
Formal Model of Data Reuse Analysis
for Hierarchical Memory Organizations�

Ilie I. Luican Hongwei Zhu Florin Balasa

Dept. of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, U.S.A.

Abstract – In real-time data-dominated communication and
multimedia processing applications, due to the manipulation
of large sets of data, a multi-layer memory hierarchy is used to
enhance the system performance and also to reduce the energy
consumption. Savings of dynamic energy can be obtained by
accessing frequently used data from smaller memories rather
than from large background memories. The optimization of
the hierarchical memory architecture implies the addition of
layers of smaller memories to which heavily used data can be
copied. This paper presents a formal model for data reuse
analysis which identifies those parts of arrays more intensely
accessed, taking also into account the relative lifetimes of the
signals. Tested on a two-layer memory hierarchy, this model
led to savings in the dynamic energy from 40% to over 70%
relative to the energy used in the case of a flat memory design.

1 Introduction

In advanced embedded real-time communication and multimedia
processing applications, the manipulation of large data sets has a
major effect on both power consumption and performance of the
system. This is due to the significant amount of data transfers
to/from large and energy consuming off-chip data memories. The
power cost can be reduced and the system performance enhanced
by introducing an optimized custom memory hierarchy that ex-
ploits the temporal locality in the data accesses [2, 10].

Power savings can be obtained by accessing frequently used
data from smaller memories rather than from large background
memories. The optimization of the hierarchical memory architec-
ture implies the addition of layers of smaller memories to which
heavily used data can be copied. On one hand, this optimization

�This research was sponsored by the U.S. National Science Foundation (DAP
0133318).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

must trade-off between the reduction of power consumption by
accessing the data from smaller memories, and the increase of
power consumption because of the additional transfers between
memory layers; on the other hand, the optimization must trade-off
between the reduction of power consumption due to memory frag-
mentation, and the increase in area (another significant component
of the chip cost in data-dominated applications) and interconnect
cost due to the additional memory necessary to store the copies,
and also because of the additional area overhead (like addressing
logic) due to the memory fragmentation.

The aim of the memory hierarchy design is to find the best so-
lutions for these trade-offs at an early stage of the system design.
Note that this problem is basically different from caching for per-
formance [5, 9], where the question is to find how to fill the cache
such that the data needed have been loaded in advance from the
main memory.

Part of the research work focused on how to restructure the ap-
plication code to make better use of the available memory hierar-
chy [8]. For instance, the importance of loop fusion (alone, or in
combination with loop shifting) was revealed as the basic transfor-
mation for improving the data locality [6]. But since it was proven
[4] that the search for optimal loop fusion for global array contrac-
tion is an NP-complete problem, heuristics based on data locality –
which is a rather abstract measure – are used in the existing works.

A second major research direction of the previous works was
the partitioning of the arrays into copy candidates and the opti-
mal selection and mapping of these into the memory hierarchy
[15, 1, 6]. The general idea is to identify the data (arrays or parts of
arrays) that are most frequently accessed in each loop nest. Copy-
ing these heavily accessed data from the large off-chip memory to
a smaller on-chip memory can potentially save energy (since most
accesses will take place on the smaller copy and not on the large,
more energy consuming, original array) and also improve perfor-
mance. Many different possibilities exist for deciding on which
parts of the arrays should be copy candidates and, also, for se-
lecting among the candidates those which will be instantiated as
copies and their assignment to the different memory layers.

For instance, [7] analyses and exploits the temporal locality by
inserting local copies. Their layer assignment builds a separate
hierarchy per loop nest and then combines them into a single hier-
archy. However, the approach lacks a global view on the (part of)
arrays lifetimes in applications having imperfect nested loops. [1]

595

use the steering heuristic of assigning the arrays having the highest
access number over size ratio to the cheapest memory layer first,
followed by incremental reassignments. They take into account
the relative lifetime differences between arrays (“inter in-place”)
and between the scalars covered by each array (“intra in-place”).
However, it is not clear whether the copy candidates can be also
parts of arrays instead of entire arrays (and if so, how they identify
these parts) since the access patterns are, in general, not uniform.
[6] can use parts of arrays as copies, using the index spaces of the
array references and also their intersections.

