
Post-Routing Redundant Via Insertion and Line End Extension
with Via Density Consideration *

Kai-Yuan Chao

Intel Corporation
Hillsboro, OR 97124

kaiyuan.chao@intel.com

Ting-Chi Wang

Department of Computer Science
National Tsing Hua University

 Hsinchu, Taiwan
tcwang@cs.nthu.edu.tw

Kuang-Yao Lee

Department of Computer Science
National Tsing Hua University

 Hsinchu, Taiwan
d924347@oz.nthu.edu.tw

Abstract - Redundant via insertion and line end extension
employed in the post-routing stage are two well known and
highly recommended techniques to reduce yield loss due to
via failure. However, if the amount of inserted redundant
vias is not well controlled, it could violate via density rules
and adversely worsen the yield and reliability of the design.
In this paper, we first study the problem of redundant via
insertion, and present two methods to accelerate a state-of-
the-art approach (which is based on a maximum
independent set (MIS) formulation) to solve it. We then
consider the problem of simultaneous redundant via
insertion and line end extension. We formulate the problem
as a maximum weighted independent set (MWIS) problem
and modify the accelerated MIS-based approach to solve it.
Lastly, we investigate the problem of simultaneous
redundant via insertion and line end extension subject to the
maximum via density rule, and present a two-stage
approach for it. In the first stage, we ignore the maximum
via density rule, and enhance the MWIS-based approach to
find the set of regions which violate the maximum via
density rule after performing simultaneous redundant via
insertion and line end extension. In the second stage, excess
redundant vias are removed from those violating regions
such that after the removal, the maximum via density rule is
met while the total amount of redundant vias removed is
minimized. This density-aware redundant via removal
problem is formulated as a set of zero-one integer linear
programming (0-1 ILP) problems each of which can be
solved independently without sacrificing the optimality. The
superiorities of our approaches are all demonstrated
through promising experimental results.

I. Introduction
As the manufacturing technology shrinks, the feature size of a

layout object becomes smaller but the scale of an integrated
circuit (IC) becomes larger. However, the process variation
becomes worse and damages the yield of an IC. In order to
maintain manufacturability and high yield rates, a new design
methodology, called design for manufacturability (DFM), is
suggested [10][14]. To reduce the yield loss due to via failures
is one of the most important issues in DFM.

A via in an IC layout provides the connection between two
net segments from adjacent metal layers. The number of vias
could become very large due to the design scale growing and/or
the advent of the jumper-based solution to avoid the antenna
effect [12]. Vias may fail partially or completely due to

various reasons, such as cut misalignment and/or line-end
shortening [14] during manufacturing processes. For a partially
failed via, the contact resistance and the parasitic capacitance
will increase and cause unexpected delay. On the other hand, a
complete via failure will leave an open net in an IC layout and
invalidate the functionality of the design.

Metal layer m+1

Via cut layer

Metal layer m

Metal layer
m+1

Metal layer
m

Metal layer m+1

Via cut layer

Metal layer m

Metal layer m+1

Via cut layer

Metal layer m

Metal layer
m+1

Metal layer
m

Metal layer
m+1

Metal layer
m

Metal layer
m+1

Metal layer
m

Fig. 1 Illustration for redundant via insertion.

One of the well known and highly recommended method to
improve via yield/reliability is to add a redundant via adjacent to
a single via [15][17]. Fig. 1 shows the top view and the 3D
structure of a single via with a redundant via added to its right
side. When a single via fails, its redundant via may still work;
besides, the redundant via also provides an alternative signal
path. Therefore, after adding a redundant via, the single-via
failure can be tolerated and the whole via resistance can be also
reduced.

The redundant via insertion problem can be considered in the
routing or post-routing stage. The tools EYE/PEYE [5] consider
redundant via insertion in the post-routing stage but the details
of how they do redundant via insertion are not described. [13]
and [4] also consider redundant via insertion in the post-routing
stage. In [4], the single vias of a design are considered one by
one to perform redundant via addition, and therefore the
solution may just be locally optimal. Besides, since the
approach will change the routing result of the timing non-
critical nets, it may also induce timing violations even if
designers keep the timing critical nets unchanged. [13] reduces
the post-routing redundant via insertion problem into the
maximum independent set (MIS) problem and proposes an
effective heuristic to solve the MIS problem. The execution time
of the approach, however, is generally longer according to the
results reported in [13].

Both [6] and [7] consider redundant via insertion in the
routing stage. [6] proposes a Lagrangian relaxation-based
solution and [7] extends an existing multi-level routing
framework to consider via minimization as well. However, post-
routing ECO operations may change routing results and
introduce extra vias into designs for the purposes of fixing
timing, antenna or other problems. Therefore, no matter whether
a router considers the redundant via insertion issue or not, it is
usually necessary to perform redundant via insertion after the
routing stage to further improve the yield and reliability of vias.

* This work was partially supported by National Science Council

under Grant No. NSC-95-2220-E-007-037, and Ministry of
Economic Affairs under Grant No. MOEA-95-EC-17-A-01-S1-031. Among the set of via related design rules, the via density

rules belong to the category of density control rules that arise
for chemical-mechanical polishing (CMP) and other
manufacturing steps which have varying effects on device and
interconnect features depending on local layout density
characteristics [1][16]. For each area of a pre-defined size on a
via layer, its via density can be defined as the number of vias
within it. If too many redundant vias are inserted into a die area,
and exceed the maximum via density constraint, the pattern

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

633

distortion of the vias in that area will become serious and hence
the yield/reliability of the design will become worse. Therefore,
after inserting redundant vias into a design, the maximum via
density rule should be re-verified.

E EE E

(a) Before line end extension

αE αEαE αE

(b) After line end extension

Fig. 2. Via pattern distortions.
Another typical via related design rule is the via extension

rule, which demands that, for a via, the portion of the connected
metals must be extended beyond the edges of the via cut by at
least E μm (see Fig. 2(a)), where E is a process-dependent
constant. With the extension distance, the slight cut
misalignment during manufacturing can be tolerated. However,
as the feature size of a layout object goes below the wavelength
of the light used by optical lithography equipment, pattern
distortions, such as line-end shortening, increase and aggravate
the cut misalignment problem. As shown in Fig. 2(a), we can
see that after line-end shortening, there is rare spacing to
tolerate the cut misalignment phenomenon. Extending the line-
ends of metals for a via (i.e., line end extension) is another
method for improving the via yield. Line end extension1 is to
broaden the extension distance and thus can ease the cut
misalignment problem caused by line-end shortening, as shown
in Fig. 2(b).

