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Abstract - Redundant via insertion and line end extension 
employed in the post-routing stage are two well known and 
highly recommended techniques to reduce yield loss due to 
via failure. However, if the amount of inserted redundant 
vias is not well controlled, it could violate via density rules 
and adversely worsen the yield and reliability of the design. 
In this paper, we first study the problem of redundant via 
insertion, and present two methods to accelerate a state-of-
the-art approach (which is based on a maximum 
independent set (MIS) formulation) to solve it. We then 
consider the problem of simultaneous redundant via 
insertion and line end extension. We formulate the problem 
as a maximum weighted independent set (MWIS) problem 
and modify the accelerated MIS-based approach to solve it. 
Lastly, we investigate the problem of simultaneous 
redundant via insertion and line end extension subject to the 
maximum via density rule, and present a two-stage 
approach for it.  In the first stage, we ignore the maximum 
via density rule, and enhance the MWIS-based approach to 
find the set of regions which violate the maximum via 
density rule after performing simultaneous redundant via 
insertion and line end extension. In the second stage, excess 
redundant vias are removed from those violating regions 
such that after the removal, the maximum via density rule is 
met while the total amount of redundant vias removed is 
minimized. This density-aware redundant via removal 
problem is formulated as a set of zero-one integer linear 
programming (0-1 ILP) problems each of which can be 
solved independently without sacrificing the optimality. The 
superiorities of our approaches are all demonstrated 
through promising experimental results. 

I. Introduction 
As the manufacturing technology shrinks, the feature size of a 

layout object becomes smaller but the scale of an integrated 
circuit (IC) becomes larger. However, the process variation 
becomes worse and damages the yield of an IC. In order to 
maintain manufacturability and high yield rates, a new design 
methodology, called design for manufacturability (DFM), is 
suggested [10][14]. To reduce the yield loss due to via failures 
is one of the most important issues in DFM. 

A via in an IC layout provides the connection between two 
net segments from adjacent metal layers. The number of vias 
could become very large due to the design scale growing and/or 
the advent of the jumper-based solution to avoid the antenna 
effect [12]. Vias may fail partially or completely due to 

various reasons, such as cut misalignment and/or line-end 
shortening [14] during manufacturing processes. For a partially 
failed via, the contact resistance and the parasitic capacitance 
will increase and cause unexpected delay. On the other hand, a 
complete via failure will leave an open net in an IC layout and 
invalidate the functionality of the design. 
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Fig. 1 Illustration for redundant via insertion. 

One of the well known and highly recommended method to 
improve via yield/reliability is to add a redundant via adjacent to 
a single via [15][17]. Fig. 1 shows the top view and the 3D 
structure of a single via with a redundant via added to its right 
side. When a single via fails, its redundant via may still work; 
besides, the redundant via also provides an alternative signal 
path. Therefore, after adding a redundant via, the single-via 
failure can be tolerated and the whole via resistance can be also 
reduced. 

The redundant via insertion problem can be considered in the 
routing or post-routing stage. The tools EYE/PEYE [5] consider 
redundant via insertion in the post-routing stage but the details 
of how they do redundant via insertion are not described. [13] 
and [4] also consider redundant via insertion in the post-routing 
stage. In [4], the single vias of a design are considered one by 
one to perform redundant via addition, and therefore the 
solution may just be locally optimal. Besides, since the 
approach will change the routing result of the timing non-
critical nets, it may also induce timing violations even if 
designers keep the timing critical nets unchanged. [13] reduces 
the post-routing redundant via insertion problem into the 
maximum independent set (MIS) problem and proposes an 
effective heuristic to solve the MIS problem. The execution time 
of the approach, however, is generally longer according to the 
results reported in [13]. 

Both [6] and [7] consider redundant via insertion in the 
routing stage. [6] proposes a Lagrangian relaxation-based 
solution and [7] extends an existing multi-level routing 
framework to consider via minimization as well. However, post-
routing ECO operations may change routing results and 
introduce extra vias into designs for the purposes of fixing 
timing, antenna or other problems. Therefore, no matter whether 
a router considers the redundant via insertion issue or not, it is 
usually necessary to perform redundant via insertion after the 
routing stage to further improve the yield and reliability of vias. 

  
* This work was partially supported by National Science Council

under Grant No. NSC-95-2220-E-007-037, and Ministry of
Economic Affairs under Grant No. MOEA-95-EC-17-A-01-S1-031. Among the set of via related design rules, the via density 

rules belong to the category of density control rules that arise 
for chemical-mechanical polishing (CMP) and other 
manufacturing steps which have varying effects on device and 
interconnect features depending on local layout density 
characteristics [1][16]. For each area of a pre-defined size on a 
via layer, its via density can be defined as the number of vias 
within it. If too many redundant vias are inserted into a die area, 
and exceed the maximum via density constraint, the pattern 
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distortion of the vias in that area will become serious and hence 
the yield/reliability of the design will become worse. Therefore, 
after inserting redundant vias into a design, the maximum via 
density rule should be re-verified. 
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(b) After line end extension 

Fig. 2. Via pattern distortions. 
Another typical via related design rule is the via extension 

rule, which demands that, for a via, the portion of the connected 
metals must be extended beyond the edges of the via cut by at 
least E μm (see Fig. 2(a)), where E is a process-dependent 
constant. With the extension distance, the slight cut 
misalignment during manufacturing can be tolerated. However, 
as the feature size of a layout object goes below the wavelength 
of the light used by optical lithography equipment, pattern 
distortions, such as line-end shortening, increase and aggravate 
the cut misalignment problem. As shown in Fig. 2(a), we can 
see that after line-end shortening, there is rare spacing to 
tolerate the cut misalignment phenomenon. Extending the line-
ends of metals for a via (i.e., line end extension) is another 
method for improving the via yield. Line end extension1 is to 
broaden the extension distance and thus can ease the cut 
misalignment problem caused by line-end shortening, as shown 
in Fig. 2(b). 

