing solution. The
local channel width required is calculated by counting the total
number of nets routed through each channel next to this CLB.

681

0
10

20
30

40
50

0
10

20
30

40
50

0

20

40

60

80

100

120

CLB X-LocationCLB Y-Location

C
LB

 L
ab

el

0
10

20
30

40
50

60

0
10

20
30

40
50

60
0

20

40

60

80

100

120

CLB X-LocationCLB Y-Location

C
LB

 L
ab

el

Figure 2: Congestion Map before and after Un/DoPack

Figure 2 shows a sample 3-D congestion map of a circuit before
(top) and after (bottom) Un/DoPack meets a channel width
constraint of 100. The x-y coordinates indicate the CLB locations
in the FPGA array, and the z coordinate indicates the CLB
congestion label (just described). This result was produced using
the Clone/Stdev008 benchmark circuit (discussed blow). In the
figure, we can see that there are some regions of high congestion
and some regions of low congestion. The peak / avg / stddev of
congestion labels were 120 / 79.4 / 26.9 tracks before Un/DoPack,
and 100 / 79.2 / 19.6 afterwards. Notice also that the minimum
array size increases from 55 to 60 due to the increase in CLBs.

We attempted two different methods to determine how large the
depopulation region is and how much to depopulate the region by
per iteration. These two methods are described below.

3.1.1 Single Region (SR) Depopulation
A single depopulation region center is identified by finding the
largest label in the congestion map. In the case of a tie, the CLB
that is closest to the center of the device is chosen as the
depopulation center. All CLBs with a Euclidean distance less than
radius R from the depopulation center are considered part of the
depopulation region. The radius R is set to 1/4 the array size M.
For example, in a 19x19 CLB grid, R = 1/4*19 = 4. The new
cluster size is determined such that the increase in the total
number of CLBs will fill an entire new row and column in the
array (i.e., M will have to increase by 1, adding 2M + 1 new
CLBs). This spreads the depopulation region to span more rows
and columns, effectively increasing the aggregate interconnect
capacity available to it. Equation 1 below determines the number
of LEs to repack into each CLB in the depopulation region:

(1)
12___

++

=
MregioninCLBsnumber

regioninLEsnumsizeclusternew

When the minimum routable channel width approaches the
targeted constraint, an end game strategy is applied to ensure
convergence of the algorithm. If the peak channel width is equal
to the constraint but the solution is still not routable, it will lower
the targeted constraint by 5. This is a tunable factor that is circuit
dependent. It ensures some depopulation will occur to reach the
target.

3.1.2 Multiple Region (MR) Depopulation
The single region depopulation scheme outlined above selects a
large amount of CLBs to depopulate per iteration. To further
refine the identification process for congested CLBs, a multi-
region approach was also attempted. Instead of selecting only one
congestion region with a radius of 1/4 the array size, multiple
regions with a smaller radius are selected per iteration. Radius
sizes of 1/10, 1/15 and 1/20 the array size were attempted. The
goal of selecting multiple regions is two-fold. First, using a finer
grain selection process aims to select irregularly-shaped regions
and fewer CLBs than the single region approach. Second, a multi-
region approach may reduce the number of iterations and speed
Un/DoPack convergence by targeting all congested areas at once.
The multi-region selection process begins by finding the largest
label in the congestion map and selecting all of the CLBs within
the small radius from this centre. These CLBs are added to a
congestion list for this region. The selection process then loops
and finds the next-highest CLB label remaining in the congestion
map (i.e., not in any congestion list) until no more labels are
higher than the targeted channel width. Overlaps are handled by
marking CLBs as “selected” so they are not added twice to
different congestion lists. Each of the regions will be reclustered
separately – the new cluster size for each region is calculated
individually using Equations 2 to 4 below. By targeting the
highest CLB labels first, this process tries to apply just enough
depopulation per region.

