
A New RLC Buffer Insertion Algorithm

Zhanyuan Jiang, Shiyan Hu, Jiang Hu, Zhuo Li† and Weiping Shi
Texas A&M University, College Station, Texas 77843

†IBM Austin Research Lab, Austin, Texas 78758

{jerryjiang, hushiyan, jianghu, wshi}@ece.tamu.edu
†lizhuo@us.ibm.com

ABSTRACT
Most existing buffering algorithms neglect the impact of in-
ductance on circuit performance, which causes large error in
circuit analysis and optimization. Even for the approaches
considering inductance effects, their delay models are too
simplistic to catch the actual performance. As delay-length
dependence is approaching linear with inductance effect [1],
fewer buffers are needed to reduce RLC delay. This moti-
vates this work to propose a new algorithm for RLC buffer
insertion.

In this paper, a new buffer insertion algorithm consider-
ing inductance for intermediate and global interconnect is
proposed, based on downstream impedance instead of tra-
ditional downstream capacitance. A new pruning technique
that provides tremendous speedup and a new frequency es-
timation method that is very accurate in delay computation
are also proposed.

Experiments on industrial netlists demonstrate that our
new algorithm reduces the number of buffers up to 34.4%
over the traditional van Ginneken’s algorithm that ignores
inductance. Our impedance delay estimation is very accu-
rate compared to SPICE simulations, with only 10% error
while the delay model used in the previous RLC algorithm
has 20% error [2]. The accurate delay model not only re-
duces the number of buffers, but also brings high fidelity
to the buffer solutions. Incorporating slew constraints, the
algorithm is accelerated by about 4× with only slight degra-
dation in solution quality.

1. INTRODUCTION
With higher operating frequencies, increasing concerns in

the effect of on-chip inductance have been raised [3]. Com-
pared to an accurate RLC model, RC model can create 60%
timing error in the current copper interconnect technolo-

∗This research was supported in part by SRC grant 2004-
TJ-1205, NSF grant EIA-0223785, and IBM faculty research
award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

gies [4]. On the other hand, as inductance effects aggravate,
the quadratic delay-length dependence in RC model is ap-
proaching linear [1], which may result in significant buffer
savings. Thus, the inductance has a significant impact on
timing analysis and optimization for interconnect.

In this paper, we propose a new RLC buffering algorithm
based on an accurate RLC model. The new algorithm uses
dynamic programming framework to provide near-optimal
performance, in contrast to [2] which has the trial-and-error
flavor as a greedy algorithm. Main features of the new al-
gorithm are summarized as follows.

• Based on downstream impedance, a new buffering for-
mulation is proposed to handle RLC interconnect. This
improves the widely-used downstream capacitance or
moment based formulations [5].

• Based on new properties of the RLC model, an ef-
fective pruning technique is proposed to speed up the
algorithm. The properties include the fact that the
delay of a buffer decreases with the real part of its
downstream impedance, and increases with the imag-
inary part.

• Constraint on slew rate is handled. Incorporating slew
constraint provides further speedup and makes our
work ready for practical use.

The rest of the paper is organized as follows: Section 2
describes the delay model. Section 3 describes the proposed
RLC buffering algorithm. Section 4 presents the experi-
mental results with analysis. A summary of work is given
in Section 5.

2. DELAY MODEL
Since the prevailing delay model is too simplistic to catch

the actual performance considering inductance effect, 60%
timing error is often observed [4]. Thus, more accurate delay
models are necessary for accurate timing analysis and buffer
insertion. Such a model will be introduced in this section.

2.1 Realistic Range of Inductance
We set up a realistic environment to extract the parasitics

based on the model of [6]. FastCap and FastHenry are used
to extract capacitance and inductance. For MOSIS 130nm
technology [7], the following parameters are obtained. From
metal layer one to six, unit resistance varies from 350Ω/mm
to 10Ω/mm, unit capacitance from 380fF/mm to 180fF/mm
and unit inductance from 0.6nH/mm to 1.3nH/mm.

553

Rd R L C

Vin
Cl

l

Figure 1: A single transmission line [8].

N0 N1

N2

N3

N5

N6

N7

Vin

Rd

C4

C5

C6

C7

N4

Figure 2: An RLC tree.

It is worth mentioning that [2] handles RLC buffering
based on the model in [1]. Although the theory in [1] is solid,
the unit impedance value in [1] is large. For example, the
range of unit inductance there is 10nH/mm to 1000nH/mm
which can be computed using Table 1 in [1]. Our work uses
more realistic unit inductance value.

2.2 Interconnect Model
A transmission line model with a driver and a load is

shown in Figure 1, which is also used in [8]. There, the
driver is connected to an input voltage source, l denotes the
interconnect length, and R, L, C denote unit resistance, in-
ductance and capacitance, respectively. The driver is mod-
eled as a resistor Rd and the load is modeled as a capacitor
Cl.