In this paper, we study three via yield/reliability improvement
problems in the post-routing stage. The first one is the
redundant via insertion problem. For this problem, we accelerate
the MIS-based approach proposed in [13] to solve it. The
approach in [13] consists of the step of conflict graph
construction followed by the step of solving an MIS problem on
the graph. We present two methods to reduce the run time of the
MIS-based approach by speeding up the conflict graph
construction step and reducing graph size to facilitate the
computation of an MIS solution, respectively. The experimental
results indicate that the accelerated MIS-based approach is up to
3X faster without hurting solution quality. The second problem
we consider in this paper is simultaneous redundant via
insertion and line end extension. We formulate the problem as a
maximum weighted independent set (MWIS) problem and
enhance the accelerated MIS-based approach (which is
originally designed only for the unweighted version) to solve it.
Both steps of the accelerated MIS-based approach are modified
to consider line-end extended vias as well. The experimental
results indicate that the total number of inserted redundant vias
and line-end extended vias is very close to the upper bound in
each test case. The third problem is to simultaneously consider
redundant via insertion and line end extension subject to the
maximum via density rule, and a two-stage approach is
presented to solve it. In the first stage, by ignoring the
maximum via density rule, we enhance the MWIS-based
approach to insert redundant vias and extend line ends as much
as possible, and at the same time find the set of regions which
violate the maximum via density rule. In the second stage, we
remove redundant vias from those violating regions such that
after the removal, the maximum via density rule is met while the
total amount of redundant vias removed is minimized. This

1 Because a fat via [4] will induce more capacitance and take more area
than a line-end extended via, we choose to consider line-end extended
vias in this paper.

density-aware redundant via removal problem is formulated as a
set of zero-one integer linear programming (0-1 ILP) problems
each of which can be solved independently without sacrificing
the optimality. The experimental results indicate that our 0-1
ILP approach also runs efficiently.

To the best of our knowledge, the second and third problems
have not been addressed before in the literature. Although an
elegant approach based on the MIS formulation was recently
proposed for the first problem [13], we are still able to
incorporate novel speed-up methods into it.

The rest of this paper is organized as follows. In section II,
we review the MIS-based approach given in [13] , and then
describe two methods to improve its efficiency in section III. In
section IV, we detail how to formulate the problem of
simultaneous redundant via insertion and line end extension as a
MWIS problem, and how to modify the accelerated MIS-based
approach to solve the problem. In section V, the two-stage
approach for solving the problem of simultaneous redundant via
insertion and line end extension subject to the maximum via
density rule is described. Section VI reports experimental results,
and we conclude the paper in section VII.

II. Redundant Via Insertion
In this section, we review the problem formulation of post-

routing redundant via insertion and the MIS-based approach
given in [13]. Most of the notation and definitions are from [13].

A. Redundant Via
The manufacturing technology is assumed to consist of 2m+1

layers denoted by ME1, VIA1, ME2, VIA2, …, MEm, VIAm, MEm+1,
where for all i and j, 1 ≤ i ≤ m+1 and 1 ≤ j ≤ m, MEi, and VIAj
represent the ith metal layer and the jth via layer, respectively.
A via on VIAi involves the layers MEi, VIAi, and MEi+1 and its
position is specified by its center. We also assume that a set of
via related design rules is given, and SP is the spacing between
two metals or via cuts2. We will use the symbols XLL(B) and
XUR(B) (YLL(B) and YUR(B), respectively) to represent the x-
coordinates (y-coordinates, respectively) of the lower left and
upper right corners of the bounding box3 of a layout object B,
respectively.

(a) Single via (c) DVR (e) DVL(d) DVD (b) DVU
Fig. 3. Double via types.

A single via together with a redundant via inserted next to it
is defined as a double via, and according to the position of a
redundant via, a double via can be categorized into four types,
as shown in Fig. 34 . (Note that in Fig. 3, each square with the

 symbol inside is called the via cut for a via.) Given a single
via i, its double via of type j (j∈{DVU, DVD, DVL, DVR}) is
denoted by dv(i,j). Besides, a double via (or its corresponding
redundant via) is said to be feasible if replacing the single via
with it will not violate any design rule (excluding the maximum
via density rule to be defined in section V), assuming none of

2 Depending on the technology, the spacing between metals could be
different from the spacing between via cuts. Also these spacing rules
could vary on different layers. Nevertheless, all our approaches
presented in this paper can be easily modified to handle all these cases.
3 The bounding box of an object in a design is the contour of its 2-
dimentional structure.
4 The position of the single via is assumed to remain unchanged in each
double via pattern. It should be mentioned that all our approaches
presented in this paper can be easily extended to consider other double
via patterns where the position of the single via is changed [4].

634

the other single via has any redundant via inserted in the design.
The problem of post-routing redundant via insertion is reduced
to a maximum independent set problem (see Definition 1 and
Problem 1) in [13].
Definition 1. (Conflict graph)

A conflict graph G(V,E) is an undirected graph constructed
from a detailed routing solution. For each single via i on a
signal net, if its double via of type j (i.e., dv(i,j)) is feasible,
there exists a vertex vi,j in V. An edge (vi,j,vi’,j’)∈E if and only if
i=i’, or dv(i,j) and dv(i’,j’) will cause design rule violations
when both exist in the design.

Problem 1. Given a detailed routing solution, the problem asks
to first construct a conflict graph from the design, then find a
maximum independent set of the conflict graph, and finally for
each vertex vi,j in the maximum independent set, replace the
single via i with the double via dv(i, j).

To solve Problem 1, the MIS-based approach proposed in [13]
consists of the step of conflict graph construction and the step of
finding an MIS solution. In the next two subsections, we review
the algorithm for conflict graph construction and the heuristic
for finding an MIS solution, respectively.

B. Conflict Graph Construction
The conflict graph construction algorithm, called GCA,

constructs the vertex set and edge set of a conflict graph
simultaneously. The following definitions on DVE and DRW are
from [13] and required for explaining GCA.

Definition 2. (DVE)
Suppose the bounding box of a single via i is Ri=[xi,ll,

xi,ur] [yi,ll, yi,ur] (see Fig. 4 (a)) and the bounding box of a
double via dv(i,j) is Rdv(i,j) =[xdv,ll,xdv,ur] [ydv,ll, ydv,ur] (see Fig. 4
(b)). The reduced bounding box of dv(i,j), denoted by DVE(i,j),
is defined as Rdv(i,j) –Ri=[xe1,xe2] [ye1,ye2] (see Fig. 4 (c) for the
illustration of DVE(i, DVU)).
Definition 3. (DRW)

Given a double via dv(i,j), suppose the bounding box of the
redundant via contained in dv(i, j) is Rrv=[xr1, xr2] [yr1, yr2].
Then, the reduced design rule window of dv(i, j) is defined to be
DRW(i, j) =[xr1–SP, xr2+SP] [yr1–SP, yr2+SP]. (See Fig. 4 (d)
for the illustration of DRW(i, DVU) which is the region with
oblique lines.)