(2) 45 radius⋅=α

(3) 1__

 −⋅=
aintdth_constrchannel_wi

_regionb_label_ofhighest_clclbsnewnumber α

(4)

+

=
clbsnewnumregioninCLBsnum

regioninLEsnumsizeclusternew

Equation 3 shows that the number of CLBs to add to the region is
proportional to how congested the area is multiplied by a scaling
factor, α. This scaling factor is shown in Equation 2 as an
empirically-determined constant of 45 times the radius of the
congestion region (in units of CLBs). We found that adding new
CLBs at a rate proportional to perimeter (i.e., radius) of the region
converges faster than proportional to area (i.e., radius2). The new
cluster size calculated using Equation 4 is similar in nature to the
single region method.

3.2 DoPack: Incremental Re-Cluster
The second step, DoPack, is an incremental clustering step. It
reads the output from the UnPack stage: a list of LEs in each
region and the new cluster size for each region, plus a list of
already-packed CLBs. For single region depopulation, there is
only a single LE list and single constraint. For multi-region, there
are multiple region lists and constraints. DoPack iteratively
clusters each designated region using the new cluster size
constraint. This step can use any existing clustering approach (e.g.
T-VPack [7], T-RPack [8], iRAC [5]) as the underlying constraint
is only changing the maximum cluster size. Our implementation is
based on the T-VPack code base and does not alter the CLBs that
are not congested. However, since it sees the entire circuit, it can
do critical-path analysis and be timing-driven when re-clustering.
For our results, we use the iRAC algorithm implemented within
the T-VPack code base. iRAC was chosen because it is the best

682

congestion-driven clustering tool known, it is fast, and it results in
good delay performance (even though it is not timing-driven).

By using a smaller cluster size in the congested regions, this
guarantees the production of more CLBs. This is crucial: by using
more CLBs, the congested region can span more routing channels
to obtain more total routing tracks.

In future work, the DoPack step may be improved by treating the
new cluster size constraint as an average target for each region
and not a hard constraint. This may help improve delay
performance since LEs on the critical path may remain “fully
packed” as long as there are non-critical LEs that can be “less
packed” to meet the average target.

3.3 Placement and Routing
The purpose of the place and route steps is to accurately identify
regions of routing congestion. Ideally, this could be done with a
fast congestion estimator that can precisely locate the regions of
peak routing demand. Unfortunately, we are not aware of such a
tool for FPGAs. Meanwhile, we decided to use actual place and
route directly; this is slow, but accurate. Due to iteration in the
flow, it is important to speed up both the placement and routing
steps as much as possible. These options are discussed below.

3.3.1 Faster Placement
To speed up placement, we modified VPR to perform incremental
placement [9]. The incremental placer attempts to provide
placement stability by preserving the previous locations of CLBs
outside of the depopulation region. This decreases run time and
provides consistent and predictable CLB placements as the CAD
flow iterates to reduce channel width. The incremental placer
works in three stages. The first stage is an “expansion” phase
which squeezes the numerous “depopulated” CLBs into the “too
small” space left behind. This produces illegal solutions. The
second stage is a “compaction” phase used to legalize the
solution. The third stage is an optional low-temperature anneal to
clean up the solution. Further details of the incremental placer are
covered in [9]. The incremental algorithm quickly computes a
high quality solution, e.g., incremental placement with 60%
changed CLBs takes roughly 1/3 of the time required for a full
placement.

It should be noted that VPR placement and our incremental placer
is wirelength-driven, not congestion-driven. The use of a
congestion-driven placement engine such as [4] or [10] should be
explored in the future.

3.3.2 Faster Routing
To speed up routing, we attempted to obtain congestion results
from the first iterations of the VPR routing algorithm. At this
early stage, there is significant illegal wire sharing. We were
unable to successfully use this data. We have not yet attempted to
develop an incremental routing algorithm. Hence, for this work
we let the VPR router run to completion. This is the primary
reason why our approach is slow.

4. Methodology
This section presents the experimental framework, methodology,
and baseline parameters used when running Un/DoPack. It also
presents a new suite of benchmark circuits used to determine the
effects of interconnect variation. This new benchmark suite
contains a series of circuits of approximately 52,000 LEs, each
with an increasing amount of interconnect variation.