The previous models of data reuse, even those claiming being
formal, contain approximate determinations which may influence
significantly the accuracy of the results. Typical approximations
made in the name of “computation efficiency” [6] are done when,
for instance, the sizes of copy candidates are computed (which are,
actually, only estimated), or in the computation of the number of
memory accesses, or in the computation of the number of misses
(the number of data transfers directly from the farther memory
layer). As a result, the sizes of the memory layers are estimated as
well (rather than computed), even when the code of the application
is procedural (that is, the loop organization is fixed and provides
the execution order).

This paper introduces a formal model for data reuse analysis,
by applying algebraic techniques specific to the data-flow analy-
sis used in modern compilers. The specifications are considered
to be procedural, therefore the execution ordering is induced by
the loop structure and it is thus fixed.� Since the mathematical
model is very general, the proposed approach is able to handle the
entire class of “affine” specifications [2], the code being organized
in sequences of loop nests having as boundaries linear functions of
the outer loop iterators, conditional instructions where the condi-
tions may be both data-dependent or data-independent (relational
and/or logical operators of linear functions of loop iterators), and
multi-dimensional signals whose array references have (possibly
complex) linear indices. This model identifies those parts of arrays
which are more intensely accessed, taking into account the relative
lifetimes of the signals both for each array and between distinct ar-
rays (intra and inter in-place). The data reuse model was tested for
the time being assuming two memory layers (scratch-pad� and off-
chip memories), focusing on the reduction of the dynamic energy
consumption due to memory accesses. Extensions of the model to
an arbitrary number of memory layers, as well as improving per-
formance in addition to energy savings will be considered in the
future.

The rest of the paper is organized as follows. Section 2 presents
the polyhedral data reuse model. Section 3 discusses the main
ideas of the memory allocation and hierarchy layer assignment.
Section 4 discusses implementation aspects and presents experi-
mental results. Finally, Section 5 summarizes the main conclu-
sions of this research.

�The search space becomes much larger still when also the available freedom
in loop organization is incorporated. If the original loop ordering is not optimally
suited to exploit data locality, code transformations should be applied (like in [6],
for instance) in an earlier phase to increase it.

�Software-controlled SRAM or DRAM, more energy-efficient than caches.

2 The partitioning of the array space

Each array reference � ������� � � � � ���� � � � ������� � � � � ���� of
an �-dimensional signal � , in the scope of a nest of � loops
having the iterators ��� � � � � �� , is characterized by an iterator
space and an index space. The iterator space signifies the set of
all iterator vectors i = ���� � � � � ��� � �� in the scope of the
array reference. The index (or array) space is the set of all index
vectors x = ���� � � � � ��� � �� of the array reference. When
the indices of an array reference are linear expressions with integer
coefficients of the loop iterators, the index space consists of one or
several linearly bounded lattices (LBLs) [13]:

� � � � � �� � � �� � � � � � � � � � ��� (1)

where x� �� is the index vector of the�-dimensional signal and
i� �� is an �-dimensional iterator vector. For instance:

��	 �� � �� � � �� ����
��	 �
 � ��
 � 	�
 ��� � � ���	��
��
�� �
� � � �

the index space of the array reference can be represented as���
��
�

�

�

�
�

�
� �

� �

��
�

�

� �
��

� �

�� �

� �

� ��

	

�
�

�

�

�
�

�
��

�

��

�

��

	

�
��
��

For simplicity of presentation, it will be assumed along this pa-
per that each array reference can be represented as one LBL (but
an array reference in the scope of a condition �� �� ��
� has two
LBLs, one for � �
 � � and one for � �
 � �).

The goal is to identify the parts of the arrays in the given al-
gorithmic specification that are heavily accessed during the code
execution. This can be accomplished (as it will be seen) by a par-
titioning of each index space into sets which are all LBLs.

2.1 The index space of an array reference

Let � � � � � � � � � � � � � � � be the linearly bounded
lattice of a given array reference. This section will show how to
model the index space of an array reference, that is, what are the
relations satisfied by the coordinates x of the points in this set.
After the theoretical part, illustrative examples will be provided.

For any matrix � � ���� having 	��� � 	 , and assuming
the first 	 rows of T are linearly independent,� there exists a uni-

modular matrix � � ���� such that � � � �

�
��� 	

��� 	

�
,

where ��� � ���� is a lower triangular matrix with positive
diagonal elements, and ��� � �

������� [12]. The block matrix
is called the reduced Hermite form of matrix T.