(xi,ll, yi,ll)

(xi,ur, yi,ur)

(xe2, ye2)

(xe1, ye1)

(xr2+SP, yr2+SP)

(xdv,ll dv, y ,ll)

(xdv,ur, ydv,ur)

SP

(xr1-SP, yr1-SP)

DRW

SP
(xr2, yr2)

(xr1, yr1)

(x , y)

(xi,ur, yi,ur)

(xe2, ye2)

i,ll i,ll

(xe1, ye1)

(xr2+SP, yr2+SP)

(xdv,ll dv, y ,ll)

(xdv,ur, ydv,ur)

SP

(xr1-SP, yr1-SP)

DRW

SP
(xr2, yr2)

(xr1, yr1)

 (a) (b) (c) (d)

Fig. 4. Illustration of the DVE and the DRW for DVU

GCA first sorts all single vias by their x-coordinates in the
non-decreasing order, and constructs an R-tree [2] for each
metal layer to store the bounding boxes of all the layout objects
on that layer. (Note that the bounding boxes of all single vias
will be also stored in these R-trees) According to the sorted via
sequence, denoted 1, 2, …, n, each single via will be processed
orderly as follows.

Suppose the single via being under consideration is i, where
1≤ i≤ n. For each double via dv(i,j), where j∈{DVU, DVD, DVL,
DVR}, DRW(i,j) is used as the query window to do intersection
range query on the R-trees of adjacent metal layers when
checking if dv(i,j) is feasible. If dv(i,j) is feasible, the
corresponding vertex vi,j will be added to the conflict graph.

To efficiently construct the edges in the conflict graph, GCA
maintains a dynamically updated R-tree, called VNC (which is

empty at the beginning), to store the DVE’s for those feasible
double vias which have been identified. Right before checking if
each dv(i,j) is feasible or not, for each element of VNC, if its
right boundary is to the left of the left boundary of DRW(i,DVL),
it is impossible to overlap with any DRW(i’,j’) for all i’, j’, with
i≤ i’≤ n and j’∈{DVU, DVD, DVL, DVR}, and therefore it will
be deleted from VNC.

If dv(i,j) is identified being feasible, DRW(i, j) is again used
as the query window to do intersection range query on VNC. For
each DVE(i’, j’) in VNC, if it intersects with DRW(i, j), the edge
(vi,j, vi’,j’) will be added to the conflict graph. Finally, since a
single via can only be replaced with one double via, GCA
creates an edge for each pair of vertices each of which
corresponds to a feasible double via of i. For each feasible
double via dv(i,j), its corresponding DVE(i,j) is inserted to VNC.

C. Heuristic for Finding an MIS Solution
[13] presents a heuristic, called H2K, to find an MIS solution

from a conflict graph. First, H2K uses the feasible number and
degree of a vertex as the first and second keys to construct a
priority queue which stores all the vertices of a conflict graph.
The feasible number of a vertex vi,j is defined to be the number
of vertices vi’,j’’s in the conflict graph such that i=i’ and j≠ j’
(i.e., the number of the other feasible double vias originating
from the same single via). A vertex has higher priority in the
priority queue if it has smaller feasible number and degree.

Then H2K finds an MIS solution in an iterative manner. At
each iteration, a vertex subset of pre-defined size k is extracted
from the priority queue, and the subgraph induced by the vertex
subset is obtained. Then, a maximal independent set solution on
the subgraph is found (by any existing MIS solver) and added to
the final solution. Finally, the conflict graph and priority queue
are updated by removing those vertices appearing in the
maximal independent set and their adjacent vertices and incident
edges. Note that the feasible number of a vertex might become
decreased in the updated conflict graph. H2K will terminate
when the conflict graph or priority queue has no remaining
vertices.

III. Methods for Speeding up the MIS-Based
Approach

In this section, we present two methods to speed up the MIS-
based approach. One is to accelerate the construction of a
conflict graph and the other is to reduce the size of a conflict
graph to which H2K will be applied. They are detailed in the
following two subsections.

A. Speed-up Method for Conflict Graph Construction
GCA constructs the R-tree of each metal layer statically right

at the beginning to store the bounding boxes of all the original
layout objects on the layer, and uses the R-trees of two adjacent
metal layers for checking if a double via is feasible. Since a
double via may induce design rule violations to a layout object
only if they both locate in nearby grids, keeping in the R-trees
the layout objects which are far enough from the single via
being under consideration is not necessary. This implies that the
run time of range queries on the R-trees has room to improve. In
this subsection, we present a method to speed up GCA by
dynamically maintaining an R-tree for each metal layer. We
make the following modifications to GCA.

The R-tree of each metal layer is initially empty. For each
metal layer, all its layout objects are sorted by the x-coordinates
of the lower left corners of their bounding boxes in the non-
decreasing order. Suppose via i located at (xi, yi) is the single via
being under consideration. If none of the x-coordinates of the
single vias that have been processed is equal to xi, each R-tree
will get updated as follows. Suppose XLL(dv(i,DVL)) and
XUR(dv(i,DVR)) are equal to xll and xur, respectively, as shown in
Fig. 5. We first delete from each R-tree all the elements

635

contained in the range [－∞, xll－SP] [－∞, +∞], such as O1
shown in Fig. 5, because they will not induce any design rule
violation to all double vias of each single via which has not been
processed by GCA yet. Then for each layout object OBJR
remaining in the sorted order, if XLL(OBJR) is less than xll – SP,
it is removed from the sorted order; on the other hand, if
XUR(OBJR) is within the range [xll – SP, xur+SP], it is removed
from the sorted order and inserted into its corresponding R-tree.
For each metal layer, this process is repeated until the first
layout object OBJF with XLL(OBJF) greater than xur+SP (such as
O2 shown in Fig. 5) is reached or no object remains in the sorted
sequence.

With the above modifications, we can perform GCA to
construct the vertex and edge sets of a conflict graph without
keeping the whole layout objects of a design in the R-trees at all
time. With possibly less layout objects stored in the R-trees, the
range query time could be reduced. We name the modified
conflict graph construction algorithm as IGCA.

(xi, yi)
xll

xur

SP SP

Xll - SP Xur + SP

Single via i

dv(i, DVL)

dv(i, DVR)O1

O2

(xi, yi)
xll

xur

SP SP

Xll - SP Xur + SP

Single via i

dv(i, DVL)

dv(i, DVR)O1O1

O2O2

Fig. 5. The geometric information around a single via.

Fig. 6 illustrates how IGCA works. In Fig. 6(a), there is a
layout consisting of seven wire segments, O1,O2…,O7, and four
vias, V1,V2,…,V4. Suppose the single via being under
consideration is V3, and the layout objects O1, O2 and V1 will
not induce any design rule violation to any double via of V3 or
V4. For GCA, the R-trees for metal layers m and m+1 will
consist of all layout objects on the corresponding layers, as
shown in Fig. 6(b). However, the layout objects O1, O2, and V1
are unnecessary when checking if a double via of V3 is feasible;
hence, the amount of layout objects stored in the R-trees for
metal layers m and m+1 is reduced by IGCA, as shown in Fig.
6(c).

