
Combinatorial Algorithms for Fast Clock Mesh
Optimization∗

Ganesh Venkataraman, Zhuo Feng, Jiang Hu, Peng Li
Dept. of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843

{ganesh, jianghu}@ece.tamu.edu, {fengzhuo, pli}@neo.tamu.edu

ABSTRACT
We present a fast and efficient combinatorial algorithm to simul-

taneously identify the candidate locations as well as the sizes of

the buffers driving a clock mesh. Due to the high redundancy, a

mesh architecture offers high tolerance towards variation in the

clock skew. However, such a redundancy comes at the expense of

mesh wire length and power dissipation. Based on survivable net-

work theory, we formulate the problem to reduce the clock mesh

by retaining only those edges that are critical to maintain redun-

dancy. Such a formulation offers designer the option to trade-off

between power and tolerance to process variations. Experimental

results indicate that our techniques can result in power savings

up to 28% with less than 4% delay penalty.

1. INTRODUCTION
The function of the Clock Distribution Network (CDN) is

to deliver the clock signal from the clock source to the clock
sinks. The design of CDN could include multiple (and often
conflicting) objectives like wire length, power, signal slew
rate and tolerance of clock skew to variations. Tree based
distributions offer the advantage of simplicity (single path
between source and sinks) as well as lower wirelength [3].
However, tree based distributions have a relatively low tol-
erance towards variations.

Non-tree based distributions, on the other hand provide a
high tolerance to variations [4–7] due to the redundancy cre-
ated by multiple paths between clock source and the sinks.
One of the most widely used non-tree based CDN is clock
mesh [9]. The mesh consists of a rectangular grid driven by
a top level tree. The buffers at the leaf of the top level tree
shall henceforth be referred to as mesh buffers. Mesh ar-
chitecture is used mainly in high performance systems such
as IBM G5 [8], Power4 [9] and SUN Sparc V9 [10]. In all
the above processors, a very low clock skew has been re-
ported which proves the effectiveness of the clock mesh in
mitigating skew. Clock mesh consumes significantly higher
wire area compared to tree based distributions. (up to 168%
higher area compared to tree [11]). Higher wire area leads
that a higher load capacitance for the clock buffers which in
turn implies a higher power dissipation.

The maximum permissible delay between any two regis-

∗This work was supported in part by SRC under contract
number 2004-TJ-1205 and 2006-TJ-1416.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

ters (i, j) is given by [2]:

P ij
delay = Tclock − tsetup − skewij (1)

In the above equation, Tclock denotes the clock period, tsetup

the set up time and skewij denotes the skew between i and j.
P ij

delay represents the maximum permissible delay between i

and j. Pdelay = min∀(i,j)P
ij
delay denotes the maximum

permissible delay of the entire circuit. Typically, in
the zero skew design skewij is designed to be zero. How-
ever, in the presence of variations, skewij may increase, sub-
sequently reducing the maximum speed at which the circuit
can function. Higher skew would bring down the maximum
permissible delay Pdelay. Hence a mesh architecture is suited
well for high performance systems since it mitigates the clock
skew even though the resource consumption is high (wire
length, power etc.). However, with power occupying an in-
creasingly important role in chip design, it may be necessary
to trade the clock skew for low power. At the very least, the
designer should be given the flexibility to do so. Even though
there has been previous works on in mesh architecture, the
following issues remain largely unaddressed:

• What are the ideal locations to drive the clock mesh?
Is it ok to distribute the drivers uniformly across the
mesh?

• Can the mesh buffers be sized differently? If yes, then
does it work better than sizing uniformly?

• A mesh has a high level of redundancy. Can some
amount of redundancy be sacrificed to reduce the wire
length? If yes, then how much is the trade-off? Can
we quantify the skew vs power trade-off?

In this work, we address all the above mentioned issues.
Our contributions include: The contributions in this work
include:

• We propose a set-cover based algorithm for finding the
mesh buffer locations and their sizes. Our algorithm
works fast on a discrete library of buffer sizes.