Let ����
���
�
 	

�

�

�

�
, where
��
� are 	-, respectively

��� 	�-, dimensional vectors. Then

� � ��� � � ��
� � �

�
���

���

�

� � � (2)

�This assumption does not decrease the generality: it is done only to simplify
the formulas, affected otherwise by a row permutation matrix.

596

Denoting � �

�
��
��

�
, and � �

�
��

��

�
(where �� � �� are

	-dimensional vectors), it follows that �� � ���
� � �� . As
��� is nonsingular (being lower triangular of rank),
� can be
obtained explicitly:

� � ���
�� ��� � ��� (3)

The iterator vector i results with a simple substitution:

� � �

�

�

�

�
�
�
�� ��

� � ���
�� ��� � ���

�

�

� ���
��
�� ��� � ��� � ��
�

where �� and �� are the submatrices of S containing the first
	 , respectively the last ��	 , columns of S. As the iterator vector
must represent a point inside the iterator space � � � � � , it
follows that:

����
��
�� �� � ���
� � � � ����

��
�� �� (4)

If 	 � � , the �� 	 variables of
� can be eliminated with the
Fourier-Motzkin technique [3].

As the rows of matrix ��� are 	 linearly independent 	-
dimensional vectors, each row of ��� is a linear combination
of the rows of ��� . Then from (2), it results that there exists a
matrix � �
������� such that�

�� � �� � � � ��� � ��� (5)

Taking into account that the elements of
� must be integers, it
follows (by multiplying and dividing the right member of (3) with
��� ���) that the points � inside the index space must supple-
mentarily satisfy the divisibility constraints

������ ��� ��� � ��� �� � �� � � � � 	 (6)

where ��� are the rows of the matrix with integer coefficients
������ � �

��
�� , and ��� means ”� divides �”. According to (6),

when 	 � �, the points x are uniformly spaced along the 	 lin-
ear independent coordinates, the size of gaps in these dimensions
being equal to the diagonal elements of ���: if ��� are the diago-
nal elements of matrix ��� , it can be verified that the divisibility
constraints (6) are not affected when �� is subject to translations of
vectors � � �� � � � ��� � � � �� , �� � �� � � � � 	. Indeed, ��� ��� �
�� � �� � ��� ��� � ��� � ��� � � ��� ��� � ��� � ������ .

The system of inequalities (4), the equations (5), and the di-
visibility conditions (6) characterize the index space of the given
array reference. Several examples will illustrate the generality of
this model.

Example 1: ��	 �� � �� � � �� ����
��	 �
 � ��
 � 	�
 ��� � � ���	���
�� �
� � � �

Since T=H��=

�
	 �

 �

�
, H��

�� = �
�

�
� �

�
 	

�
, u=u�=

�
�
�

�
,

S=S�=

�
� �
� �

�
(S�, j� do not exist since � � 	 � � � � � �;

�The coefficients of matrix C are determined by backward substitutions from
the equations: H�� .row(�� �

��

���
��� � ��� .row(�) for any � �

�� � � � �� � � .

2

4

6

8

10

12

14

16

x

y

-5x+3y=0

-5x+3y=18

630

Figure 1: The index space of the array reference in Example 1.

H��, x�, u� do not exist since��	 � ��� � �), the inequalities

(4) with x�=

�
�
�

�
are: � � � � � � � � �
� � 	� � � ,

representing the quadrilateral in Fig. 1. Not all the lattice points
in the quadrilateral have coordinates the index values of the array
reference. Only the lattice points satisfying also the divisibility
conditions (6): � �� (or 	 �) and � �
�� 	�
belong to the index space. Note also that these lattice points, col-
ored black in the figure, are uniformly spaced along the two axes
�� and ��, the size of the gaps in these dimensions being 3 and
2, the diagonal elements of H��.

Example 2: ��	 �� � �� � � �� ����
��	 �
 � ��
 � 	�
��� � � ���	��
��
���
� � � �

Since T=

�
	 �

 �

�
, H��=H��

�� =

�
� �
� ��

�
, S=S�=

�
� �
� �	

�
,

the inequalities (4) are: � � ��� � � � � 	 � �
��	� � � .
Since ������ � �, there are no divisibility conditions (6).

This representation model of the index space of an array refer-
ence is used in the decomposition algorithm (Section 2.2), specif-
ically, in computing the difference between two LBLs.