4.1 Baseline Parameters and Framework
We use the VPR experimental framework. Our baseline
Un/DoPack flow is based on:
• Single Region congestion calculator (described in section 3.1)

• A replica [3] of the iRAC algorithm [5] used as the underlying
clustering algorithm for DoPack (described in section 3.2)

• Incremental placer described in [9].

• FPGA architecture with LUT size k = 6, cluster size N = 16,
inputs per cluster I = 51, and wires of length L = 4.

Because of large run times and limited computing resources, we
set a maximum run time of 48 hours. If this limit was exceeded,
we conclude that no solution exists. All calculations use a
dedicated Pentium 4, 3GHz processor with 1.5GB of RAM.
Before Un/DoPack was run on a benchmark circuit, VPR was first
used to precompute the MRCW of a circuit without any
depopulation by invoking the binary search option of the VPR
router. This defines the max MRCW for each circuit. Then, we set
various channel width constraints up to 50% below the max
MRCW for each circuit and run the Un/DoPack flow. Since these
channel width constraints are below the max MRCW, some
amount of depopulation must occur to meet the given channel
width constraint. Critical path delay numbers are calculated using
the highly congested channel width where the circuit is barely
routable – this differs from traditional work that usually reports
timing after relaxing the routing constraints by increasing channel
width by 20% (or more) above minimum.

4.2 Interconnect Variation Benchmarks
Large benchmark circuits are rare for FPGA research, so we have
developed a set of synthetic circuits which mimic those used in
previous work [3]. One conclusion from [3] was that non-uniform
depopulation is important for large System-on-Chip designs that
have IP blocks of varying interconnect demand. Such benchmarks
are not widely available, so [3] synthesized benchmarks by
randomly stitching together existing, smaller benchmarks (MCNC
circuits) and called them IP blocks. However, the stitching was
somewhat unrealistic as a flip-flop was placed at every IP block
output to prevent combinational loops. Instead, we used a
synthetic benchmark generator, GNL [11] to create large
benchmarks. GNL builds a benchmark hierarchically and permits
the Rent exponent, subcircuit size, and other parameters to be
specified in each division. This allows us to build benchmarks
with a controllable amount of interconnect variation. We will
show that Un/DoPack is effective at reducing MRCW for these
GNL circuits regardless of their interconnect variation.
To create our synthetic circuits, our input to GNL describes two
levels of hierarchy. The root level defines the overall structure of
the circuit. This level includes the total number of logic cells in
the circuit, as well as a required input-output count. The number
of primary inputs and outputs were defined as 240 and 120
respectively. The root level is also defined to have twenty
subcircuits, each of which mimics one of the 20 largest MCNC
circuits [12]. Each subcircuit is intended to represent an IP block
with a specific interconnect demand. The number of inputs and
outputs for each subcircuit was not defined, thus allowing GNL to
randomly stitch each region together to form the overall circuit.
The number of logic cells and the Rent exponent of each IP block
were chosen to match the same values of the 20 MCNC circuits.
The Rent values were taken from [5]; the average Rent value used
is 0.62 and the standard deviation of these values is 0.08. Using

683

this process and parameters, we have essentially produced a clone
of the MetaCircuit from [3] and named it Stdev008.
To create a family of circuits, we devised a simple linear
interpolation scheme of the Rent exponent to keep the same
average Rent value, but to vary the standard deviation. This
produced 4 circuits with smaller variation and 2 with larger
variation. Figure 3 shows a graphical representation of our linear
interpolation scheme. For clarity, only 10 of the 20 MCNC
circuits are shown as “subcircuits” within the larger design.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

ex1010ex5ppdcmisex3alu4s298diffeqelliptics38584bigkey
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

R
en

t P
ar

am
et

er

N
um

be
r

of
 L

U
T

s

MCNC Circuits

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 3: Rent Linear Interpolation Graph