• We formulate the mesh reduction problem by using
survivable network theory. We present heuristics for
solving the formulation efficiently and quickly. Exper-
imental results indicate up to 29% reduction in wire
length, 28% reduction in power with less than
4% increase in delay penalty.

• Our techniques allow the designer to trade-off between
skew and power dissipation. In fact, the formulation
presented is flexible enough to allow a high range of
trade-off (that is either a high skew- low power de-
sign or a low skew - high power design or anywhere in
between).

• Our algorithms run very fast. In fact, it runs within
a few seconds even for large test cases. Such a
high speed helps the designer to run the same algo-
rithm several times with different parameter values
that produce different solutions in the power delay
curve.

563

• We present an efficient gate delay model suited for
the clock mesh. Such a model achieves near SPICE
accuracy with speed-up up to 62X compared with
HSPICE. Such a speed up is particularly helpful in
analyzing large mesh with thousands of clock sinks.

2. PRELIMINARIES AND PROBLEM
STATEMENT

We shall introduce certain notations and conventions which
will be followed throughout the paper.

• m × n denotes the dimension of the clock mesh. I
denotes the set of nodes in the mesh.

• Clock buffers of B sizes {b1, b2, . . . bk} in non-decreasing
order. Buffer bi can drive a load of capacitance at most
ci.

• Buffer Mapping Function BM : i → j maps each node
location i ∈ I to j ∈ B. BM(i) = φ implies that the
location i has no buffer in it.

• S = {s1, s2 . . . sn } denotes the set of clock sinks. Each
sink si is connected to node i ∈ I. The node i in the
mesh is referred to as the connection node of sink si.
dij denotes the minimum distance between node i and
j in the mesh.

• P ij
delay denotes the maximum permissible delay between

two registers i and j. Pdelay = min∀i,jP
ij
delay.

Simultaneous Mesh Buffer Placement and Sizing
Find the function BM or for each candidate buffer location
(there are mn such locations), find (a) If a buffer is required
and (b) The size of buffer needed such that the following con-
straints are satisfied: (i) Each node in the mesh is allocated
to at least one buffer, (ii) Each buffer drives less than the
maximum load it can drive, and (iii) The total sum of the
buffer sizes is minimized.
Mesh Reduction

Remove edges from the mesh such that (i) Each sink si has
at least k node locations such that for each such node loca-
tion j, dij ≤ Lmax, BM(j) 6= φ and there exists at least l
edge disjoint paths between j and i, (ii) The number of edges
removed is maximized. k, Lmax and l are user defined con-
stants.

The mesh reduction problem attempts to remove edges
such that there exists at least certain number of buffers that
connect each clock sink with short paths. The user defined
parameters control impact the solution in the following man-
ner: Setting k and l high would mean more redundancy and
hence more tolerance to variations but less number of edges
removed or more power dissipation. By varying the parame-
ters k and l, the designer has the flexibility to trade variation
tolerance to power dissipation. The restriction Lmax helps
in restricting the delay between the mesh buffers and the
clock sinks. This in turn, helps in keeping the skew low.

3. SIMULTANEOUS MESH BUFFER PLACE-
MENT AND SIZING VIA SET COVER

The Set Cover problem can be stated as follows: Given
a set universe U and a collection S of subsets of U , find a
minimum size subset C ⊂ S such that C covers U . The above
definition can be modified to weighted set cover problem by
assigning weights of each set in S. In this section, we shall
show that the mesh buffer placement/sizing problem can be
formulated as an instance of the set cover problem.

For each node in the mesh, define a Covering Region
as follows. Covering Region of the node for a particular
buffer is defined as the set of nodes around the node in the
2-dimensional mesh such that the total capacitance of the
nodes included in the covering region (including the mesh
capacitance as well as the nodes that the mesh drives) is less
than the maximum capacitance that the buffer can drive.