V1

O1

O2

O3

O4

O5

O6

O7

V2

V3

Metal m Metal m+1

V4

V1

O1

O2

O3

O4

O5

O6

O7

V2

V3

Metal m Metal m+1

V4

O1 O4

O6 O7

V1 V2

V3 V4

R-tree for metal m

O2 O3

O5

V1 V2

V3 V4

R-tree for metal m+1

O1 O4

O6 O7

V1 V2

V3 V4

R-tree for metal m

O2 O3

O5

V1 V2

V3 V4

R-tree for metal m+1

O4

O6 O7

V2

V3 V4

R-tree for metal m

O3

O5

V2

V3 V4

R-tree for metal m+1

O4

O6 O7

V2

V3 V4

R-tree for metal m

O3

O5

V2

V3 V4

R-tree for metal m+1
 (a) (b) (c)

Fig. 6. Illustration for ICGA.

B. Graph Reduction
In this subsection, we present a graph reduction algorithm,

called GRA, which selects and adds vertices into the final MIS
solution during the construction of a conflict graph; as a result,
the size of the conflict graph is reduced before H2K is applied.
Before describing the details of GRA, we need to define what
internal and external edges are.
Definition 4. (Internal and external edges)

Given a conflict graph G(V,E), an edge e (vi,j,vi’,j’)∈E is said
to be internal if and only if i=i’ and j ≠ j’, i.e., vi,j and vi’,j’
correspond to two different double vias of the same single via.
An edge is said to be external if it is not internal.

Suppose the single via i located at (xi,yi) is being under
consideration by IGCA and none of the x-coordinates of the
single vias that have been processed is equal to xi. For each
single via i’ that has been processed by IGCA, if XUR(dv(i’,DVR))
is less than or equal to XLL(dv(i,DVL))–SP, and there is one
vertex vi’,j (corresponding to a feasible double via of the single
via i’) which is in the current conflict graph and has no external

edge, then GRA will select vi’,j and add it to the final MIS
solution. Since there will never be an external edge incident to
vi’,j, inserting the double via dv(i’,j) will not cause any design
rule violation or prevent any possible insertion of other doubles
vias originating from single vias other than i’. Finally GRA
deletes all adjacent vertices of vi’,j and all edges incident to those
deleted vertices from the current conflict graph. As a result,
H2K can solve the MIS problem on the reduced conflict graph
without hurting the quality of the MIS solution.

Fig. 7 illustrates how GRA works. In Fig. 7(a), there are four
single vias in the design, and they are numbered to form the
sorted sequence. Suppose the single via 3 is being considered by
IGCA and its x-coordinate is different from the x-coordinates of
single vias 1 and 2. Besides, we also assume that
XUR(dv(1,DVR)) is less than or equal to XLL(dv(3,DVL))–SP. The
conflict graph right before adding the vertices corresponding to
the feasible double vias of single via 3 is shown in Fig. 7(b), in
which the bold edge connecting V1,DVR and V2,DVL stands for an
external edge. Because there will be no new edge to be added
for connecting any vertex corresponding to a feasible double via
of single via 1, either V1,DVU or V1,DVL (but not both) can be
selected as an element of the final MIS solution immediately.

1 2

3

4
1 2

3

4

V2,DVU

V2,DVL

V1,DVU

V1,DVL V1,DVR V2,DVR

V2,DVU

V2,DVL

V1,DVU

V1,DVL V1,DVR V2,DVR

(a) (b)

Fig. 7. Illustration for how GRA works.

C. Overall Approach
The accelerated MIS-based approach, which first uses IGCA

and GRA to construct and reduce the conflict graph from a
routed design, and then applies H2K on the conflict graph, is
named IMBA.

IV. Simultaneous Redundant Via Insertion and Line
End Extension

In this section, we first define the problem of simultaneous
redundant via insertion and line end extension, and reduce it
into a MWIS problem. We then describe how to modify the
accelerated MIS-based approach, i.e., IMBA, to solve the
problem.

A. Line-end Extended Via
We assume that the extension distance for a line-end

extended via is αE, where E is the extension distance specified
in the via extension rule for a single via, and α is a process-
dependent constant great than one. The structure of a line-end
extended via is illustrated in Fig. 8. We use LE to represent the
line-end extended via structure.

αE αE αE αE

Metal

Metal

Via cut
αE αEαE αE αE αE

Metal

Metal

Via cutαE αE

Metal

Metal

Via cut

(a) Top view (b) Side view

Fig. 8. The structure of a line-end extended via.

B. Problem Formulation
The problem of simultaneous redundant via insertion and line

end extension is defined as follows.
Problem 2. Given a detailed routing solution, without re-routing
any signal net, the problem asks to replace single vias on signal
nets with double vias or line-end extended vias such that after
replacement, both the amounts of double vias and line-end
extended vias are as large as possible. In addition, two
conditions must be satisfied after replacement: First, each
single via either remains unchanged, or is replaced by a double

636

via or a line-end extended via. Second, no design rule is
violated.

Extending the line end of a single via increases the
manufacturability, but it also increases the via capacitance. On
the other hand, although adding a redundant via next to a single
via also increases the capacitance, it reduces the via resistance
as well. Besides, redundant vias can improve not only yield but
also reliability of a design. Therefore, adding a redundant via
adjacent to a single via will has a higher priority than extending
the line end of the single via in Problem 2.

In fact, we can view the line-end extended via structure LE as
a “pseudo” double via type. Given a single via i, let dv(i, LE)
denote its line-end extended via; dv(i,LE) is said to be feasible
if replacing i with dv(i,LE) will not violate any design rule,
under the assumption that the other single vias remain
unchanged. Given a single via i, both DRW(i,LE) and DVE(i,LE)
are defined below.
Definition 5. (DVE and DRW for a line-end extended via)

Suppose the bounding box of a single via i is Ri=[xi,ll,
xi,ur] [yi,ll, yi,ur](see Fig. 9(a)). The DVE(i, LE) and DRW(i, LE)
are defined as [xi,ll−(α−1)E, xi,ur+(α−1)E] [yi,ll, yi,ur] (see Fig.
9(b)) and [xi,ll−(α−1)E−SP, xi,ur+(α−1)E+SP] [yi,ll−SP,
yi,ur+SP] (see Fig. 9 (c)), respectively.

 (xi,ll, yi,ll)

(xi,ur, yi,ur)

EE

(xi,ll, yi,ll)

(xi,ur, yi,ur)

EE

(xi,ll, yi,ll)

(xi,ur, yi,ur)

EE

 (xi,ll-(α-1)E, yi,ll)

(xi,ur+(α-1)E, yi,ur)

αEαE

(xi,ll-(α-1)E, yi,ll)

(xi,ur+(α-1)E, yi,ur)

αEαE

(xi,ll-(α-1)E, yi,ll)

(xi,ur+(α-1)E, yi,ur)

αEαE

αEαE

(xi,ll-(α-1)E-SP, yi,ll-SP)
DRW

(xi,ur+(α-1)E+SP, yi,ur+SP)

SP
SPSP

SP

αEαE

(xi,ll-(α-1)E-SP, yi,ll-SP)
DRW

(xi,ur+(α-1)E+SP, yi,ur+SP)

SP
SPSP

SP

αEαE αEαE

(xi,ll-(α-1)E-SP, yi,ll-SP)
DRW

(xi,ur+(α-1)E+SP, yi,ur+SP)

SP
SPSPSP

SP

(a) a single via (b) DVE for LE (c) DRW for LE

Fig. 9. Illustration of DVE and DRW for LE.