2.2 The full decomposition of the array references
into disjoint bounded lattices

The analytical decomposition of the array references of every sig-
nal into disjoint bounded lattices can be performed by a recursive
intersection, starting from the array references in the code. Two
operations are relevant in our context: the intersection and the dif-
ference of two LBLs. While the intersection of two LBLs was ad-
dressed also by other works (in different contexts, though) as, for
instance, [13], the difference operation is far more difficult. Be-
cause of lack of space, this operation will be described elsewhere.
Let � be a multi-dimensional signal in the algorithmic specifica-
tion. A high-level pseudo-code of the LBL decomposition is as
follows:

for all the array references of signal S
select an array reference and let ���� be its representation;

597

 Dopt[0] = 0 ; // A[11][289] : input
 for (j=32 ; j<=256 ; j++)
 { D[0][j][0] = 0 ;
 for (k=0 ; k<=8 ; k++)
 for (i=j-32 ; i<=j+32 ; i++)
 D[0][j][65*k+i-j+33] = A[4][j] - A[k][i]
 + D[0][j][65*k+i-j+32] ;
 Dopt[j-31] = D[0][j][585] + Dopt[j-32] ;
 }
 for(j=32 ; j<=256 ; j++)
 { D[1][j][0] = 0 ;
 for(k=1 ; k<=9 ; k++)
 for(i=j-32 ; i<=j+32 ; i++)
 D[1][j][65*k+i-j-32] = A[5][j] - A[k][i]
 + D[1][j][65*k+i-j-33] ;
 Dopt[j+194] = D[1][j][585] + Dopt[j+193] ;
 }
 for(j=32 ; j<=256 ; j++)
 { D[2][j][0] = 0 ;
 for(k=2 ; k<=10 ; k++)
 for(i=j-32 ; i<=j+32 ; i++)
 D[2][j][65*k+i-j-97] = A[6][j] - A[k][i]
 + D[2][j][65*k+i-j-98] ;
 Dopt[j+419] = D[2][j][585] + Dopt[j+418] ;
 }
 opt = Dopt[675]; // opt : output

A4 A5

A10

A8 A9

A11 A12

A13 A14

A15 A16

2312 2312

289 289

2023

578 578

96 96

225 225

A[4][y] A[6][y]

A[9][y]
0 <= y <= 288

A[x][y]
4 <= x <= 6
0 <= y <= 31

(a) (b)

A[x][y]
7 <= x <= 8
0 <= y <= 288

A[x][y]
2 <= x <= 8
0 <= y <= 288

A[x][y]
1 <= x <= 8
0 <= y <= 288

A[x][y]
2<= x <= 9
0 <= y <= 288

A[x][y]
4 <= x <= 6

257 <= y <= 288A17
225

A[5][y]

A2 A3
2601 2601

A[x][y]
1 <= x <= 9
0 <= y <= 288

A[x][y]
2 <= x <= 10
0 <= y <= 288

A1
2601

A[x][y]
0 <= x <= 8
0 <= y <= 288

A6
289

A7
289

A[10][y]
0 <= y <= 288

A[0][y]
0 <= y <= 288

A[1][y]
0 <= y <= 288

A[x][y]
2 <= x <= 3
0 <= y <= 288

32 <= y <= 256

Figure 2: (a) Illustrative example. (b) Inclusion graph resulted from the partitioning of the index (array) space of signal �; the arcs in
the graph show the inclusion relations between the sets; the weights of the nodes are the number of covered scalars. The index space of
each node is represented, as explained in Section 2.1, by inequalities (4) (equality and divisibility conditions are not necessary here).

for all the current disjoint LBLs of the signal S
select an LBL, let it be called ����;
compute ���� � ����;
if the intersection is not empty
then compute ����� ����������� and ����� �����������;
update the LBL collection of S and their inclusion graph;
repeat the above operations till no new LBL is created;

end for;
end for;

The inclusion graph is a directed acyclic graph whose nodes are
LBLs, and the arcs denote inclusion relations of the respective sets.
This graph is used on one hand to speed up the decomposition (for
instance, if the intersection ���� � ���� results to be empty, there
is no sense of trying to intersect ���� with the LBLs included in
���� since those intersections will be empty as well), and on the
other hand, to determine the structure of each array reference in
terms of disjoint LBLs.