In this paper, we study three via yield/reliability improvement 
problems in the post-routing stage. The first one is the 
redundant via insertion problem. For this problem, we accelerate 
the MIS-based approach proposed in [13] to solve it. The 
approach in [13] consists of the step of conflict graph 
construction followed by the step of solving an MIS problem on 
the graph. We present two methods to reduce the run time of the 
MIS-based approach by speeding up the conflict graph 
construction step and reducing graph size to facilitate the 
computation of an MIS solution, respectively. The experimental 
results indicate that the accelerated MIS-based approach is up to 
3X faster without hurting solution quality. The second problem 
we consider in this paper is simultaneous redundant via 
insertion and line end extension. We formulate the problem as a 
maximum weighted independent set (MWIS) problem and 
enhance the accelerated MIS-based approach (which is 
originally designed only for the unweighted version) to solve it. 
Both steps of the accelerated MIS-based approach are modified 
to consider line-end extended vias as well. The experimental 
results indicate that the total number of inserted redundant vias 
and line-end extended vias is very close to the upper bound in 
each test case. The third problem is to simultaneously consider 
redundant via insertion and line end extension subject to the 
maximum via density rule, and a two-stage approach is 
presented to solve it.  In the first stage, by ignoring the 
maximum via density rule, we enhance the MWIS-based 
approach to insert redundant vias and extend line ends as much 
as possible, and at the same time find the set of regions which 
violate the maximum via density rule. In the second stage, we 
remove redundant vias from those violating regions such that 
after the removal, the maximum via density rule is met while the 
total amount of redundant vias removed is minimized. This 

                                                 

                                                

1 Because a fat via [4] will induce more capacitance and take more area 
than a line-end extended via, we choose to consider line-end extended 
vias in this paper. 

density-aware redundant via removal problem is formulated as a 
set of zero-one integer linear programming (0-1 ILP) problems 
each of which can be solved independently without sacrificing 
the optimality. The experimental results indicate that our 0-1 
ILP approach also runs efficiently.  

To the best of our knowledge, the second and third problems 
have not been addressed before in the literature. Although an 
elegant approach based on the MIS formulation was recently 
proposed for the first problem [13], we are still able to 
incorporate novel speed-up methods into it. 

The rest of this paper is organized as follows. In section II, 
we review the MIS-based approach given in [13] , and then 
describe two methods to improve its efficiency in section III. In 
section IV, we detail how to formulate the problem of 
simultaneous redundant via insertion and line end extension as a 
MWIS problem, and how to modify the accelerated MIS-based 
approach to solve the problem. In section V, the two-stage 
approach for solving the problem of simultaneous redundant via 
insertion and line end extension subject to the maximum via 
density rule is described. Section VI reports experimental results, 
and we conclude the paper in section VII. 

II. Redundant Via Insertion 
In this section, we review the problem formulation of post-

routing redundant via insertion and the MIS-based approach 
given in [13]. Most of the notation and definitions are from [13]. 

A. Redundant Via 
The manufacturing technology is assumed to consist of 2m+1 

layers denoted by ME1, VIA1, ME2, VIA2, …, MEm, VIAm, MEm+1, 
where for all i and j, 1 ≤ i ≤ m+1 and 1 ≤ j ≤ m, MEi, and VIAj  
represent the ith metal layer and the jth via layer, respectively. 
A via on VIAi involves the layers MEi, VIAi, and MEi+1 and its 
position is specified by its center. We also assume that a set of 
via related design rules is given, and SP is the spacing between 
two metals or via cuts2. We will use the symbols XLL(B) and 
XUR(B) (YLL(B) and YUR(B), respectively) to represent the x-
coordinates (y-coordinates, respectively) of the lower left and 
upper right corners of the bounding box3 of a layout object B, 
respectively. 

(a) Single via (c) DVR (e) DVL(d) DVD (b) DVU  
Fig. 3. Double via types. 

A single via together with a redundant via inserted next to it 
is defined as a double via, and according to the position of a 
redundant via, a double via can be categorized into four types, 
as shown in Fig. 34 . (Note that in Fig. 3, each square with the 

 symbol inside is called the via cut for a via.) Given a single 
via i, its double via of type j (j∈{DVU, DVD, DVL, DVR}) is 
denoted by dv(i,j). Besides, a double via (or its corresponding 
redundant via) is said to be feasible if replacing the single via 
with it will not violate any design rule (excluding the maximum 
via density rule to be defined in section V), assuming none of 

 
2 Depending on the technology, the spacing between metals could be 
different from the spacing between via cuts. Also these spacing rules 
could vary on different layers. Nevertheless, all our approaches 
presented in this paper can be easily modified to handle all these cases. 
3 The bounding box of an object in a design is the contour of its 2-
dimentional structure. 
4 The position of the single via is assumed to remain unchanged in each 
double via pattern. It should be mentioned that all our approaches 
presented in this paper can be easily extended to consider other double 
via patterns where the position of the single via is changed [4]. 
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the other single via has any redundant via inserted in the design. 
The problem of post-routing redundant via insertion is reduced 
to a maximum independent set problem (see Definition 1 and 
Problem 1) in [13]. 
Definition 1. (Conflict graph) 

A conflict graph G(V,E) is an undirected graph constructed 
from a detailed routing solution. For each single via i on a 
signal net, if its double via of type j (i.e., dv(i,j)) is feasible, 
there exists a vertex vi,j in V. An edge (vi,j,vi’,j’)∈E if and only if 
i=i’, or dv(i,j) and dv(i’,j’) will cause design rule violations 
when both exist in the design. 

Problem 1. Given a detailed routing solution, the problem asks 
to first construct a conflict graph from the design, then find a 
maximum independent set of the conflict graph, and finally for 
each vertex vi,j in the maximum independent set, replace the 
single via i with the double via dv(i, j). 

To solve Problem 1, the MIS-based approach proposed in [13] 
consists of the step of conflict graph construction and the step of 
finding an MIS solution. In the next two subsections, we review 
the algorithm for conflict graph construction and the heuristic 
for finding an MIS solution, respectively.  

B. Conflict Graph Construction 
The conflict graph construction algorithm, called GCA, 

constructs the vertex set and edge set of a conflict graph 
simultaneously. The following definitions on DVE and DRW are 
from [13] and required for explaining GCA. 