The definition of a conflict graph is modified below to
account for a weighted conflict graph which captures line-end
extended vias as well.
Definition 6. (Weighted conflict graph)

A weighted conflict graph G(V,E) is an undirected vertex-
weighted graph constructed from a detailed routing solution.
For each single via i on a signal net, if its double via of type j
(j∈{DVL, DVR, DVU, DVD, LE}) is feasible, there exists a
vertex vi,j in V. An edge (vi,j,vi’,j’)∈E if i=i’, or dv(i,j) and dv(i’,j’)
will cause design rule violations when both exist in the design.
For each vi,j in V, if it corresponds to a line-end extended via, its
weight is set to 1; otherwise its weight is set to n+1. Here n is
the number of vertices in V each of which corresponds to a line-
end extended via.

Given a weighted conflict graph, the MWIS problem is
defined as follows. For each independent set of the graph, its
cost is measured by the sum of the weights of all the vertices in
the set. The MWIS problem asks to find an independent set with
largest cost. It is not hard to prove that Problem 2 can be
reduced to the MWIS problem. In the following subsection, we
will describe how to enhance the accelerated MIS-based
approach, i.e., IMBA, which combines ICGA, GRA, and H2K, to
construct a weighted conflict graph and find an MWIS solution.
We name this modified approach as EMBA.

C. MWIS-based Approach
Given a routed design, the corresponding weighted conflict

graph G(V, E) is constructed by ICGA and GRA with the
following modifications. ICGA is modified such that it will treat
each line-end extended via as a double via, and assign a weight
to each vertex. This modified IGCA is named WIGCA. Since
maximizing the amount of inserted redundant vias is the most
important goal, GRA is modified in such a way that none of the
vertices corresponding to feasible line-end extended vias is
considered as a candidate for adding to the final independent set

solution even if no external edge is incident to the vertex. This
modified GRA is called WGRA. Let MWIS1 be the set of vertices
selected and added to the final solution by WGRA. The set
MWIS1 contains redundant vias only.

After G is constructed, H2K is applied to find a maximal
weighted independent set MWIS2 of G with the following
modifications. First, each vertex in the priority queue is added
with the third key. If a vertex corresponds to a line-end extended
via, it will have a lower priority on this key. With this
modification, for vertices having the same feasible number and
degree, the ones corresponding to redundant vias will be
extracted first, and hence have higher chances to be included in
the final solution. Second, a maximal weighted independent set
is found from the extracted subgraph at each iteration. This
modified H2K is called WH3K.

Finally, the union of MWIS1 and MWIS2 is output as the final
solution.

V. Via-Density-Constrained Simultaneous
Redundant Via Insertion and Line End Extension
In this section we first describe the via density rules and give

the problem formulation of simultaneous redundant via insertion
and line end extension under the maximum via density rule. We
then detail our two-stage approach for solving the problem.

A. Via Density Rules and Problem Formulation
To analyze via density, each via layer VIAi is partitioned into

a set R(i) of overlapping rectangular regions each of which has
the same width W and height H, where W and H are process-
dependent constants. All the regions in R(i) are organized into
an m-row by n-column structure. See Fig. 10 for an illustration.
We use r(i,j,k) to represent the region which is in R(i) and
located at row j and column k. For any two neighboring regions
r(i,j,k) and r(i,j,k+1) in the same row, such as regions A and B in
Fig. 10, their overlapped distance in the x-direction is defined to
be (1/λ)W, where λ is a process-dependent constant. Similarly,
for any two neighboring regions r(i,j,k) and r(i,j+1,k) in the
same column, such as regions A and C in Fig. 10, their
overlapped distance in the y-direction is defined to be (1/β)H,
where β is a process-dependent constant. Therefore, a via is
possible to be located in more than one region.

For each region r(i,j,k), its via density, denoted by
density(i,j,k), is defined as the number of vias5 located in it.
Two design rules related to via density, called the minimum via
density rule and the maximum via density rule, can be
considered. The minimum via density rule requires density(i,j,k)
be greater than or equal to L for each region r(i,j,k), where L is a
process-dependent constant. On the other hand, the maximum
via density rule requires density(i,j,k) be less than or equal to U
for each region r(i,j,k), where U is a process-dependent constant.

A via layer

Region C

Region B

Region A

(1/β)H

(1/λ) W

…

…

Row 1

Row 2

…

Row m

Column 1 Column 2 … Column n

A via layer

Region C

Region B

Region A

(1/β)H

(1/λ) W

…

…

Row 1

Row 2

…

Row m

Column 1 Column 2 … Column n
Fig. 10. Illustration for the via regions.

 One method to meet the minimum via density rule is to add
dummy vias [16] (if necessary), which unlike “normal” vias, are
not used to provide signal paths between metal layers. In this
paper, we assume the given routed design satisfies both the

5 Each of such vias can be a single via, a redundant via, or a line-end
extended via.

637

minimum and maximum via density rules, and hence only the
maximum via density constraint needs to be taken into account
after adding redundant vias. Now Problem 2 is modified below
to set Problem 3, while considers the maximum via density rule
as well.
Problem 3. Given a detailed routing solution which already
satisfies the minimum and maximum via density rules, without
re-routing any signal net, the problem asks to replace single
vias on signal nets with double vias or line-end extended vias
such that after replacement, both the amounts of double vias
and line-end extended vias are as large as possible. In addition,
two conditions must be satisfied after replacement: First, each
single via either remains unchanged, or is replaced by a double
via or a line-end extended via. Second, no design rule, including
the maximum via density rule, is violated.
B. Overview of Our Two-stage Approach

In this subsection, we give an overview of our two-stage
approach for solving Problem 3. The details are described in the
next two subsections.

In the first stage, the maximum via density rule is ignored,
and we modify EMBA 6 such that in addition to performing
simultaneous redundant via insertion and line end extension, it
also reports the “violating” regions each of which violates the
maximum via density constraint because of excess redundant
vias inserted. Besides, for each violating region, the set of
redundant vias that have been inserted in it, and the minimum
number of redundant vias that must be deleted from it in order
to meet the maximum via density rule are also generated.

In the second stage, we remove from each violating region
redundant vias7 such that after the removal, the maximum via
density rule is satisfied while the total amount of removed
redundant vias is as small as possible. This redundant via
removal problem will be formulated as a set of zero-one integer
linear programming (0-1 ILP) problems each of which is solved
independently without sacrificing the optimality.

In the next two subsections, we first describe how to modify
EMBA so as to efficiently find all the violating regions; we then
explain the details of the 0-1 ILP approach.