Figure 2(b) shows the result of the decomposition for the 2-
dimensional signal � from the illustrative example in Fig. 2(a).
The bold circles represent the 6 array references of � from the
code. The 11 leaves of the inclusion graph represent the disjoint
LBLs that partition the index space of signal �. Each array ref-
erence in the code is either a disjoint LBL itself (like ��
, ���,
and ���), or it can be written as a union of disjoint LBLs (e.g.,
�� � �� � ��� � � � ���).

3 Hierarchical memory layer assignment
The decomposition of the index space of each multi-dimensional
signal allows to compute the number of memory accesses when
addressing the different parts of the arrays. If, for instance, the
number of read accesses of a certain partition (leaf in the inclusion
graph) is desired, the following computation scheme is used:

#accesses = 0;
for all the array references (operands) including the partition

select an array reference and find the expressions of
the iterators mapping the array reference to the partition;

#accesses += size of this set;
end for;

Example: Compute the number of memory (read) accesses to
the partition ��� (see Fig. 2(b)).

Since ��� is included in the array references ������ from all
the three loop nests (i.e., ��, ��, �	 in Fig. 2(b)), and also it
coincides with the operand ��
��
� in the second loop nest, the
contributions of the 4 array references must be computed. Since
the LBL of the partition is �� �
� � � � � �
� � � � 	�� and
the LBL of the first array reference is �� � � � � � � �
� �
 �
	�� � � ��
 � 	� � � �
 � 	��, the expressions of the
iterators mapping the array into ��� are �
 � ��� �
� � �
�� � �
� � ��� �� � 	�� �� �	� � �� � �� � 	��. The size of this
set is 13,569 [16].

The contributions of the other two array references ������ are
also 13,569 accesses each. Since the contribution of ��
��
� is
131,625 accesses, the total number of accesses is 172,332.

The potential benefit of loading a copy of a partition into the
scratch-pad memory (SPM) is quantified by a gain factor �� �
�����������������������	������ ����, similar as in [6]. The
number of misses refers to the partitions that are also written. In
order to keep the copy partition in the SPM consistent, when a
write occurs, that data is copied from the off-chip memory to the
SPM, and this is called a miss.

In Fig. 3 the gain factors are indicated on the index space of sig-
nal �, the darker areas being those parts more heavily accessed.
Note that the memory accesses are not uniformly distributed in-
side the partitions. (For instance, �[0][48] in the partition ��

598

0

32

256

288

0 4 5 6 10

765.92

151.82 151.82

49.50

49.50

50.61 50.61

101.22 101.22

 A6, A7 : 14,625
 A8, A9 : 29,250
A11, A12 : 87,750
A13, A14 : 4,752
A15, A16 : 172,332
 A17: 172,332

accessesPartitions:

A6 A11 A12 A7

A8 A9

A15 A16

A17

Figure 3: (a) The partitions of the index space of the signal �
and their number of memory accesses, and (b) the gain factors
of the different parts of the index (array) space of �. The darker
partitions are more heavily accessed.

is accessed 49 times, whereas �[0][148] is accessed 65 times.)
However, this approach allows to identify those parts of arrays
more accessed than others. What is different from other previ-
ous works, the analysis of the copy candidates to be loaded in the
SPM is not based on the arrays references (and their cuts along
the coordinates), but on the partitions of the array space exhibit-
ing high-value gain factors. It can be seen from Fig. 3(b) that the
array reference������ in the first loop nest, covering the columns
0 to 8 of the array space, has zones accessed with very different
intensities. Even cutting along the dimensions � and �, the cut
lines would intersect areas of very different gain factors. The ex-
ploration of the partitions having high gain factors leads to a better
reduction of the dynamic energy, as shown in Section 4.

Note that every element of the arrays and ��� is accessed
exactly once for reading and once for writing. Then, the gain fac-
tors of the partitions of and ��� are all zero since the number
of read accesses equals the number of misses. Therefore, these
partitions will not be chosen as copy candidates: loading (parts
of) and/or ��� in the SPM would not help reduce energy con-
sumption, but would actually increase it.

The mapping of the signal partitions to the off-chip and scratch-
pad memories is done using the model from [14]. According to it,
for each �-dimensional array � a window �!�� � � � � !�� is com-
puted; any access to an element of the array ������� � � � ������
is redirected to ������ ��� !�� � � � ����� ��� !�� (relative to a
base address). The window is computed such that two distinct ar-
ray elements alive should not be mapped by the modulo operations
to the same location. What is different in our case is that mapping
windows are computed not only for the whole arrays, but also for
the copy partitions to be loaded in the SPM (their windows being
typically “smaller” than the corresponding array window).