Definition 2. (DVE) 
Suppose the bounding box of a single via i is Ri=[xi,ll, 

xi,ur] [yi,ll, yi,ur] (see Fig. 4 (a)) and  the bounding box of a 
double via dv(i,j) is Rdv(i,j) =[xdv,ll,xdv,ur] [ydv,ll, ydv,ur] (see Fig. 4 
(b)). The reduced bounding box of dv(i,j), denoted by DVE(i,j), 
is defined as Rdv(i,j) –Ri=[xe1,xe2] [ye1,ye2] (see Fig. 4 (c) for the 
illustration of DVE(i, DVU)). 
Definition 3. (DRW) 

Given a double via dv(i,j), suppose the bounding box of the 
redundant via contained in dv(i, j) is Rrv=[xr1, xr2] [yr1, yr2]. 
Then, the reduced design rule window of dv(i, j) is defined to be 
DRW(i, j) =[xr1–SP, xr2+SP] [yr1–SP, yr2+SP]. (See Fig. 4 (d) 
for the illustration of DRW(i, DVU) which is the region with 
oblique lines.) 
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Fig. 4. Illustration of the DVE and the DRW for DVU 

GCA first sorts all single vias by their x-coordinates in the 
non-decreasing order, and constructs an R-tree [2] for each 
metal layer to store the bounding boxes of all the layout objects 
on that layer. (Note that the bounding boxes of all single vias 
will be also stored in these R-trees) According to the sorted via 
sequence, denoted 1, 2, …, n, each single via will be processed 
orderly as follows.  

Suppose the single via being under consideration is i, where 
1≤ i≤ n. For each double via dv(i,j), where j∈{DVU, DVD, DVL, 
DVR}, DRW(i,j) is used as the query window to do intersection 
range query on the R-trees of adjacent metal layers when 
checking if dv(i,j) is feasible. If dv(i,j) is feasible, the 
corresponding vertex vi,j will be added to the conflict graph. 

To efficiently construct the edges in the conflict graph, GCA 
maintains a dynamically updated R-tree, called VNC (which is 

empty at the beginning), to store the DVE’s for those feasible 
double vias which have been identified. Right before checking if 
each dv(i,j) is feasible or not, for each element of VNC, if its 
right boundary is to the left of the left boundary of DRW(i,DVL), 
it is impossible to overlap with any DRW(i’,j’) for all i’, j’, with 
i≤ i’≤ n and j’∈{DVU, DVD, DVL, DVR}, and therefore it will 
be deleted from VNC.  

If dv(i,j) is identified being feasible, DRW(i, j) is again used 
as the query window to do intersection range query on VNC. For 
each DVE(i’, j’) in VNC, if it intersects with DRW(i, j), the edge 
(vi,j, vi’,j’) will be added to the conflict graph. Finally, since a 
single via can only be replaced with one double via, GCA 
creates an edge for each pair of vertices each of which 
corresponds to a feasible double via of i. For each feasible 
double via dv(i,j), its corresponding DVE(i,j) is inserted to VNC. 

C. Heuristic for Finding an  MIS Solution 
[13] presents a heuristic, called H2K, to find an MIS solution 

from a conflict graph. First, H2K uses the feasible number and 
degree of a vertex as the first and second keys to construct a 
priority queue which stores all the vertices of a conflict graph. 
The feasible number of a vertex vi,j is defined to be the number 
of vertices vi’,j’’s in the conflict graph such that i=i’ and j≠ j’ 
(i.e., the number of the other feasible double vias originating 
from the same single via). A vertex has higher priority in the 
priority queue if it has smaller feasible number and degree.  

Then H2K finds an MIS solution in an iterative manner. At 
each iteration, a vertex subset of pre-defined size k is extracted 
from the priority queue, and the subgraph induced by the vertex 
subset is obtained. Then, a maximal independent set solution on 
the subgraph is found (by any existing MIS solver) and added to 
the final solution. Finally, the conflict graph and priority queue 
are updated by removing those vertices appearing in the 
maximal independent set and their adjacent vertices and incident 
edges.  Note that the feasible number of a vertex might become 
decreased in the updated conflict graph. H2K will terminate 
when the conflict graph or priority queue has no remaining 
vertices. 

III. Methods for Speeding up the MIS-Based 
Approach 

In this section, we present two methods to speed up the MIS-
based approach. One is to accelerate the construction of a 
conflict graph and the other is to reduce the size of a conflict 
graph to which H2K will be applied. They are detailed in the 
following two subsections. 

A. Speed-up Method for Conflict Graph Construction 
GCA constructs the R-tree of each metal layer statically right 

at the beginning to store the bounding boxes of all the original 
layout objects on the layer, and uses the R-trees of two adjacent 
metal layers for checking if a double via is feasible. Since a 
double via may induce design rule violations to a layout object 
only if they both locate in nearby grids, keeping in the R-trees 
the layout objects which are far enough from the single via 
being under consideration is not necessary. This implies that the 
run time of range queries on the R-trees has room to improve. In 
this subsection, we present a method to speed up GCA by 
dynamically maintaining an R-tree for each metal layer. We 
make the following modifications to GCA. 

The R-tree of each metal layer is initially empty. For each 
metal layer, all its layout objects are sorted by the x-coordinates 
of the lower left corners of their bounding boxes in the non-
decreasing order. Suppose via i located at (xi, yi) is the single via 
being under consideration. If none of the x-coordinates of the 
single vias that have been processed is equal to xi, each R-tree 
will get updated as follows. Suppose XLL(dv(i,DVL)) and 
XUR(dv(i,DVR)) are equal to xll and xur, respectively, as shown in 
Fig. 5. We first delete from each R-tree all the elements 
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contained in the range [－∞, xll－SP] [－∞, +∞], such as O1 
shown in Fig. 5, because they will not induce any design rule 
violation to all double vias of each single via which has not been 
processed by GCA yet. Then for each layout object OBJR 
remaining in the sorted order, if XLL(OBJR) is less than xll – SP, 
it is removed from the sorted order; on the other hand, if 
XUR(OBJR) is within the range [xll – SP, xur+SP], it is removed 
from the sorted order and inserted into its corresponding R-tree. 
For each metal layer, this process is repeated until the first 
layout object OBJF with XLL(OBJF) greater than xur+SP (such as 
O2 shown in Fig. 5) is reached or no object remains in the sorted 
sequence. 

With the above modifications, we can perform GCA to 
construct the vertex and edge sets of a conflict graph without 
keeping the whole layout objects of a design in the R-trees at all 
time. With possibly less layout objects stored in the R-trees, the 
range query time could be reduced. We name the modified 
conflict graph construction algorithm as IGCA. 