Each line in Figure 3 represents a new benchmark circuit with a
specific set of Rent parameter values. Circuit Stdev000 uses 20
identical Rent parameters of 0.62, producing a flat line. Circuit
Clone/Stdev008 uses the Rent values from [5]; in the figure, the
subcircuits were ordered according to this value. Three other
circuits with standard deviations 0.02, 0.04, 0.06 were created by
simple interpolation between the flat Stdev000 line and bold
Clone circuit line. Circuits Stdev010 and Stdev012 were obtained
by extrapolating the Rent parameter 2 steps farther. The “bar
graph” line in Figure 3 shows the size of each of the subcircuit in
terms of the number of LEs; note that the size does not depend on
the Rent parameter.
The resulting circuits have the same mean Rent value of 0.62, but
the standard deviations differ at 0.00, 0.02, 0.04, 0.06, 0.08, 0.10
and 0.12. All circuits contain 51,900 to 52,200 6-input LEs. The
benchmark circuits will show that a large amount of depopulation
is necessary to reduce the MRCW of circuits with a low standard
deviation in interconnect demand. This is because the Rent
exponent is uniform, and routing resources demands should be
fairly consistent across the entire circuit. In contrast, with a high
standard deviation, interconnect demands should be non-uniform,
thus allowing the depopulation scheme to reduce the routing
demands of high Rent regions.
It is interesting to compare these synthetic circuits to properties of
industrial circuits given in [13]. The average Rent exponent of
individual industrial circuits is shown to range from 0.4 to 0.8 (0.5
to 0.7 being more “typical”). The average Rent exponent across
these different circuits is 0.60 with a standard deviation of 0.063;
this is similar in nature to our benchmark properties. Also, [13]
demonstrates that Rent exponent is not correlated with logic
utilization of an FPGA device, but is strongly correlated with half-
perimeter bounding box (wirelength estimate) calculated during
placement.

5. Results
The experimental results will be presented in three stages. Single-
region depopulation results are presented first, followed by multi-
region results and then comparisons to previous work.

5.1 Single Region Experimental Results
Un/DoPack was used to target channel width constraints up to
approximately 50% of the max MRCW for each circuit. Figure 4
shows the normalized area increase for each circuit as the channel
width constraint is tightened. Overall, there are two competing
factors: area decreases due to lower channel widths, but increases
due to more CLBs. Note that Figure 4 only shows data points
where Un/DoPack was successful in meeting the channel width
constraint (within CPU time limit and array size constraints).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 A
re

a

Channel Width Constraint (% of max MRCW)

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 4: Area vs. Channel Width Constraint

Figure 4 shows that Un/DoPack (single region) was successful in
reducing channel width by 30% for all benchmark circuits and up
to 45% in some cases. For circuits with high interconnect
variation (Stdev010, Stdev012), significant channel width savings
is possible with little or no area inflation. Circuits with low
interconnect variation (Stdev004, Stdev002, Stdev000) show
quick area increases already at modest reductions in channel
width. For example, circuit Stdev010 shows a 40% decrease in
channel width with only 10% increase in area. This occurs
because there is a local high congestion region and only a small
amount of depopulation is needed to reduce the congestion in this
region. In contrast, circuit Stdev000 shows large area increases
for small decreases in channel width. This is because a large
amount of depopulation is needed to reduce the channel width of
the entire circuit due to little interconnect variation. These
observations were verified manually by tracking the size of
depopulation regions and the changes in cluster size as the flow
iterated over several different circuits.
Figure 5 shows that circuits with high interconnect variation
require significantly higher channel widths to route (without
constraints). This suggests that it is crucial for FPGA architects to
know the amount of interconnect variation within their
benchmark circuits. If the variation is too high, it is possible that
the routing networks will be designed with excess capacity,
resulting in undue cost to the consumer. Fortunately, these very
circuits are the most amenable to channel width reduction using
our Un/DoPack flow. In this figure, the straight line (triangle
markers) indicates the area of an FPGA device with 100% LE
utilization (no depopulation) at different channel widths. An