4 Experimental results

A hierarchical memory allocation tool has been implemented in
C++, incorporating the the data reuse analysis model described

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 225 450 675 1253 1831 2120 2409 2505 2601

5.65

5.04

4.43

3.83

3.52
3.21 3.11 3.00 2.88 2.86

SPM Size (locations)

E
ne

rg
y

 (
m

J)

Figure 4: Variation of the dynamic energy consumption with the
SPM size for the illustrative example in Fig. 2(a).

in this paper. For the time being, the tool supports only a two-
level memory hierarchy, where an SPM is used between the main
memory and the processor core. The dynamic energy is computed
based on the number of accesses to each memory layer. In comput-
ing the dynamic energy consumptions for SPM and main memory,
the CACTI power model is used [11]. In general, the ratio between
the energy consumed by an SPM access and the main memory
varies between one and two orders of magnitude. The energy per
access for an SPM is not a constant, but a size-dependent function
– the energy per access tends to increase as the SPM size grows;
however, for small SPM sizes up to a few KBytes the energy per
access is relatively constant. Typical SPM and main memory en-
ergy values for read accesses are 0.048 nJ and 3.57 nJ, respectively
(assuming memory sizes used in the illustrative example). The dy-
namic energy values for write accesses are slightly higher.

Note that, for the time being, the leakage energy was not taken
into account in the current computations, in part because of the
lack of accurate models and in part because the optimization
should be extended to take into account performance as well, be-
sides energy consumption (leakage energy being spent as long
memory is powered on, whereas dynamic energy is expanded only
when an access occurs). Since leakage becomes the dominant part
of energy consumption for 0.10 "� (and finer) technologies, one
of the future developments we are considering is to take leakage
into account as well.

Fig. 4 displays the dependence of the dynamic energy consump-
tion as a function of the SPM size. The first bar is the reference
and corresponds to a “flat” memory design, in which all operands
have to be retrieved from the main memory. The second bar shows
the energy used when the partition ��
 (of size 225 and gain fac-
tor 765.92) is copied from the main memory to the SPM and it is
accessed afterwards from there. Note that placing ��
, ���, and
��� in the SPM leads to 30% energy savings for an SPM size of
675 locations (the 4th bar). The energy overhead due to the copy
operations between the memory layers is taken into account, but
its value is negligible since the gain factors have high values. Fur-
thermore, this approach allows savings in the SPM size, too: since
some of the copy candidates have different lifetimes, different such

599

Application #Array refs. #Scalars #Mem. accesses Mem. size Energy ["#] SPM size Energy saved CPU [s]

Motion est. 13 265,633 864,900 2,465 3,088 1,416 50.73 % 23
Durbin alg. 21 252,499 1,004,993 1,249 3,588 764 73.25 % 28
SVD updating 85 3,045,447 29,500,000 34,950 105,315 12,672 46.51 % 37
Vocoder 236 33,619 200,000 11,890 714 3,879 39.44 % 8
Dyn. prog. 3,992 21,082,751 83,834,000 124,751 299,287 27,316 56.14 % 47

Table 1: Experimental results.

copies can share the same memory locations. For instance, the par-
titions�� and�� have disjoint lifetimes, hence�� can replace��
in the SPM without any increase of the SPM size, this being also
the case for � and ��. Hence, the difference between the size of
array A (3179 locations) in the main memory and the SPM size of
only 2601 locations. Due to the signal-to-storage mapping model
based on lifetime analysis, the main memory needs only 3181 lo-
cations, although the number of scalars in the illustrative example
is 399,405. In addition, using also an SPM of size 2601 locations,
the saving in dynamic energy consumption is over 45% (Fig. 4).

Table 1 summarizes the results of our experiments, carried out
on a PC with a 1.85 GHz Athlon XP processor and 512 MB mem-
ory. The benchmarks used are algebraic kernels (like Durbin’s
algorithm for solving Toeplitz systems) and algorithms used in
multimedia applications (like, for instance, an MPEG4 motion es-
timation algorithm). The table displays the numbers of array ref-
erences, scalar signals, and memory accesses; the main memory
size (in storage locations) and the dynamic energy consumption if
there is only one memory layer; the SPM size and the savings in
dynamic energy versus the single-layer memory; the CPU times.
Our experiments show that the savings in dynamic energy con-
sumptions are from 40% to over 70% relative to energy used in
the case of a flat memory design. For a better evaluation of our
data reuse model, another strategy of selecting the copy candi-
dates – based on array references and cuts along their dimensions
– has been tested as well. Although that latter model produced
significant energy savings as well, our model let to better savings
by 20%-30% (e.g., 24.65% for the motion estimation benchmark).