C. Via Density Calculation
In this subsection, we describe how to extend EMBA to

generate the information on each violating region, in addition to
performing simultaneous redundant via insertion and line end
extension.

For each region r(i,j,k), let #sv(i,j,k) denote the number of
single vias located in the region, and let sv_set(i,j,k) denote the
set of single vias, each of which has at least one feasible
redundant via (which may or may not be inserted into the design
later) located in the region. It is not hard to see that a region
r(i,j,k) will not violate the maximum via density rule after
adding redundant vias, if #sv(i,j,k)+|sv_set(i,j,k)| is less than or
equal to U. Let DANGER={r(i,j,k) | #sv(i,j,k)+|sv_set(i,j,k)|＞U,
for all i, j and k} be the set of regions which are possible to
violate the maximum via density rule after redundant via
insertion. For each feasible redundant via v’, let reg_set(v’) be
the set of regions each of which is in DANGER and contains v’.
During the course of constructing the weighted conflict graph
by WIGCA, we want to calculate #sv(i,j,k), sv_set(i,j,k),
DANGER and reg_set(v’) as well. Therefore, we add the
following extensions to WIGCA.

At the beginning, #sv(i,j,k) is 0, and sv_set(i,j,k), DANGER
and reg_set(v’) are all empty sets. For each via layer VIAi, all its

6 We can also discuss a variant of Problem 3, in which only redundant
via insertion is considered. For this variant, we can modify IMBA and
apply it in the first stage.
7 Line-end extended vias will not be candidates for removal because
each of them corresponds to a single via but with larger extension
distance and therefore removing it will make a net become disconnected.

regions are sorted by the x-coordinates of their lower left
corners in the non-decreasing order, and an R-tree is
dynamically maintained to store its regions. These R-trees are
initially empty. Suppose v located at (xv, yv) of the via layer VIAi
is the single via being under consideration by WIGCA. If none
of the x-coordinates of the single vias that have been processed
is equal to xv, the R-tree for each via layer will be updated as
follows. Suppose XLL(dv(v,DVL)) and XUR(dv(v,DVR)) are equal
to xll and xur, respectively, as shown in Fig. 11. We first extract
and delete from each R-tree all the regions contained in the
range [-∞, xll] [-∞, +∞] (such as Region 1 shown in Fig. 11),
because none of the single vias which have not been processed
by WIGCA, and none of their feasible double vias are located in
these regions. For each deleted region r(i,j,k), if
#sv(i,j,k)+|sv_set(i,j,k)|＞U, we add r(i,j,k) to both DANGER and
reg_set(v’) for each feasible redundant via v’ that is contained in
r(i,j,k). Then for each region r(i,j,k) remaining in the sorted
order, if XLL(r(i,j,k)) is less than xur, it is removed from the
sorted order and inserted into the corresponding R-tree. For each
via layer, this updating process is repeated on its R-tree until the
first region r(i’,j’,k’) with XLL(r(i’,j’,k’)) greater than xur (such as
Region 2 shown in Fig. 11) is reached or no object remains in
the sorted order.

After updating the R-trees (if necessary), we use the via cut of
v as the query window to do range query on the R-tree
corresponding to the via layer VIAi on which v is located. For
each queried region r(i,j,k) that encloses the query window, we
increase #sv(i,j,k) by one. Besides, for each feasible redundant
via v’ of v, we use its via cut as the query window to do range
query on the corresponding R-tree as well; for each queried
region r(i,j,k) that encloses the query window, v’ is found to be
contained in r(i,j,k), and if v is not in sv_set(i,j,k) yet, we add v
to sv_set(i,j,k).

(xv, yv)
xll

xur
Single via v

dv(v, DVL)

dv(v, DVR)

Region 2

Region 1

(xv, yv)
xll

xur
Single via v

dv(v, DVL)

dv(v, DVR)

Region 2

Region 1

Fig. 11. Illustration for the dynamically updating strategy.

After all single vias of the design have been processed by
WIGCA, for any remaining region r(i,j,k) in each R-tree, if
#sv(i,j,k)+|sv_set(i,j,k)|＞U, we add r(i,j,k) to both DANGER and
reg_set(v’) for each feasible redundant via v’ that is contained in
r(i,j,k).

After applying WH3K to perform simultaneous redundant via
insertion and line end extension, let Rvio denote the set of all
regions each of which violates the maximum via density rule;
besides, for each region r(i,j,k) in Rvio, let rv_set(i,j,k) denote the
set of all redundant vias that have been inserted into r(i,j,k), and
let #del(i,j,k) be the minimum number of redundant vias that
must be deleted from r(i,j,k) in order to meet the maximum via
density rule (i.e., density(i,j,k) – #del(i,j,k) = U). Rvio, rv_set(i,j,k)
and #del(i,j,k) are computed as follows. For each redundant via
v’ that has been inserted into the design, we add v’ to rv_set(i,j,k)
for each r(i,j,k)∈reg_set(v’). For each region r(i,j,k)∈DANGER,
if #sv(i,j,k)+|rv_set(i,j,k)| ＞ U, it will be added to Rvio, and
#del(i,j,k) will be set to #sv(i,j,k)+|rv_set(i,j,k)| – U.

D. Redundant Via Removal
When the first stage of our approach is done, Rvio, rv_set(i,j,k)

and #del(i,j,k) are ready for use in the second stage, for all
r(i,j,k)∈ Rvio. If Rvio is empty, it means that the solution of
simultaneous redundant via insertion and end line extension
generated in the first stage already satisfies the maximum via
density rule, and therefore nothing is done in the second stage.
On the other hand, if Rvio is not empty, the following problem is
solved in the second stage.

638

Problem 4. Given Rvio, rv_set(i,j,k) and #del(i,j,k) for each
r(i,j,k)∈ Rvio, the problem asks to remove redundant vias from
each rv_set(i,j,k) at least by the amount #del(i,j,k) such that
after the removal, each resulting region r(i,j,k) satisfies the
maximum via density rule while the total number of redundant
vias removed is minimized.

We now describe a 0-1 ILP-based method to optimally solve
Problem 4. Let

be the set of

redundant vias, say rv
,),,(_),,(U

vioRkjir kjisetrvVEX ∈=

1, rv2, …, rv|VEX|, to be considered for
removal. Problem 4 is formulated as a 0-1 ILP problem below.

VEXrvX

RkjirkjidelX

X

pp

viop

p

kjisetrvprv

VEXprv

∈∀∈

∈∀≥∑

∑

∈

∈

 },1,0{

),,(,),,(#
s.t.

 Minimize

),,(_

where each redundant via rvp is associated with a zero-one
variable Xp and if Xp is 1, the redundant via rvp will be deleted
from the design. The number of constraints and variables in the
0-1 ILP problem are equal to the number of regions violating
the maximum via density rule, and the number of redundant vias
located in these regions, respectively. For a large and/or high
routing congestion design, the number of variables and/or
constraints of the 0-1 ILP problem could become large.