684

FPGA architect must choose a channel width along this line, e.g.
at 110 tracks per channel where circuits Stdev008, Stdev010 and
Stdev012 are unroutable. These 3 circuits can be made routable at
110 tracks using the Un/DoPack flow. Circuit datapoints in the
figure give the total FPGA area required (total CLBs at the given
channel width, including whitespace overhead) after Un/DoPack.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 60 80 100 120 140 160

T
ot

al
 A

re
a

(x
10

8 tr
an

si
st

or
s)

Channel Width of FPGA Architecture

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 5: Area vs. Channel Width Constraint

 70

 80

 90

 100

 110

 120

 130

 140

0.120.100.080.060.040.020.00

M
in

im
um

 R
ou

te
d

C
ha

nn
el

 W
id

th

Interconnect Variation (std. dev. in Rent parameter)

Baseline max MRCW
10% Area Increase
20% Area Increase
25% Area Increase

Figure 6: MRCW vs. Interconnect Variation

Figure 6 shows the channel widths that were attainable with no
depopulation (the max MRCW at 100% LE utilization) and with
channel width constraints that produce net area increases of 10%,
20% and 25%. The x-axis represents the standard deviation in the
Rent parameter of the circuit. FPGA architects typically choose
channel widths for their devices to fit as many circuits as possible.
All circuits here all have Rent exponents of 0.62 and seem to be
reasonable targets for the benchmark suite. The channel width
required to route circuits with high interconnect variation is very
large (over 140). However, a more realistic choice for the channel
width of the device may be 110 tracks. This would result in a 21%
decrease in channel width and translates directly into an area
savings. Most circuits (with low variation) map into 110 tracks
and achieve a net area (cost) savings compared to 140. The few
circuits (with high variation) that could not be mapped can still be
depopulated using Un/DoPack to meet the given channel width
constraint. This may be done for free if the array size of the device
has not yet been met, or it may come at a cost penalty if the next-
largest device must be used. However, for most users, a cost
savings is produced. This illustrates how understanding the

amount of interconnect variation in individual circuits is important
for low-cost FPGA design.
Figure 7 shows the normalized critical path delay vs. channel
width constraint expressed as a percentage of the max MRCW.
There is, on average, a 10% penalty in critical path for a 20%
decrease in channel width, and up to 23% increase in critical path
for a 45% decrease in channel width. This is a modest penalty that
may be improved through the improvements described in
Section 3.2. If timing performance is absolutely crucial,
depopulation and low-cost FPGAs may not be the right choice.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
N

or
m

al
iz

ed
 C

rit
ic

al
 P

at
h

D
el

ay
Channel Width Constraint (% of max MRCW)

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 7: Critical Path Delay vs. Channel Width Constraint

5.2 Multi Region Experimental Results
The single region depopulation experiments presented in the
previous section show that significant channel width reductions
are possible for circuits with high interconnect variation. In this
section, the results for multiple region depopulation will be
presented. Different congestion radii of 1/10, 1/15 and 1/20 of the
array size were attempted. It was found that with multi-region
depopulation, the area and critical path results were similar in all
cases to the ones obtained in the single region experiments.
Precise tuning of the algorithm parameters takes a long time and
can be benchmark-dependent, so only the results for multi-region
depopulation using a congestion radius of 1/10 the array size are
presented below. Also to improve run-time, fewer channel width
constraints were specified and only a subset of the benchmark
circuits was used.
Figures 8 and 9 show the normalized area and critical path results.
The results are similar to the single region results, but were
slightly better in most cases (approx. 3% improvement). Also, the
results suggest that multi-region results are less noisy compared to
the single region results. This may be a result of fewer data points,
or it may be caused by the use of smaller depopulation regions
producing a more graceful trade-off. The finer grain areas are able
to tailor cluster sizes more appropriately to individual congestion
peak sizes and regions. In comparison, single region targets only
the highest peak with a single large region that may encompass
multiple smaller peaks as well as valley regions.
Figure 10 presents the run time of the Un/DoPack algorithm for
single region and multi-region depopulation. Single region
depopulation tends to be faster when the channel width constraint
is above 0.75 of the max MRCW. Below 0.75, multi-region
depopulation is significantly faster. The threshold of 75% is
somewhat not sharp. The reason for run-time difference is due to