(xi, yi)
xll

xur

SP SP

Xll - SP Xur + SP

Single via i

dv(i, DVL)

dv(i, DVR)O1

O2
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SP SP
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Single via i

dv(i, DVL)

dv(i, DVR)O1O1

O2O2

 
Fig. 5. The geometric information around a single via. 

Fig. 6 illustrates how IGCA works. In Fig. 6(a), there is a 
layout consisting of seven wire segments, O1,O2…,O7, and four 
vias, V1,V2,…,V4. Suppose the single via being under 
consideration is V3, and the layout objects O1, O2 and V1 will 
not induce any design rule violation to any double via of V3 or 
V4. For GCA, the R-trees for metal layers m and m+1 will 
consist of all layout objects on the corresponding layers, as 
shown in Fig. 6(b). However, the layout objects O1, O2, and V1 
are unnecessary when checking if a double via of V3 is feasible; 
hence, the amount of layout objects stored in the R-trees for 
metal layers m and m+1 is reduced by IGCA, as shown in Fig. 
6(c). 
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Fig. 6. Illustration for ICGA. 

B. Graph Reduction 
In this subsection, we present a graph reduction algorithm, 

called GRA, which selects and adds vertices into the final MIS 
solution during the construction of a conflict graph; as a result, 
the size of the conflict graph is reduced before H2K is applied. 
Before describing the details of GRA, we need to define what 
internal and external edges are. 
Definition 4. (Internal and external edges) 

Given a conflict graph G(V,E), an edge e (vi,j,vi’,j’)∈E is said 
to be internal if and only if i=i’ and j ≠ j’, i.e., vi,j and vi’,j’ 
correspond to two different double vias of the same single via. 
An edge is said to be external if it is not internal. 

Suppose the single via i located at (xi,yi) is being under 
consideration by IGCA and none of the x-coordinates of the 
single vias that have been processed is equal to xi. For each 
single via i’ that has been processed by IGCA, if XUR(dv(i’,DVR)) 
is less than or equal to XLL(dv(i,DVL))–SP, and there is one 
vertex vi’,j (corresponding to a feasible double via of the single 
via i’) which is in the current conflict graph and has no external 

edge, then GRA will select vi’,j and add it to the final MIS 
solution. Since there will never be an external edge incident to 
vi’,j, inserting the double via dv(i’,j) will not cause any design 
rule violation or prevent any possible insertion of other doubles 
vias originating from single vias other than i’. Finally GRA 
deletes all adjacent vertices of vi’,j and all edges incident to those 
deleted vertices from the current conflict graph. As a result, 
H2K can solve the MIS problem on the reduced conflict graph 
without hurting the quality of the MIS solution. 

Fig. 7 illustrates how GRA works. In Fig. 7(a), there are four 
single vias in the design, and they are numbered to form the 
sorted sequence. Suppose the single via 3 is being considered by 
IGCA and its x-coordinate is different from the x-coordinates of 
single vias 1 and 2. Besides, we also assume that 
XUR(dv(1,DVR)) is less than or equal to XLL(dv(3,DVL))–SP. The 
conflict graph right before adding the vertices corresponding to 
the feasible double vias of single via 3 is shown in Fig. 7(b), in 
which the bold edge connecting V1,DVR and V2,DVL stands for an 
external edge. Because there will be no new edge to be added 
for connecting any vertex corresponding to a feasible double via 
of single via 1, either V1,DVU or V1,DVL (but not both) can be 
selected as an element of the final MIS solution immediately. 

1 2

3

4
1 2

3

4

     

V2,DVU

V2,DVL

V1,DVU

V1,DVL V1,DVR V2,DVR

V2,DVU

V2,DVL

V1,DVU

V1,DVL V1,DVR V2,DVR

 
(a)                                           (b) 

Fig. 7. Illustration for how GRA works. 

C. Overall Approach 
The accelerated MIS-based approach, which first uses IGCA 

and GRA to construct and reduce the conflict graph from a 
routed design, and then applies H2K on the conflict graph, is 
named IMBA. 

IV. Simultaneous Redundant Via Insertion and Line 
End Extension 

In this section, we first define the problem of simultaneous 
redundant via insertion and line end extension, and reduce it 
into a MWIS problem. We then describe how to modify the 
accelerated MIS-based approach, i.e., IMBA, to solve the 
problem. 

A. Line-end Extended Via 
We assume that the extension distance for a line-end 

extended via is αE, where E is the extension distance specified 
in the via extension rule for a single via, and α is a process-
dependent constant great than one. The structure of a line-end 
extended via is illustrated in Fig. 8. We use LE to represent the 
line-end extended via structure. 

αE αE αE αE

Metal

Metal

Via cut
αE αEαE αE αE αE

Metal

Metal

Via cutαE αE

Metal

Metal

Via cut

 
(a) Top view                   (b) Side view 

Fig. 8. The structure of a line-end extended via. 

B. Problem Formulation 
The problem of simultaneous redundant via insertion and line 

end extension is defined as follows. 
Problem 2. Given a detailed routing solution, without re-routing 
any signal net, the problem asks to replace single vias on signal 
nets with double vias or line-end extended vias such that after 
replacement, both the amounts of double vias and line-end 
extended vias are as large as possible. In addition, two 
conditions must be satisfied after replacement: First, each 
single via either remains unchanged, or is replaced by a double 
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via or a line-end extended via. Second, no design rule is 
violated. 

Extending the line end of a single via increases the 
manufacturability, but it also increases the via capacitance. On 
the other hand, although adding a redundant via next to a single 
via also increases the capacitance, it reduces the via resistance 
as well. Besides, redundant vias can improve not only yield but 
also reliability of a design. Therefore, adding a redundant via 
adjacent to a single via will has a higher priority than extending 
the line end of the single via in Problem 2. 

In fact, we can view the line-end extended via structure LE as 
a “pseudo” double via type. Given a single via i, let dv(i, LE) 
denote its line-end extended via; dv(i,LE) is said to be feasible 
if replacing i with dv(i,LE) will not violate any design rule, 
under the assumption that the other single vias remain 
unchanged. Given a single via i, both DRW(i,LE) and DVE(i,LE) 
are defined below. 
Definition 5. (DVE and DRW for a line-end extended via) 

Suppose the bounding box of a single via i is Ri=[xi,ll, 
xi,ur] [yi,ll, yi,ur](see Fig. 9(a)). The DVE(i, LE) and DRW(i, LE) 
are defined as [xi,ll−(α−1)E, xi,ur+(α−1)E] [yi,ll, yi,ur] (see Fig. 
9(b)) and [xi,ll−(α−1)E−SP, xi,ur+(α−1)E+SP] [yi,ll−SP, 
yi,ur+SP] (see Fig. 9 (c)), respectively. 
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(a) a single via   (b) DVE for LE      (c) DRW for LE  

Fig. 9. Illustration of DVE and DRW for LE. 