Let CRj
i denote the covering region of node i ∈ I while

driven by buffer j ∈ B. That is CRj
i ∈ I for each i ∈ I

and j ∈ B. Let SCR denote the super set of covering re-
gions. We can draw the parallels between the above defined
variables and the instance of set cover defined earlier:

• The set of I of node locations can be considered as the
universe U .

• The covering regions CRj
i form the collection of sub-

sets S.

• If the buffer size bj denotes the weight of a subset CRj
i ,

then the objective is to “pick” minimum weighted sum
of subsets such that each node has at least one subset
covering it.

In other words, the mesh buffering problem is identical to
the set cover problem with I ⇔ U and SCR ⇔ C. If CRj

i

is picked, then node i ∈ I is driven by buffer j ∈ B.
To motivate the solution approach, we shall now state

the same problem in mathematical terms using indicator
variables. Let xj

i denote the indicator variable that is set to

1 if CRj
i is picked in the solution. Then the problem can be

stated as:

minimize
X
j∈B

X
i∈I

bjx
j
i (2)

∪
(i,j):x

j
i =1

CRj
i ⊇ I

Note that irrespective of the approach towards solving the
set cover problem, it is possible that the algorithm may re-
turn two buffers for the same location, which is not a feasible
solution. However such a situation can be easily avoided by
using the observation and lemma stated below.
Observation 1: For any node i ∈ S, CRj

i ⊇ CRl
i if bj > bl.

The observation comes from the fact that a bigger buffer
size can drive a bigger load.
Lemma 1: In any optimal solution Φ, for any node i, there
can be at most one buffer j such that xj

i = 1.
Proof: Direct consequence of Observation 1. If there exists
two buffers j and l such that xj

i = 1 and xl
i = 1 and bj ≥ bl,

then CRl
i can be removed from Φ without loss of feasibility.

This implies that Φ is not optimal and hence a contradic-
tion.
Corollary 1: In any solution Φ, for any node i, if there
are more than one buffer driving a node, one can pick the
biggest buffer without losing feasibility.
We implemented the set cover problem using the greedy al-
gorithm [12]. At the end of algorithm, the solution is pruned
using Corollary 1. The algorithm is detailed in Figure 1. As
it will be detailed in the experimental section, the set cover
implementation runs very fast in practice (within few sec-
onds a test case with more than 1700 sinks).

Greedy set cover for mesh buffer placement/sizing.

Input : SCR = ∪ CRj
i for each i ∈ I and j ∈ B

Output : M = set of covering regions that are picked
1. M ← φ
2. While M does not cover I do

2.1 For each unpicked covering region CRj
i

define Ceff =
bj

|CR
j
i−M|

2.2 Pick set C with least Ceff .
2.3 M ←M ∪ C

3. For each node i ∈ I, if there exists j ∈ B and l ∈ B

both CRj
i and CRl

i are picked and bj > bl

drop CRl
i from the solution.

Figure 1: Greedy set cover for mesh buffer place-
ment/sizing.

564

4. MESH REDUCTION
Once we locate the position of the mesh buffers and their

sizes (from the buffer library), the next task is to reduce the
size of the mesh. This is done by removing edges such that
a certain level of redundancy is still maintained. The exact
definition of the problem was stated in section 2.

The communication networks are prone to frequent fail-
ures. Survivability makes the network functional even in
the presence of link failures. This is often done by creating
redundant paths that are edge disjoint (thereby increasing
the chances of at least one path being active in the presence
of failures). This concept has striking parallels to the clock
mesh which is designed with redundancy to account for tol-
erance to variations. The Steiner Network Problem and its
variants have been used in the design of survivable networks.
In its generalized form the Steiner Network problem can be
stated as follows:
Given (a) Graph G = (V, E) (b) A cost function c for the
edges and (c) A connectivity requirement function r : V →
Z+, find a minimum cost subgraph in G such that there ex-
ists at least r(u, v) edge disjoint paths for every ordered pair
u, v ∈ V .
Interested reader may refer to [12–14] for details about the
Steiner network problem and survivable networks. We shall
abstract the problem of mesh reduction into Steiner Network
problem.