In order to reduce the time complexity, we partition Rvio into
disjoint subsets Sub1, Sub2, …, Subt (with t ≤ |Rvio|) such that
the following two conditions hold for each subset Subq : (1) If
there are two or more regions in Subq, then for each region
r(i,j,k)∈Subq, there must exist a redundant via rv and another
region r(i’,j’,k’)∈Subq such that rv is contained in both regions
r(i,j,k) and r(i’,j’,k’). (2) For each region r(i,j,k)∈Subq, if a
redundant via rv is contained in r(i,j,k), then rv is not contained
in any region in Rvio–Subq. It is not hard to verify that we can
individually formulate and solve a 0-1 ILP problem for each
Subq without sacrificing the optimality. Besides, for each Subq,
if it has only one region, we will arbitrarily delete the redundant
vias from the region by the amount #del(i,j,k). The partitioning
of Rvio can be correctly done by the Union-Find algorithm [3].

VI. Experimental Results
We used a 0.18μm technology which has 5 metal layers in our

experiments. For simplicity we directly used the R*-tree
package [11] for indexing 2-dimensional geometric information
of layout objects. We used the qualex-ms [9] as the MIS or
MWIS solver. Besides, we also limited the subgraph extracted
at each iteration of H2K or MH3K to consist of 1500 vertices at
most. Moreover, we used the lp_solver [8] as our 0-1 ILP solver.
All the experiments were conducted on a Linux based machine
with 2.4G processor and 4GB memory. All the run times are
measured in seconds.

Table 1: The test cases
Case Size(μm) #Nets #I/Os #Vias #Layers #Objects

C1 350.000*350.000 4309 20 24594 5 218215
C2 419.433*413.28 5252 211 41157 5 268669
C3 799.124*776.16 18157 85 127059 5 933852
C4 691.272*680.400 17692 415 151912 5 934073
C5 1383.482*1375.92 44720 99 357386 5 2851612

The test cases we used are the same as those in [13] and the
detailed information is shown in Table 1; for each test case, the
first column shows the circuit name, “Size(μm)” gives the
layout dimension, “#Nets” shows the number of nets, “#I/Os”
gives the number of I/O pins, “#Vias” shows the total number of
single vias, and “#Layers” gives the number of metal layers
used. Finally, “#Objects” gives the total number of layout
objects including pins, vias, blockages and wire segments.

To see how much run time reduction could be achieved by
our two speed-up methods, IGCA and GRA, we first focus on
the problem of redundant via insertion. The results are shown in
Table 2, where the columns “[13]”, “IGCA+H2K” and “IMBA”
are the redundant via insertion results after applying H2K on the
conflict graphs generated by GCA, IGCA, and IGCA+GRA,
respectively. The column under “#RV” gives the number of
redundant vias inserted by the approach given in [13], and the
column “#diff” under each of “IGCA+H2K” and “IMBA” gives
the difference between the number of redundant vias inserted by
[13] and the number of redundant vias inserted by
“IGCA+H2K” or “IMBA”. Each column “T(s)” gives the run
time of each approach, and the column “Speed-Up” under
“IGCA+H2K” or “IMBA” gives the speed-up ratio of
“IGCA+H2K” or “IMBA” over “[13]”.

From Table 2, we can see that running IGCA alone is
1.98~2.46X (2.04X on average) faster than [13] while
maintaining the same amount of redundant vias inserted for
each test case. When we applied both IGCA and GRA, the
speed-up ratio becomes even higher, ranging from 2.52 to 3; the
average speed-up ratio is 2.92. Except for the test case C4, the
total number of redundant vias inserted by IMBA for any other
case is the same as that reported by [13]. The reason why IMBA
inserted 2 less redundant vias for the test case C4 is that the size
of the conflict graph was reduced before H2K was applied, and
H2K could only guarantee to generate a maximal independent
set (which is not necessarily a maximum independent set).

Table 2: Experimental results of [13], IGCA+H2K and IMBA
[13] IGCA+H2K IMBA

#RV T(s) #diff T(s) Speed-

Up #diff T(s) Speed-
Up

C1 17461 32 0 13 2.46X 0 11 2.90X
C2 28507 43 0 20 2.15X 0 17 2.52X
C3 91461 192 0 86 2.23X 0 67 2.86X
C4 101765 203 0 98 2.07X -2 72 2.81X
C5 254428 710 0 361 1.98X 0 236 3.00X

Avg. 1 2.04X 2.92X

For the problem of simultaneous redundant via insertion and
line end extension, there is no existing approach. Therefore we
develop a two-stage MIS-based approach called 2SMIS, and
compare it with our approach EMBA. The main idea of 2SMIS is
to insert redundant vias in the first stage, and then perform line
end extension in the second stage. 2SMIS was implemented
based on an extension of the MIS-based approach [13] by
applying H2K twice, one on a conflict graph consisting of
vertices corresponding to redundant vias only, and the other on
another conflict graph consisting of vertices corresponding to
line-end extended vias only. Note that the number of redundant
vias inserted by 2SMIS is always the same as that produced by
the MIS-based approach [13].

In Table 3, the rows “2SMIS” and “EMBA” show the
experimental results of the two approaches 2SMIS and EMBA,
respectively. The column “Upp.” denotes the number of single
vias each of which has at least one feasible double via or one
feasible line-end extended via. (Note that “Upp” can be thought
of as an upper bound on the total number of redundant vias and
line-end extended vias that can be inserted.) “#RV” and “#LE”
show the numbers of redundant vias and line-end extended vias
inserted, respectively. “R(%)” gives the ratio of the sum of
“#RV” and “#LE” (i.e., “#RV” + “#LE”) to “Upp.”. “T(s)”
gives the CPU time of each approach. “Speed-Up” gives the
speed-up ratio of “EMBA” over “2SMIS”.

From Table 3, we can see that compared to 2SMIS, our
approach EMBA is able to insert the same (for three test cases)
or almost the same (differs by 1 or 2 for the other two test cases)
number of redundant vias, and more line-end extended vias (for
all test cases). (Note that EMBA could insert less redundant vias
because it is just a heuristic for the MWIS problem.) As a result,

639

the total amount of redundant vias and line-end extended vias
inserted by our approach is closer to the upper bound (the ratio
ranges from 99.47% to 99.74%) than 2SMIS. Besides, EMBA
was 2.53~3.11X (2.92X on average) faster than 2SMIS.