The definition of a conflict graph is modified below to 
account for a weighted conflict graph which captures line-end 
extended vias as well. 
Definition 6. (Weighted conflict graph) 

A weighted conflict graph G(V,E) is an undirected vertex-
weighted graph constructed from a detailed routing solution. 
For each single via i on a signal net, if its double via of type j 
(j∈{DVL, DVR, DVU, DVD, LE}) is feasible, there exists a 
vertex vi,j in V. An edge (vi,j,vi’,j’)∈E if i=i’, or dv(i,j) and dv(i’,j’) 
will cause design rule violations when both exist in the design. 
For each vi,j in V, if it corresponds to a line-end extended via, its 
weight is set to 1; otherwise its weight is set to n+1. Here n is 
the number of vertices in V each of which corresponds to a line-
end extended via. 

Given a weighted conflict graph, the MWIS problem is 
defined as follows. For each independent set of the graph, its 
cost is measured by the sum of the weights of all the vertices in 
the set. The MWIS problem asks to find an independent set with 
largest cost. It is not hard to prove that Problem 2 can be 
reduced to the MWIS problem. In the following subsection, we 
will describe how to enhance the accelerated MIS-based 
approach, i.e., IMBA, which combines ICGA, GRA, and H2K, to 
construct a weighted conflict graph and find an MWIS solution. 
We name this modified approach as EMBA. 

C. MWIS-based Approach 
Given a routed design, the corresponding weighted conflict 

graph G(V, E) is constructed by ICGA and GRA with the 
following modifications. ICGA is modified such that it will treat 
each line-end extended via as a double via, and assign a weight 
to each vertex. This modified IGCA is named WIGCA. Since 
maximizing the amount of inserted redundant vias is the most 
important goal, GRA is modified in such a way that none of the 
vertices corresponding to feasible line-end extended vias is 
considered as a candidate for adding to the final independent set 

solution even if no external edge is incident to the vertex. This 
modified GRA is called WGRA. Let MWIS1 be the set of vertices 
selected and added to the final solution by WGRA. The set 
MWIS1 contains redundant vias only. 

After G is constructed, H2K is applied to find a maximal 
weighted independent set MWIS2 of G with the following 
modifications. First, each vertex in the priority queue is added 
with the third key. If a vertex corresponds to a line-end extended 
via, it will have a lower priority on this key. With this 
modification, for vertices having the same feasible number and 
degree, the ones corresponding to redundant vias will be 
extracted first, and hence have higher chances to be included in 
the final solution. Second, a maximal weighted independent set 
is found from the extracted subgraph at each iteration. This 
modified H2K is called WH3K. 

Finally, the union of MWIS1 and MWIS2 is output as the final 
solution. 

V. Via-Density-Constrained Simultaneous 
Redundant Via Insertion and Line End Extension 
In this section we first describe the via density rules and give 

the problem formulation of simultaneous redundant via insertion 
and line end extension under the maximum via density rule. We 
then detail our two-stage approach for solving the problem. 

A. Via Density Rules and Problem Formulation 
To analyze via density, each via layer VIAi is partitioned into 

a set R(i) of overlapping rectangular regions each of which has 
the same width W and height H, where W and H are process-
dependent constants. All the regions in R(i) are organized into 
an m-row by n-column structure. See Fig. 10 for an illustration. 
We use r(i,j,k) to represent the region which is in R(i) and 
located at row j and column k. For any two neighboring regions 
r(i,j,k) and r(i,j,k+1) in the same row, such as regions A and B in 
Fig. 10, their overlapped distance in the x-direction is defined to 
be (1/λ)W, where λ is a process-dependent constant. Similarly, 
for any two neighboring regions r(i,j,k) and r(i,j+1,k) in the 
same column, such as regions A and C in Fig. 10, their 
overlapped distance in the y-direction is defined to be (1/β)H, 
where β is a process-dependent constant. Therefore, a via is 
possible to be located in more than one region. 

For each region r(i,j,k), its via density, denoted by 
density(i,j,k), is defined as the number of vias5  located in it.  
Two design rules related to via density, called the minimum via 
density rule and the maximum via density rule, can be 
considered. The minimum via density rule requires density(i,j,k) 
be greater than or equal to L for each region r(i,j,k), where L is a 
process-dependent constant. On the other hand, the maximum 
via density rule requires density(i,j,k) be less than or equal to U 
for each region r(i,j,k), where U is a process-dependent constant. 
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Fig. 10. Illustration for the via regions. 

  One method to meet the minimum via density rule is to add 
dummy vias [16] (if necessary), which unlike “normal” vias, are 
not used to provide signal paths between metal layers. In this 
paper, we assume the given routed design satisfies both the 
                                                 
5 Each of such vias can be a single via, a redundant via, or a line-end 
extended via. 
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minimum and maximum via density rules, and hence only the 
maximum via density constraint needs to be taken into account 
after adding redundant vias. Now Problem 2 is modified below 
to set Problem 3, while considers the maximum via density rule 
as well. 
Problem 3. Given a detailed routing solution which already 
satisfies the minimum and maximum via density rules, without 
re-routing any signal net, the problem asks to replace single 
vias on signal nets with double vias or line-end extended vias 
such that after replacement, both the amounts of double vias 
and line-end extended vias are as large as possible. In addition, 
two conditions must be satisfied after replacement: First, each 
single via either remains unchanged, or is replaced by a double 
via or a line-end extended via. Second, no design rule, including 
the maximum via density rule, is violated. 
B. Overview of Our Two-stage Approach  

In this subsection, we give an overview of our two-stage 
approach for solving Problem 3. The details are described in the 
next two subsections. 

In the first stage, the maximum via density rule is ignored, 
and we modify EMBA 6  such that in addition to performing 
simultaneous redundant via insertion and line end extension, it 
also reports the “violating” regions each of which violates the 
maximum via density constraint because of excess redundant 
vias inserted.  Besides, for each violating region, the set of 
redundant vias that have been inserted in it, and the minimum 
number of redundant vias that must be deleted from it in order 
to meet the maximum via density rule are also generated.   