685

the interconnect variation. During the first few iterations of the
flow, the most congested peaks are targeted. For single region
depopulation, the algorithm depopulates a large area and
immediately flattens the most congested and surrounding areas.
This can be seen from the Clone/Stdev008 data line where it
requires the same amount of runtime between 0.85 and 1.0 of max
MRCW. On the other hand, multi-region is fine grain and only
targets the specific congested areas. After the initial congested
areas have been depopulated, the shifting locations of interconnect
demand still cause the multi-region algorithm to iterate. Once the
major congested peaks are all flattened, the entire circuit needs to
be depopulated to reduce channel width below 0.75 of max
MRCW. At this point, multi-region depopulation is much more
effective than single-region because it can target multiple regions
across the chip. At the extreme of 50% channel width reductions,
multi-region run-times are 2 to 4 times faster than single region. It
may be possible to improve run-times further through algorithm
tuning.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 A
re

a

Channel Width Constraint (% of max MRCW)

Stdev000 MR
Clone/Stdev008 MR

Stdev010 MR

Figure 8: Area Increase vs. Channel Width Constraints

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 C
rit

ic
al

 P
at

h
D

el
ay

Channel Width Constraint (% of max MRCW)

Stdev000 MR
Clone/Stdev008 MR

Stdev010 MR

Figure 9: Critical Path Delay vs. Channel Width Constraints

5.3 Comparisons to Previous Work
The technique described in [3] creates a large benchmark circuit
by stitching IP blocks together post-clustering. Essentially, it
treats each IP block as an independent depopulation region. We
ran Un/DoPack for 3 of the benchmark circuits described in [3]:
Clique, Pipeline, and Independent for comparison.

Figure 11 shows the final routed channel width vs. the channel
width constraint for Un/DoPack and for the technique described in
[3]. Although [3] attempts to target a channel width constraint, it
does not iterate so many solutions are generated that exceed the
constraint. In contrast, Un/DoPack consistently meets the given
channel width constraint. Although not shown, on rare occasions
Un/DoPack sometimes beats the constraint by 1 track.
Figure 12 shows the minimum array size needed for the channel
width reduced solutions generated using both techniques for one
circuit. Compared to [3], Un/DoPack is sometimes able to use
considerably smaller array sizes. In other results (not shown),
Un/DoPack typically obtains similar or smaller array sizes to [3].

 2

 4

 8

 16

 32

 64

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
un

 T
im

e,
 in

 h
ou

rs

Channel Width Constraint (% of max MRCW)

Stdev000
Clone/Stdev008

Stdev010
Stdev000 MR

Clone/Stdev008 MR
Stdev010 MR

Figure 10: Algorithm Run Time

 45

 50

 55

 60

 65

 70

 75

 80

 85

 45 50 55 60 65 70 75 80 85

F
in

al
 R

ou
te

d
C

ha
nn

el
 W

id
th

Channel Width Constraint

Pipeline, from [3]
Independent, from [3]
Clique, from [3]
Clique with Un/DoPack
Pipeline with Un/DoPack
Independent with Un/DoPack

Figure 11: Final Routed Channel Width vs. Constraint

6. CONCLUSIONS
We have presented a new CAD tool Un/DoPack that is able to
reduce the minimum routable channel width (MRCW) of any
circuit at the expense of logic utilization. Key findings include a
40% decrease in MRCW with a 10% increase in area for circuits
with high interconnect variation. For circuits with low
interconnect variation, channel width reduction is still possible at
the expense of area. For channel width reductions of less than
25%, single region depopulation with a large radius was found to
be the fastest in run time. For significant channel width reductions
of greater than 25%, a multi-region depopulation approach with a
small radius is 2-4 times faster. It was found that the interconnect
variation in a circuit and not just average interconnect usage helps

686

dictate the amount of routing resources necessary in FPGAs. This
is crucial in the design of low-cost FPGAs.