5 Conclusions

This paper has presented a formal model data reuse analysis which
allows to partition the index space of arrays in data-dominated ap-
plications such that those array parts heavily accessed are identi-
fied and used as redundant data in scratch-pad memories in order
to diminish the dynamic energy consumption due to memory ac-
cesses. This model let to energy savings of, typically, 40-70% and
proved to be better than a more classic model based on array ref-
erences and their cuts along the main dimensions.

References

[1] E. Brockmeyer, M. Miranda, H. Corporaal, F. Catthoor, “Layer as-
signment techniques for low energy in multi-layered memory or-

ganisations,” Proc. 6th ACM/IEEE Design and Test in Europe Conf.,
pp. 1070-1075, Munich, Germany, March 2003.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, A.
Vandecapelle, Custom Memory Management Methodology: Explo-
ration of Memory Organization for Embedded Multimedia System
Design, Kluwer Academic Publishers, Boston, 1998.

[3] G.B. Dantzig, B.C. Eaves, “Fourier-Motzkin elimination and its
dual,” J. Combinatorial Theory (A), vol. 14, pp. 288-297, 1973.

[4] A. Darte, “On the complexity of loop fusion,” Parallel Computing,
vol. 26, no. 9, pp. 1175-1193, 2000.

[5] J.Z. Fang, M. Lu, “An iteration partition approach for cache or local
memory thrashing on parallel processing,” IEEE Trans. on Comput-
ers, vol. C-42, no. 5, pp. 529-546, May 1993.

[6] Q. Hu, A. Vandecapelle, M. Palkovic, P.G. Kjeldsberg, E. Brock-
meyer, F. Catthoor, “Hierarchical memory size estimation for loop
fusion and loop shifting in data-dominated applications,” Proc.
Asia-South Pacific Design Automation Conf., pp. 606-611, Yoko-
hama, Japan, Jan. 2006.

[7] M. Kandemir, A. Choudhary, “Compiler-directed scratch-pad mem-
ory hierarchy design and management,” Proc. 39th ACM/IEEE De-
sign Automation Conf. pp. 690-695, Las Vegas, June 2002.

[8] M. Kandemir, G. Chen, F. Li, “Maximizing data reuse for minimiz-
ing space requirements and executive cycles,” Proc. Asia-South Pa-
cific Design Aut. Conf., pp. 808-813, Yokohama, Japan, Jan. 2006.

[9] N. Manjiakian, T. Abdelrahman, “Reduction of cache conflicts in
loop nests,” Tech. Report CSRI-318, Univ. Toronto, Canada, 1995.

[10] P.R. Panda, N. Dutt, A. Nicolau, “On-chip vs. off-chip memory: the
data partitioning problem in embedded processor-based systems,”
ACM Trans. on Design Automation of Electronic Systems, Vol. 5,
No. 3, pp. 682-704, July 2000.

[11] G. Reinman, N.P. Jouppi, “CACTI2.0: An integrated cache timing
and power model,” COMPAQ Western Research Lab, 1999.

[12] A. Schrijver, Theory of Linear and Integer Programming, John Wi-
ley, New York, 1986.

[13] L. Thiele, “Compiler techniques for massive parallel architectures,”
in State-of-the-art in Computer Science, Kluwer Acad. Publ., 1992.

[14] R. Tronçon, M. Bruynooghe, G. Janssens, F. Catthoor, “Storage
size reduction by in-place mapping of arrays,” Verification, Model
Checking and Abstract Interpretation, pp. 167-181, 2002.

[15] S. Wuytack, J.-P. Diguet, F. Catthoor, H. De Man, “Formalized
methodology for data reuse exploration for low-power hierarchi-
cal memory mappings,” IEEE Trans. VLSI Syst., Vol. 6, No. 4, pp.
529-537, Dec. 1998.

[16] H. Zhu, I.I. Luican, F. Balasa, “Memory size computation for multi-
media processing applications,” Proc. Asia & South-Pacific Design
Automation Conf., pp. 802-807, Yokohama, Japan, Jan. 2006.

600

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