In the second stage, we remove from each violating region 
redundant vias7 such that after the removal, the maximum via 
density rule is satisfied while the total amount of removed 
redundant vias is as small as possible. This redundant via 
removal problem will be formulated as a set of zero-one integer 
linear programming (0-1 ILP) problems each of which is solved 
independently without sacrificing the optimality.  

In the next two subsections, we first describe how to modify 
EMBA so as to efficiently find all the violating regions; we then 
explain the details of the 0-1 ILP approach.  

C. Via Density Calculation 
In this subsection, we describe how to extend EMBA to 

generate the information on each violating region, in addition to 
performing simultaneous redundant via insertion and line end 
extension. 

For each region r(i,j,k), let #sv(i,j,k) denote the number of 
single vias located in the region, and let sv_set(i,j,k) denote the 
set of single vias, each of which has at least one feasible 
redundant via (which may or may not be inserted into the design 
later) located in the region. It is not hard to see that a region 
r(i,j,k) will not violate the maximum via density rule after 
adding redundant vias, if #sv(i,j,k)+|sv_set(i,j,k)| is less than or 
equal to U.  Let DANGER={r(i,j,k) | #sv(i,j,k)+|sv_set(i,j,k)|＞U, 
for all i, j and k} be the set of regions which are possible to 
violate the maximum via density rule after redundant via 
insertion. For each feasible redundant via v’, let reg_set(v’) be 
the set of regions each of which is in DANGER and contains v’. 
During the course of constructing the weighted conflict graph 
by WIGCA, we want to calculate #sv(i,j,k), sv_set(i,j,k), 
DANGER and reg_set(v’) as well. Therefore, we add the 
following extensions to WIGCA.  

At the beginning, #sv(i,j,k) is 0, and sv_set(i,j,k),  DANGER  
and reg_set(v’) are all empty sets. For each via layer VIAi, all its 

                                                 
6 We can also discuss a variant of Problem 3, in which only redundant 
via insertion is considered. For this variant, we can modify IMBA and 
apply it in the first stage. 
7 Line-end extended vias will not be candidates for removal because 
each of them corresponds to a single via but with larger extension 
distance and therefore removing it will make a net become disconnected.   

regions are sorted by the x-coordinates of their lower left 
corners in the non-decreasing order, and an R-tree is 
dynamically maintained to store its regions. These R-trees are 
initially empty. Suppose v located at (xv, yv) of the via layer VIAi 
is the single via being under consideration by WIGCA.  If none 
of the x-coordinates of the single vias that have been processed 
is equal to xv, the R-tree for each via layer will be updated as 
follows. Suppose XLL(dv(v,DVL)) and XUR(dv(v,DVR)) are equal 
to xll and xur, respectively, as shown in Fig. 11. We first extract 
and delete from each R-tree all the regions contained in the 
range [-∞, xll] [-∞, +∞] (such as Region 1 shown in Fig. 11), 
because none of the single vias which have not been processed 
by WIGCA, and none of their feasible double vias are located in 
these regions. For each deleted region r(i,j,k), if 
#sv(i,j,k)+|sv_set(i,j,k)|＞U, we add r(i,j,k) to both DANGER and  
reg_set(v’) for each feasible redundant via v’ that is contained in 
r(i,j,k). Then for each region r(i,j,k) remaining in the sorted 
order, if XLL(r(i,j,k)) is less than xur, it is removed from the 
sorted order and inserted into the corresponding R-tree. For each 
via layer, this updating process is repeated on its R-tree until the 
first region r(i’,j’,k’) with XLL(r(i’,j’,k’)) greater than xur (such as 
Region 2 shown in Fig. 11) is reached or no object remains in 
the sorted order. 

After updating the R-trees (if necessary), we use the via cut of 
v as the query window to do range query on the R-tree 
corresponding to the via layer VIAi on which v is located.  For 
each queried region r(i,j,k) that encloses the query window, we 
increase #sv(i,j,k) by one. Besides, for each feasible redundant 
via v’ of v, we use its via cut as the query window to do range 
query on the corresponding R-tree as well; for each queried 
region r(i,j,k) that encloses the query window, v’ is found to be 
contained in r(i,j,k),  and if v is not in  sv_set(i,j,k) yet, we add v 
to sv_set(i,j,k). 
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(xv, yv)
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Fig. 11. Illustration for the dynamically updating strategy. 

After all single vias of the design have been processed by 
WIGCA, for any remaining region r(i,j,k) in each R-tree, if  
#sv(i,j,k)+|sv_set(i,j,k)|＞U, we add r(i,j,k) to both DANGER and  
reg_set(v’) for each feasible redundant via v’ that is contained in 
r(i,j,k). 

After applying WH3K to perform simultaneous redundant via 
insertion and line end extension, let Rvio denote the set of all 
regions each of which violates the maximum via density rule; 
besides, for each region r(i,j,k) in Rvio, let rv_set(i,j,k) denote the 
set of all redundant vias that have been inserted into r(i,j,k), and 
let #del(i,j,k) be the minimum number of redundant vias that 
must be deleted from r(i,j,k) in order to meet the maximum via 
density rule (i.e., density(i,j,k) – #del(i,j,k) = U). Rvio, rv_set(i,j,k) 
and #del(i,j,k) are computed as follows. For each redundant via 
v’ that has been inserted into the design, we add v’ to rv_set(i,j,k) 
for each r(i,j,k)∈reg_set(v’). For each region r(i,j,k)∈DANGER, 
if #sv(i,j,k)+|rv_set(i,j,k)| ＞ U, it will be added to Rvio, and 
#del(i,j,k) will be set to #sv(i,j,k)+|rv_set(i,j,k)|  – U. 

D. Redundant Via Removal 
When the first stage of our approach is done, Rvio, rv_set(i,j,k) 

and #del(i,j,k) are ready for use in the second stage, for all 
r(i,j,k)∈ Rvio. If Rvio is empty, it means that the solution of 
simultaneous redundant via insertion and end line extension 
generated in the first stage already satisfies the maximum via 
density rule, and therefore nothing is done in the second stage. 
On the other hand, if Rvio is not empty, the following problem is 
solved in the second stage. 
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Problem 4. Given Rvio, rv_set(i,j,k) and #del(i,j,k) for each 
r(i,j,k)∈ Rvio, the problem asks to remove redundant vias from 
each rv_set(i,j,k) at least by the amount #del(i,j,k) such that 
after the removal, each resulting region r(i,j,k) satisfies the 
maximum via density rule while the total number of redundant 
vias removed is minimized. 