Future work will involve investigating other techniques to
improve run time by using a congestion estimator instead of place
and route or through the use of incremental or fast routing
approaches. However, this is most important only for the “first
compilation” of a large design. In production use, after a design
has been compiled with Un/DoPack at least once, the most
congested regions will have already been identified and will likely
remain the same from one compilation run to the next. Hence,
several iterations can be saved from the Un/DoPack flow during
the edit-compile-debug process.

Our incremental clustering approach could be improved to be
“more aware” of the critical path as suggested in Section 3.2.
Also, the approach should be augmented with a congestion-aware
placement tool such as [10]. We are presently integrating our
framework with Quartus, which is reportedly congestion-aware as
well.

To be truly industrial-strength, the approach needs to be extended
to include the effects of hard macro blocks (such as memories,
multipliers, and fast carry chains). Also, the effects of very long
interconnect wires found in FPGAs need to be studied – it is
anticipated that this actually makes Un/DoPack easier by
removing some “high frequency” variation in interconnect
demand and leaving just the easier-to-handle “low frequency”
variation. These issues are also the subject of on-going
investigation.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
rr

ay
 S

iz
e

Final Routed Channel Width (% of max MRCW)

Clique, from [3]
Clique using Un/DoPack

Figure 12: Array Size vs. Channel Width Constraint

7. REFERENCES
[1] A. DeHon, “Balancing Interconnect and Computation in a

Reconfigurable Computing Array (or, why you don’t really want
100% LUT utilization),” Field Programmable Gate Arrays, 1999.

[2] R. Tessier and H. Giza, “Balancing Logic Utilization and Area
Efficiency in FPGAs,” Field Programmable Logic (FPL), 2000.

[3] M. Tom and G. Lemieux, “Logic Block Clustering of Large
Designs for Channel-Width Constrained FPGAs,” DAC, 2005.

[4] A. Sharma, C. Ebeling and S. Hauck, “Architecture-Adaptive
Routability-Driven Placement for FPGAs,” FPL, pp. 427-432,
2005.

[5] A. Singh and M. Marek-Sadowska, “Efficient Circuit Clustering for
Area and Power Reduction in FPGAs,” Field-Programmable Gate
Arrays, Feb, 2002.

[6] J. Cong and Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Design,” IEEE TCAD, Vol.13, no.1, pp.1-12, Jan
1994.

[7] V. Betz, A. Marquardt, and J. Rose, Architecture and CAD for
Deep-Submicron FPGAs, Kluwer, Norwell, MA, 1999

[8] E. Bozorgzadeh et al, “Routability-Driven Packing : Metrics and
Algorithms for Cluster-based FPGAs,” Journal of Circuits,
Systems, and Computers, 13(1), pp. 77-100, Feb. 2004.

[9] D. Leong and G. Lemieux, “iPlace: An Incremental Placement
Algorithm for Field-Programmable Gate Arrays,” in preparation,
2006.

[10] U. Brenner and A. Rohe, “An Effective Congestion Driven
Placement Framework,” Int’l Symp. on Physical Design. pp.6-11,
2002.

[11] P. Verplaetse, D. Stroobandt and J. Van Campenhout, “Synthetic
Benchmark Circuits for Timing-driven Physical Design
Applications,” Int’l Conf. on VLSI, pp. 31-37, 2002.

[12] LGSynth93 Benchmark Suite, Microelectronics Centre of North
Carolina. Tech. Report, 1993.

[13] J. Pistorius and M. Hutton, “Placement Rent Exponent Calculation
Methods, Temporal Behaviour and FPGA Architecture
Evaluation,” Int’l Workshop on System-Level Interconnect
Prediction, pp.31-38, 2003.

687

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