Table 3: Experimental results of EMBA and 2SMIS

Case Upp. #RV #LE R(%) T(s) Speed
-Up

2SMIS 17461 741 99.69 33 C1 18258
EMBA 17461 751 99.74 13

2.53X

2SMIS 28507 513 99.70 46 C2 29106
EMBA 28506 519 99.72 19

2.42X

2SMIS 91461 1946 99.71 206C3 93675
EMBA 91461 1972 99.74 75

2.74X

2SMIS 101765 1917 99.44 217C4 104263
EMBA 101765 1947 99.47 82

2.64X

2SMIS 254428 5730 99.66 814C5 261035
EMBA 254426 5791 99.68 261

3.11X

Avg. 2.92X
For the problem of simultaneous redundant via insertion and

line end extension under the maximum via density rule, the
width and height of each region on a via layer were set to
10.08μm and 8.4μm, respectively, for each test case. Both λ and
β, defined in section V-A, were set to 3. For implementation
simplicity, we used the center of a via to judge whether the via
is located in a region. We observed that among all test cases, the
maximum number of single vias located in a region was 30, and
therefore in order to enforce a very tight maximum via density
rule in our experiments, the maximum number of vias, including
single vias, redundant vias and line-end extended vias, that
could be located in a region was set to 30. The additional run
times spent by the first stage of our approach on generating the
information on violating regions were 2, 2, 18, 132, and 65
seconds for the five test cases, respectively. In the following
discussion, we only focus on the redundant via removal problem.

Table 4. Statistics on the redundant via removal problem

Case #
Regions

#Vio.
Regions

#Sub-
prob.

#Cand.
rv

C1 52500 252 52 2238
C2 74000 412 90 3638
C3 257984 956 223 8478
C4 187200 9363 220 44396
C5 810816 1402 334 12648

The input statistics are shown in Table 4. For each test case,
the column “#Regions” denotes the total number of regions.
“#Vio. regions” gives the number of regions violating the
maximum via density rule, i.e., |Rvio|. “#Sub-prob.” shows the
number of subsets which have more than one region, after the
partitioning of Rvio was done. (Note that “#Sub-prob.” also
specifies the number of 0-1 ILP problems to be solved.) “#Cand.
rv” is the total number of distinct redundant vias that are
inserted in the regions of Rvio, i.e., |VEX|.

We also implemented two heuristics, called GREEDY and
RANDOM, for comparative studies. GREEDY first creates a
priority queue to store all the redundant vias in VEX. Each
redundant via is associated with a key which is measured by the
number of violating regions containing the redundant via. The
method iteratively extracts from the priority queue a redundant
via with the largest key, and deletes it from the design. Since
deleting a vertex may cause the decrease of the keys for other
redundant vias, the priority queue may need update after each
deletion. As soon as no violating region exists, the method
terminates. The second heuristic, RANDOM, iteratively selects
a violating region randomly, and removes excess redundant vias
from that region arbitrarily until there exists no violating region.

The number of redundant vias removed by each method and
the run time are shown in the corresponding columns under “#
of removed rv” and “T(s)” of Table 5, respectively. The

columns “0-1 ILP”, “Greedy” and “Random” show the results
of the 0-1 ILP methods (with and without doing partitioning),
GREEDY and RANDOM, respectively. The columns “P” and
“NP” under “T(s)” give the run times of both 0-1 ILP methods,
respectively, where “P” stands for our method and “NP” is the
one without doing partitioning on Rvio. It is clear to see that
partitioning the whole 0-1 ILP problem into a set of smaller
problems helps to improve the run time for each test case;
without doing partitioning, it is 6 times slower on average.
Surprisingly our 0-1 ILP method with partitioning also runs
faster than GREEDY for almost all test cases; on average
GREEDY is 3.82 times slower. The reason why GREEDY is
slower is mainly due to the overhead caused by updating the
priority queue after each via removal. For each test case,
although RANDOM runs much faster than our method, the
amount of redundant vias removed by it is also much larger.
Similarly GREEDY also removed more redundant vias than our
method. On average, GREEDY and RANDOM are 1.5% and
29.6% worse in terms of the number of redundant vias removed.

Table 5: The performance comparison
of removed rv T(s)

0-1 ILP Case 0-1 ILP Greedy Random
P NP

Greedy Random

C1 387 389 486 0.03 0.09 0.03 <0.01
C2 625 627 748 0.05 0.22 0.08 <0.01
C3 1501 1502 1762 0.13 1.32 0.89 <0.01
C4 10631 10856 14379 14.3 84.0 52.2 0.04
C5 2370 2373 2732 0.26 3.11 3.25 0.01

Avg. 1 1.015 1.296 1 6.00 3.82 0.003

VII. Conclusions and Future Works
In this paper, we have studied three post-routing via

yield/reliability improvement problems, and have presented
novel approaches for them. The experimental results well
support all our approaches. Our future work is to study how to
consider redundant via insertion, line end extension, and via
density rules all together in one single stage.

References
[1] A. B. Kahng, “Research Directions for Coevolution of Rules and Routers”,

Proc. of ISPD, 2003.
[2] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching”,

Proc of SIGMOD, 1984.
[3] Cormen, Leiserson and Rivest, Introduction to Algorithms (Second

Edition), The MIT Press, 2001.
[4] F. Luo, Y. Jia and W.-M. Dai, “Yield-Preferred Via Insertion Based on

Novel Geotopological Technology”, Proc. of ASP-DAC, 2006.
[5] G. A. Allan, “Targeted Layout Modifications for Semiconductor

Yield/Reliability Enhancement”, IEEE Trans on Semiconductor
Manufacturing, vol. 17, Nov. 2004.

[6] G. Xu, Li-Da Huang, D. Z. Pan and M. D. F. Wong, “Redundant-Via
Enhanced Maze Routing for Yield Improvement”, Proc. of ASP-DAC,
2005.

[7] H. Yao, Y. Cai, X. Hong and Q. Zhou, “Improved Multilevel Routing
with Redundant Via Placement for Yield and Reliability”, Proc. of
GLSVLSI, 2005.

[8] http://lpsolve.sourceforge.net/
[9] http://www.busygin.dp.ua/npc.html
[10] L. K. Scheffer, “Physical CAD Changes to Incorporate Design for

Lithography and Manufacturability”, Proc. of ASP-DAC, 2004.
[11] N. Beckmann, H.-P. Kriegel, R. Schneider and B. Seeger, “The R*-Tree:

An Efficient and Robust Access Method for Points and Rectangles”, Proc.
of SIGMOD, 1990.

[12] P. H. Chen, S. Malkani, C.-M. Peng and J. Lin, “Fixing Antenna Problem
by Dynamic Diode Dropping and Jumper Insertion“, Proc. of ISQED,
2000.

[13] K.-Y. Lee and T.-C. Wang, “Post-Routing Redundant Via Insertion for
Yield/Reliability Improvement”, Proc. of ASP-DAC 2006.

[14] S. Raghvendra and P. Hurat, “DFM: Linking Design and Manufacturing”,
Proc. of ICVD, 2005.

[15] TSMC Reference Flow 5.0.
[16] V. Pitchumani, B. Landau and J. Brandenburg, Design for

Manufacturability : Embedded Tutorial, ASP-DAC 2005.
[17] Y. Zorian, D. Gizopoulos, C. Vandenberg and P. Magarshack, “Guest

Editors’ Introduction: Design for Yield and Reliability”, IEEE Trans on
Design & Test of Computers, vol. 21, May 2004.

640

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