Three parameters: k, l and Lmax define an instance of
the mesh reduction problem (please refer to section (2) for
definition of the parameters). For the sake of simplicity,
we shall first assume that there is no constraint on Lmax

or path length. We shall later show that the constraint is
taken care of implicitly in our formulation. We transform
the mesh reduction problem into Steiner Network by the
following procedure:

1. Let the mesh be represented by a graph G = (V, E).

2. Set connectivity requirement function r(u, v) = 0 for
all (u, v) ∈ V .

3. For each clock sink si ∈ S, identify k closest mesh
buffer locations (say) Ti = (t1, t2, . . . tk).

4. Set r(i, j) = l for all si ∈ S and Ti.

Now, one may use any Steiner Network Optimization algo-
rithm (like [13]) on the above instance. Since we identify the
k closest buffers in the connectivity requirement, the short
path constraint (by means of Lmax) is implicitly taken care
of. This is due the fact that if these closest buffers do not
satisfy the Lmax requirement, it is easy to see that there ex-
ists no other buffer locations than can satisfy the constraint
and Lmax requirement should be relaxed. Further, because
of the connectivity requirement, edges in the shortest pairs
will be retained. To solve the Steiner Network problem,
we use a simple greedy heuristic. Other complicated ap-
proaches like LP-rounding [13] or path length constrained
network approaches [15] can also be used. But we found
that the one detailed above produces good results with a
very low run-time.

An overview of our algorithm for Steiner Network mini-
mization is shown in Figure 2. The algorithm starts with
initializing the cost of all edges to unity. This is followed
by identifying edge disjoint paths between clock sinks and
the closest k mesh buffers. It is worthy to mention three
points about identifying these paths: (a) The disjoint path
requirement is between a clock sink and a particular mesh
buffer and not across all the k assigned buffers. For exam-
ple, if a sink a is assigned to buffers at locations b and c,
then we need to identify l disjoint paths between a to b (say
Pab) and a to c (say Pac). While the paths within Pab and
Pac are edge disjoint, they are allowed to share edges across
each other. (b) Since it is cost driven, the cost of an added

Greedy Steiner Network for Mesh Reduction
Input : G = (V, E), and connectivity requirements
Output : E′ ⊂ E satisfies connectivity requirements
1. For each e ∈ E, set c(e) = 1.
2. For each sink si ∈ S

2.1 Find k closest buffers locations
2.2 Identify l minimum cost disjoint paths

(denoted by Pi) between si and
identified buffer locations

2.3 For each e ∈ Pi,
2.3.1 E′ → E′ ∪ e, c(e) = 0.

3. Output E′.

Figure 2: Greedy mesh reduction.

edge is set to zero and the algorithm tries to maximize the
usage of edges which improves the quality of the solution
and (c) Since the mesh graph has a very regular structure
(planar grid), it is easy to identify the paths.

5. DRIVER MODELING
For clock meshes and non-tree clocks, nonlinear driver

modeling presents new modeling challenges. On one hand,
due to the fact a that large number of clock buffers may
be employed in clock meshes, efficient driver modeling is
essential for increasing the analysis efficiency. Adopting
transistor-level analysis during the optimization iterations
will be very difficult, if not impossible. On the other hand,
although the traditional nonlinear driver models offer good
run times (e.g. [16–18]), they are tuned to work for tim-
ing analysis and hence become very difficult to use for clock
mesh design. The main reason for this difficulty is that
these models target at delay/slew rate computation in tree
structures and are not applicable for meshes where multiple
drivers can interact with each other.