We now describe a 0-1 ILP-based method to optimally solve 
Problem 4.  Let 
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where each redundant via rvp is associated with a zero-one 
variable Xp and if Xp is 1, the redundant via rvp will be deleted 
from the design. The number of constraints and variables in the 
0-1 ILP problem are equal to the number of regions violating 
the maximum via density rule, and the number of redundant vias 
located in these regions, respectively. For a large and/or high 
routing congestion design, the number of variables and/or 
constraints of the 0-1 ILP problem could become large.  

In order to reduce the time complexity, we partition Rvio into 
disjoint subsets Sub1, Sub2, …, Subt (with t ≤ |Rvio|) such that 
the following two conditions hold for each subset Subq : (1) If 
there are two or more regions in Subq, then for each region 
r(i,j,k)∈Subq, there must exist a redundant via rv and another 
region r(i’,j’,k’)∈Subq such that rv is contained in both regions 
r(i,j,k) and r(i’,j’,k’). (2) For each region r(i,j,k)∈Subq, if a 
redundant via rv is contained in r(i,j,k), then rv is not contained 
in any region in Rvio–Subq. It is not hard to verify that we can 
individually formulate and solve a 0-1 ILP problem for each 
Subq without sacrificing the optimality. Besides, for each Subq, 
if it has only one region, we will arbitrarily delete the redundant 
vias from the region by the amount #del(i,j,k). The partitioning 
of Rvio can be correctly done by the Union-Find algorithm [3].  

VI. Experimental Results 
We used a 0.18μm technology which has 5 metal layers in our 

experiments. For simplicity we directly used the R*-tree 
package [11] for indexing 2-dimensional geometric information 
of layout objects. We used the qualex-ms [9] as the MIS or 
MWIS solver. Besides, we also limited the subgraph extracted 
at each iteration of H2K or MH3K to consist of 1500 vertices at 
most. Moreover, we used the lp_solver [8] as our 0-1 ILP solver. 
All the experiments were conducted on a Linux based machine 
with 2.4G processor and 4GB memory. All the run times are 
measured in seconds. 

Table 1: The test cases 
Case Size(μm) #Nets #I/Os #Vias #Layers #Objects

C1 350.000*350.000 4309 20 24594 5 218215
C2 419.433*413.28 5252 211 41157 5 268669
C3 799.124*776.16 18157 85 127059 5 933852
C4 691.272*680.400 17692 415 151912 5 934073
C5 1383.482*1375.92 44720 99 357386 5 2851612

The test cases we used are the same as those in [13] and the 
detailed information is shown in Table 1; for each test case, the 
first column shows the circuit name, “Size(μm)” gives the 
layout dimension, “#Nets” shows the number of nets, “#I/Os” 
gives the number of I/O pins, “#Vias” shows the total number of 
single vias, and “#Layers” gives the number of metal layers 
used. Finally, “#Objects” gives the total number of layout 
objects including pins, vias, blockages and wire segments.   

To see how much run time reduction could be achieved by 
our two speed-up methods, IGCA and GRA, we first focus on 
the problem of redundant via insertion. The results are shown in 
Table 2, where the columns “[13]”, “IGCA+H2K” and “IMBA” 
are the redundant via insertion results after applying H2K on the 
conflict graphs generated by GCA, IGCA, and IGCA+GRA, 
respectively. The column under “#RV” gives the number of 
redundant vias inserted by the approach given in [13], and the 
column “#diff” under each of “IGCA+H2K” and “IMBA” gives 
the difference between the number of redundant vias inserted by 
[13] and the number of redundant vias inserted by 
“IGCA+H2K” or “IMBA”. Each column “T(s)” gives the run 
time of each approach, and the column “Speed-Up” under 
“IGCA+H2K” or “IMBA” gives the speed-up ratio of 
“IGCA+H2K” or “IMBA” over “[13]”. 

From Table 2, we can see that running IGCA alone is 
1.98~2.46X (2.04X on average) faster than [13] while 
maintaining the same amount of redundant vias inserted for 
each test case.  When we applied both IGCA and GRA, the 
speed-up ratio becomes even higher, ranging from 2.52 to 3; the 
average speed-up ratio is 2.92. Except for the test case C4, the 
total number of redundant vias inserted by IMBA for any other 
case is the same as that reported by [13]. The reason why IMBA 
inserted 2 less redundant vias for the test case C4 is that the size 
of the conflict graph was reduced before H2K was applied, and 
H2K could only guarantee to generate a maximal independent 
set (which is not necessarily a maximum independent set). 

Table 2: Experimental results of [13], IGCA+H2K and IMBA 
[13] IGCA+H2K IMBA 

 
#RV T(s) #diff T(s) Speed- 

Up #diff T(s) Speed-
Up 

C1 17461 32 0 13 2.46X 0 11 2.90X 
C2 28507 43 0 20 2.15X 0 17 2.52X 
C3 91461 192 0 86 2.23X 0 67 2.86X 
C4 101765 203 0 98 2.07X -2 72 2.81X 
C5 254428 710 0 361 1.98X 0 236 3.00X 

Avg.  1   2.04X   2.92X 

For the problem of simultaneous redundant via insertion and 
line end extension, there is no existing approach. Therefore we 
develop a two-stage MIS-based approach called 2SMIS, and 
compare it with our approach EMBA. The main idea of 2SMIS is 
to insert redundant vias in the first stage, and then perform line 
end extension in the second stage. 2SMIS was implemented 
based on an extension of the MIS-based approach [13] by 
applying H2K twice, one on a conflict graph consisting of 
vertices corresponding to redundant vias only, and the other on 
another conflict graph consisting of vertices corresponding to 
line-end extended vias only. Note that the number of redundant 
vias inserted by 2SMIS is always the same as that produced by 
the MIS-based approach [13].  