To see the modeling issues brought by interactions be-
tween multiple drivers in a mesh, in Fig. 3, a mesh structure
with four mesh drivers are shown. Since the four drivers are
driving the same mesh, each of them interacts with others
at the output node via the mesh network. Under this multi-
driver context, it is not only the case that the clock signal
at any node of the mesh is fed by more than one driver,
what is also true is that for each nonlinear driver the load it
drives does not appear to be passive anymore. In fact, all the
drivers interact with each other in a complex and nonlinear
fashion. Since the input signals of these mesh drivers may
differ in terms of arrival time and slew, driver output sig-
nal waveforms may be fairly complex due to the nonlinear
coupling between all the drivers. Most traditional driver
models are characterized under certain passive/capacitive
output loading conditions and therefore not applicable for
handling the nonlinear signal interactions in clock mesh.

A B

DC

Figure 3: Interaction between multiple mesh
drivers.

565

To accurately capture the complex signal interactions in
multi-driver clock meshes, it is evident that robust driver
models that are accurate even for non-digital, highly com-
plex and non-monotonic input/output signals are desired.
In this paper, we achieve this goal by adopting driver mod-
els that are characterized in a waveform independent fash-
ion. We model the driver (with possibly multiple stages)
using the compact driver model shown in Fig. 4. The driver
model we employed in this paper is based on an extension
of the work presented in [20]. Our driver model can pro-
vide very accurate simulating results even under the excita-
tion of highly nonlinear signals. In the past, drivers under
the similar spirit have been developed for single channel-
connected-component (CCC) cells under different applica-
tion context [19,21].

It is important to note that proposed driver model can be
parametrized in key process and operating condition vari-
ables such as effective transistor channel length, threshold
voltage, supply and temperature conditions. For this pur-
pose, response surface modeling (RSM) technique is em-
ployed to extract parametric driver models. As shown in
Fig. 4, the driver model consists of three basic components.
Firstly, either a linear or a nonlinear input capacitance is
included at the input pin to model the input loading effect.
Since the input capacitance is primarily contributed by the
gate capacitances of the transistors at the first stage of the
driver, it is parametrized in transistor channel lengths in or-
der to account for its variability. The next component of the
model consists of a linear transfer function block H(s) that
is used to model the signal transfer from the input pin to
an internal controlling node voltage Vc. H(s) is specified by
two pole/residue pairs. Essentially, it is pre-characterized
to capture the “intrinsic” internal delay of the driver, es-
pecially for multi-stage drivers. The last component of the
model characterizes the output stage of the driver. It con-
sists of a voltage-controlled current source and and a non-
linear output capacitance both of which are specified using
lookup tables (LUTs). The current LUT is a 2D table in-
dexed by two voltages: Vc and Vo. It models the nonlinear
DC current driving capability of the driver under various Vc

and Vo combinations. The LUT for the nonlinear output
capacitance is in form of a 2D charge table indexed by the
same two voltages. It is employed to model the nonlinear
capacitive parasitics effects at the output.

Since the complete gate model is characterized without
making any assumption on the input/output signal wave-
forms, it models the intrinsic nonlinear dynamic behavior
of the driver. As a result, it can provide near-SPICE accu-
racy even when the signal shapes deviate significantly from
ramp-like shapes. Since our driver models are parameteriz-
able, it not only significantly improves the overall efficiency
of clock mesh analysis, but also offers a critical modeling
infra structure for addressing design variability under PVT
variations. In our experiments, we have observed that the
proposed modeling technique and the associated simulation
can achieve up to 62X run time speedups compared with
HSPICE without any significant sacrifice of accuracy for
clock mesh simulation.

VO

Qnc(VC, VO)

In(VC, VO)
H(s) VC

Input delay stage

Input load

Figure 4: Proposed clock driver model.