In Table 3, the rows “2SMIS” and “EMBA” show the 
experimental results of the two approaches 2SMIS and EMBA, 
respectively. The column “Upp.” denotes the number of single 
vias each of which has at least one feasible double via or one 
feasible line-end extended via. (Note that “Upp” can be thought 
of as an upper bound on the total number of redundant vias and 
line-end extended vias that can be inserted.) “#RV” and “#LE” 
show the numbers of redundant vias and line-end extended vias 
inserted, respectively. “R(%)” gives the ratio of  the sum of 
“#RV” and “#LE” (i.e., “#RV” + “#LE”) to “Upp.”.  “T(s)” 
gives the CPU time of each approach.  “Speed-Up” gives the 
speed-up ratio of “EMBA” over “2SMIS”. 

From Table 3, we can see that compared to 2SMIS, our 
approach EMBA is able to insert the same (for three test cases) 
or almost the same (differs by 1 or 2 for the other two test cases) 
number of redundant vias, and more line-end extended vias (for 
all test cases).  (Note that EMBA could insert less redundant vias 
because it is just a heuristic for the MWIS problem.)  As a result, 
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the total amount of redundant vias and line-end extended vias 
inserted by our approach is closer to the upper bound (the ratio 
ranges from 99.47% to 99.74%) than 2SMIS. Besides, EMBA 
was 2.53~3.11X (2.92X on average) faster than 2SMIS.  

Table 3: Experimental results of EMBA and 2SMIS 

Case Upp.  #RV #LE R(%) T(s) Speed
-Up 

2SMIS 17461 741 99.69 33 C1 18258 
EMBA 17461 751 99.74 13 

2.53X

2SMIS 28507 513 99.70 46 C2 29106 
EMBA 28506 519 99.72 19 

2.42X

2SMIS 91461 1946 99.71 206C3 93675 
EMBA 91461 1972 99.74 75 

2.74X

2SMIS 101765 1917 99.44 217C4 104263 
EMBA 101765 1947 99.47 82 

2.64X

2SMIS 254428 5730 99.66 814C5 261035 
EMBA 254426 5791 99.68 261

3.11X

Avg. 2.92X
For the problem of simultaneous redundant via insertion and 

line end extension under the maximum via density rule, the 
width and height of each region on a via layer were set to 
10.08μm and 8.4μm, respectively, for each test case. Both λ and 
β, defined in section V-A, were set to 3. For implementation 
simplicity, we used the center of a via to judge whether the via 
is located in a region. We observed that among all test cases, the 
maximum number of single vias located in a region was 30, and 
therefore in order to enforce a very tight maximum via density 
rule in our experiments, the maximum number of vias, including 
single vias, redundant vias and line-end extended vias, that 
could be located in a region was set to 30. The additional run 
times spent by the first stage of our approach on generating the 
information on violating regions were 2, 2, 18, 132, and 65 
seconds for the five test cases, respectively. In the following 
discussion, we only focus on the redundant via removal problem. 

Table 4. Statistics on the redundant via removal problem 

Case # 
Regions 

#Vio. 
Regions 

#Sub- 
prob. 

#Cand. 
rv 

C1 52500 252 52 2238 
C2 74000 412 90 3638 
C3 257984 956 223 8478 
C4 187200 9363 220 44396 
C5 810816 1402 334 12648 

The input statistics are shown in Table 4. For each test case, 
the column “#Regions” denotes the total number of regions. 
“#Vio. regions” gives the number of regions violating the 
maximum via density rule, i.e., |Rvio|. “#Sub-prob.” shows the 
number of subsets which have more than one region, after the 
partitioning of Rvio was done. (Note that “#Sub-prob.” also 
specifies the number of 0-1 ILP problems to be solved.) “#Cand. 
rv” is the total number of distinct redundant vias that are 
inserted in the regions of Rvio, i.e., |VEX|. 

We also implemented two heuristics, called GREEDY and 
RANDOM, for comparative studies. GREEDY first creates a 
priority queue to store all the redundant vias in VEX. Each 
redundant via is associated with a key which is measured by the 
number of violating regions containing the redundant via. The 
method iteratively extracts from the priority queue a redundant 
via with the largest key, and deletes it from the design. Since 
deleting a vertex may cause the decrease of the keys for other 
redundant vias, the priority queue may need update after each 
deletion. As soon as no violating region exists, the method 
terminates. The second heuristic, RANDOM, iteratively selects 
a violating region randomly, and removes excess redundant vias 
from that region arbitrarily until there exists no violating region. 

The number of redundant vias removed by each method and 
the run time are shown in the corresponding columns under “# 
of removed rv” and “T(s)” of Table 5, respectively. The 

columns “0-1 ILP”, “Greedy” and “Random” show the results 
of the 0-1 ILP methods (with and without doing partitioning), 
GREEDY and RANDOM, respectively. The columns “P” and 
“NP” under “T(s)” give the run times of both 0-1 ILP methods, 
respectively, where “P” stands for our method and “NP” is the 
one without doing partitioning on Rvio. It is clear to see that 
partitioning the whole 0-1 ILP problem into a set of smaller 
problems helps to improve the run time for each test case; 
without doing partitioning, it is 6 times slower on average. 
Surprisingly our 0-1 ILP method with partitioning also runs 
faster than GREEDY for almost all test cases; on average 
GREEDY is 3.82 times slower. The reason why GREEDY is 
slower is mainly due to the overhead caused by updating the 
priority queue after each via removal. For each test case, 
although RANDOM runs much faster than our method, the 
amount of redundant vias removed by it is also much larger. 
Similarly GREEDY also removed more redundant vias than our 
method. On average, GREEDY and RANDOM are 1.5% and 
29.6% worse in terms of the number of redundant vias removed. 

Table 5: The performance comparison 
# of removed rv T(s) 

0-1 ILP Case 0-1 ILP Greedy Random 
P NP 

Greedy Random

C1 387 389 486 0.03 0.09 0.03 <0.01 
C2 625 627 748 0.05 0.22 0.08 <0.01 
C3 1501 1502 1762 0.13 1.32 0.89 <0.01 
C4 10631 10856 14379 14.3 84.0 52.2 0.04 
C5 2370 2373 2732 0.26 3.11 3.25 0.01 

Avg. 1 1.015 1.296 1 6.00 3.82 0.003 

VII. Conclusions and Future Works 
In this paper, we have studied three post-routing via 

yield/reliability improvement problems, and have presented 
novel approaches for them. The experimental results well 
support all our approaches. Our future work is to study how to 
consider redundant via insertion, line end extension, and via 
density rules all together in one single stage. 
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