Case #Sinks Size SPICE Driver Model
CPU CPU Speed Up Max Avg
(sec) (sec) Err(%) Err (%)

s9234 135 9x9 10.8 0.23 47.13 4.34 1.49
s5378 165 10x10 3.9 0.41 9.54 2.83 1.36

s13209 500 30x30 145.6 4.59 31.73 7.15 2.01
s15850 566 30x30 84.8 4.86 17.45 4.54 1.34
s38584 1426 40x40 590.9 12.75 46.35 3.63 1.00
s35932 1728 40x40 934.4 15.08 61.96 5.92 1.52

Ave 753.3 27x27 295.1 6.32 35.69 4.74 1.45

Table 1: Benchmark characteristics and comparison of

driver model with HSPICE.

6. EXPERIMENTAL RESULTS
The algorithms presented were implemented in C++ and

simulations were run on a Linux Work Station with 2GB
RAM. All driver model results were compared with HSPICE
using 65nm process model cards from bptm [22]. The in-
terconnect parameters were obtained from [23]. The fol-
lowing notations will be used in the tables presented: WL
denotes the wirelength (µm), skewnom denotes the nominal
skew (measured when parameters are set to ideal values) and
µskew (σskew) denotes the mean (standard deviation) of the
skew due to variations. skewmax equals µskew + 3σskew.
Power dissipation and slew are measured in mW and psec
respectively. SV (Slew Violation) is the maximum pos-
itive deviation at all the clock sink locations from the user
specified value. That is if slewr denotes the required slew
and slewmax denotes the maximum slew among the sink
nodes, then:

SV = 100 ∗ (slewmax − slewr)

slewr
(3)

If the slew violation is negative, then it is set to zero. The
slewr is set to 150psec..

Table (1) shows the benchmark characteristics and com-
pares the results of the driver model with HSPICE. The first
3 columns denotes the benchmark name, number of sinks,
and mesh size respectively. The fourth and fifth columns in-
dicate the CPU time while running HSPICE and the driver
model respectively. The sixth column indicates the speed up
measured as a fraction of HSPICE run time to the model
run time. The delay is measured at all the clock sinks using
both HSPICE and the driver model. Using HSPICE delay
as the base value, we then measure the maximum and av-
erage percentage error at the sinks and report it in the last
two columns. It is easy to see that the model achieves a
high level of accuracy (within 7% in all the cases) with
an average speed up above 35x. In fact, the largest test case
showed a speed up of 62x with less than 6% maximum error.
Such a tool is especially helpful in running statistical Monte
Carlo based analysis (which is very accurate). Since running
Monte Carlo simulations on HSPICE becomes impractical,
the proposed model could be used.

The results for our mesh simultaneous buffer place-
ment/sizing algorithm (henceforth referred to as sizing algo-
rithm) is shown in Table (2). The second, third and fourth
columns indicate the total buffer area, wire length and power
dissipation respectively. The power dissipation is the to-
tal power dissipation of the circuit including dynamic and
leakage power. In the next column, we report the nomi-
nal skew. This is followed by a set of three columns that
denote mean, standard deviation and maximum skew due
to variations (obtained by running 1000 Monte Carlo simu-
lations). The last three columns denote the Slew Violation
(computed using Equation (3)), maximum permissible delay
and CPU time respectively. Pdelay is computed by subtract-
ing the clock period (assuming 1GHz clock) with skewmax.
For Monte Carlo simulations, the following parameters were
varied (a) channel length (b) interconnect wire width (c)
VDD and (d) sink load capacitance. The above parameters
are varied with mean as the nominal value and standard
deviation 5% of the nominal value. The input to the clock

566

Case Area WL Power skewnom µskew σskew skewmax SV Pdelay CPU
(µm2) (µm) (mW) (ps) (ps) (ps) (ps) (%) (%) (sec.)

s9234 72.15 30366 7.13 32.98 53.52 19.15 110.97 6.43 889.03 0.1
s5378 84.5 32290 7.81 29.11 49.91 17.77 103.23 0.0 896.77 0.1

s13207 316.55 153450 30.3 22.89 45.45 13.83 86.94 0.0 913.06 0.7
s15850 350.35 164670 33.2 21.8 47.27 13.03 86.36 0.0 913.64 0.7
s38584 753.35 371900 78 32.96 69.59 17.71 122.72 0.98 877.28 4.3
s35932 822.9 427900 92.4 36.23 69.19 16.6 118.99 7.69 881.01 4.7

Ave 399.97 196763 41.47 29.33 55.82 16.35 104.87 2.52 895.13 1.77

Table 2: Results for the buffer placement/sizing algorithm.

Case Wire Length Power skewnom µskew σskew skewmax Pdelay

µm % Imp. mW % Imp (ps) (ps) (ps) (ps) (ps) % Red
s9234 27177 10.5 6.7 6.1 32.98 60.38 21.24 124.1 878.34 1.76
s5378 24911 22.85 6.72 13.96 29.11 62.39 21.89 128.06 871.94 2.77

s13207 109538 28.62 23.8 21.47 22.89 51.41 14.8 95.81 878.36 3.88
s15850 100778 38.8 23.8 28.13 21.8 64.23 15.37 106.64 893.36 2.07
s38584 262528 29.41 60.9 21.99 32.96 76.31 18.13 130.7 869.3 0.91
s35932 321293 24.91 74.3 19.58 36.23 79.69 18.32 134.65 865.35 1.78

Ave 131981 25.85 32.7 18.54 29.67 65.74 18.29 120.61 879.39 1.76

Table 3: Results for mesh reduction.

mesh buffer is usually produced by a global distribution. In
order to model the uncertainty in the clock skew of global
distributions, the input arrival time is modeled as a random
variable whose value can vary in the range of 50 psec. In
other words the clock skew at the input of the mesh buffers
could vary up to 50 psec. Spatial correlation among all the
variations was accounted by using the Principal Component
Analysis [24]. These results will be used as the base case for
all our comparisons.

• Our sizing algorithm meets the slew specifications
(within 2.52% on an average).

• The run time of our algorithm is within a few seconds
and is therefore largely inconsequential.

Next we compare the results of the mesh reduction algo-
rithm. We shall compare both resource consumption and
tolerance to variation. The results are indicated in Ta-
ble (3). We present the wire length and power reduction
when compared to the complete mesh. The power dissipa-
tion is measured using HSPICE simulations that measure
the current drawn by the devices in an entire clock cycle
and computing the area under the voltage vs. current curve.
Hence this power includes both the dynamic and the leak-
age powers. Table 3 also presents the nominal skew, mean,
standard deviation, maximum skew value and the maximum
delay (Pdelay) obtained on running Monte Carlo simulations
run with the set up described earlier. The results can be
summarized as follows:

• Mesh leads to a wire length reduction of 25.85%
and power savings of 18.54% on an average.

• In some test cases the power savings can be as high as
28%.

• These savings do have an impact on the tolerance to
variations. However, it can be seen that the delay
penalty is less than 4% on all the cases. In fact, the
delay penalty is less than 2% for the two largest test
cases. The nominal skew results are identical to those
obtained without reduction. Hence mesh reduction
preserves the nominal skew.

7. CONCLUSIONS
In this paper, we presented two combinatorial algorithms

used for fast clock mesh optimization. The first one does a
simultaneous buffer placement and sizing that satisfies the

signal slew constraints while minimizing the total buffer size.
The second one reduces the mesh by deleting certain edges
there-by trading off skew tolerance for low power dissipa-
tion. Since our techniques are fast, it offers the flexibility to
optimize the mesh with different design objectives. We also
present gate models that achieve near SPICE accuracy with
significant speed up. Our techniques indicate up to 28%
reduction in power with less than 4% increase in maximum
permissible delay.

8. ACKNOWLEDGEMENT
The authors would like to thank Dr. Alex Sprintson for

some useful discussions of network survivability.

9. REFERENCES
[1] Y. Liu, S. R. Nassif, L. T. Pileggi, and A. J. Strojwas. Impact of

interconnect variations on the clock skew of a gigahertz microprocessor.
DAC, pages 168–171, 2000.

[2] J. P. Fishburn. Clock skew optimization. IEEE Transactions on Computers,
vol. 39, no. 7, pages 945–950, 1990.

[3] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng. Zero
skew clock routing with minimum wirelength. IEEE Transactions on Circuits
and Systems - Analog and Digital Signal Processing, 39(11):799–814, November
1992.

[4] N. A. Kurd, J. S. Barkatullah, R. O. Dizon, T. D. Fletcher, and P. D.
Madland. A multigigahertz clocking scheme for the Pentium 4
microprocessor. IEEE Journal of Solid-State Circuits, 36(11):1647–1653,
November 2001.

[5] P. J. Restle et al. A clock distribution network for microprocessors. IEEE
Journal of Solid-State Circuits, 36(5):792–799, May 2001.

[6] N. Bindal, T. Kelly, N. Velastegui, and K. L. Wong. Scalable sub-10ps
skew global clock distribution for a 90nm multi-GHz IA microprocessor.
In Proceedings of the ISSCC, pages 346–355, 2003.

[7] A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability
via cross links. In DAC, pages 18–23, 2004.

[8] G. Northrop et. al. 609 MHz G5 S/399 microprocessor. In ISSCC, pages
88–89, 1999.

[9] P. J. Restle et. al. The clock distribution of the Power4 microprocessor.
In , ISSCC, pages 144–145, 2002.

[10] R. Heald. Implementation of a 3rd-generation SPARC V9 64 b
microprocessor. In ISSCC, pages 412–413, 2000.

[11] H. Su and S. Sapatnekar. Hybrid structured clock network construction.
In ICCAD, pages, 333–336, 2001.

[12] V. V. Vazirani. Approximation Algorithms. Springer 2001.
[13] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner

Network Problem. In IEEE Symposium on Foundations of Computer Science,
pages 448–457, 1998.

[14] H. Kerivin and A. R. Mahjoub. Design of Survivable Networks: A survey.
In Networks, pages 1–21, April 2005.

[15] W Ben-Ameur. Constrained length connectivity and survivable networks.
In Networks, pages 17–23, August 2000.

[16] J. Qian and S. Pullela and L. Pillage. Modeling the ’Effective
Capacitance’ of RC Interconnect. In IEEE Trans. Computer-Aided Design,
pages 1526–1535, December 1994.

[17] F. Dartu and N. Menezes and J. Qian and L. Pillage. A gate-delay model
for high speed CMOS circuits. In DAC, pages 576–580, June 1994.

[18] R. Arunachalam, F. Dartu and L. Pileggi. CMOS gate delay models for
general RLC loading. In ICCAD, pages 224–229, October 1997.

[19] J. Croix and D. Wong. Blade and Razor: Cell and Interconnect Delay
Analysis Using Current-Based Models. In DAC, pages 386–389, June 2006.

[20] P. Li and E. Acar. A waveform independent gate model for accurate
timing analysis. In ICCD, pages 363–365, October 2005.

[21] I. Keller, K. Tseng and N. Verghese. A robust cell-level crosstalk delay
change analysis. In ICCAD, pages 147–154, November 2004.

[22] http://www.eas.asu.edu/ ptm/.
[23] A. B. Kahng and B. Liu. Q-Tree: A New Iterative Improvement

Approach for Buffered Interconnect Optimization. IEEE Comp. Soc. Annual
Symp. On VLSI, pages 183-188, February, 2003.

[24] H. Chang and S. S. Sapatnekar. Statistical timing analysis considering
spatial correlations using a single PERT-like traversal. In ICCAD , pages
621–625, 2003.

567

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