In this paper, an accurate RLC interconnect model from
[9] is employed. The transfer function from the input to the
output of a transmission line is

H(s) =
1

(1 + RdCls) cosh θ + (Rd/Zc + ZcCls) sinh θ
, (1)

where θ = l
√

(R + sL)/sC and Zc =
√

(R + sL)/sC. It is
demonstrated in [8] that the timing analysis based on this
model is on average only 3% off SPICE simulation results.

For a general RLC tree shown in Figure 2, the transfer
function from N0 to an internal node Ni is the product of
the transfer functions of all branches along the path from
N0 to Ni [8]:

H(s) =
ZL,0

Rd + ZL,0

∏
k

1

cosh θk + (Zc,k/ZL,k) sinh θk
, (2)

where ZL,0 is the input impedance seen from N0 and k is
the index of branches in the path from N0 to Ni.

For a transmission line of length l with load ZL, the input
impedance is:

Zdown = ZC
ZL + ZC tanh θ

ZC + ZL tanh θ
, (3)

where ZC and θ is defined in Eqn. (1).

2.3 Signal and Buffer Modeling
Both input signal and output signal are modeled as a DC

component and two harmonics. The input signal is given by

Vin(t) =
Vdd

2
+ A1 sin(ω1t + φ1)+A2 sin(ω2t + φ2), (4)

where A, ω, φ are the magnitudes, angular frequencies, and
phases of sinusoidal signals, respectively. A ramp signal is
adopted to illustrate the effectiveness of the above model.
As is well known, a ramp signal with a transition time τ is
given by

Vin(t) =

{
t
τ Vdd 0 ≤ t < τ,
Vdd τ ≤ t.

(5)

Since only the whole transient state and part of steady state
of signals contribute to non-zero frequency components of
following stages, we can chop the signal to keep the first
3-10τ duration of signal, which contains dominant compo-
nents of signal in frequency domain. Least square method
is applied to approximate the chopped input signal:

min
N∑

i=1

(yi − (
Vdd

2
+ A1 sin(ω1ti + φ1) + A2 sin(ω2ti + φ2)))2,

where N is the number of sampling points and the unknown
vector is (A1, ω1, φ1, A2, ω2, φ2). To simplify the successive
tasks, we set the angular frequency of the second harmonic
to be 3 times that of the first harmonic, namely, ω2 = 3ω1.
Our later experiments also verify that such approximation
is enough for the ramp input.

The above model can be used to model both input and
output of a non-linear driver model. For a slew input, least
square method is applied to find basic and third-order fre-
quency. For each buffer type, since the output signal de-
pends on both the input signal waveform and downstream
capacitance, we perform SPICE simulation to cover all pa-
rameter ranges and for each output signal, least square method
is applied to find the basic and third-order harmonics. A
two dimensional look-up table is constructed for each buffer
type accordingly, where basic frequency of output signal is
searched through basic frequency of input signal and down-
stream capacitance. With such an approach, we can approx-
imate all signals with a bunch of frequency bins.

2.4 Impedance Delay
Computation of output delay is adopted from [8]. The

procedure is omitted here due to space limit. In this papar,
a new term impedance delay is introduced to characterize
the delay due to impedance.

Table 1: Comparison between impedance delay and
SPICE. The interconnect is modeled as 200 unit
length segments using π model.

L(µm) Rd(Ω) Cl(pf) Impe.(ps) SPICE(ps) Error
500 100 50 17.8 17.5 1.7%
500 100 100 23.4 23.0 1.7%
500 500 50 53.2 51.9 2.4%
500 500 100 72.7 70.3 3.3%
1000 100 50 32.2 31.4 2.5%
1000 100 100 38.2 37.0 3.1%
1000 500 50 92.8 87.9 5.3%
1000 500 100 113.0 106.1 6.1%

Experiments are performed to test the accuracy of the
method. The transition time τ of the input signal is set to
50ps and the duration of chopped signal is set to 5τ . Refer to
Table 1 and Figure 3 for the results. A wide range of circuit
parameters are applied and the maximum timing error is
only 6.1%.

554

0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

1.5

2

2.5

Time (ps)

V
o

lta
g

e
 (

vo
lts

)

Impedance Delay
SPICE

Output

Input

Figure 3: Comparison of input and output sig-
nals between impedance delay and SPICE. Cl=50fF ,
Rd=580Ω and Length= 500µm.

3. RLC BUFFERING ALGORITHM

3.1 Preliminaries
The basic buffering problem includes a routing tree T =

(V, E), where V = {s0} ∪ Vs ∪ Vn, and E ⊆ V × V . Vertex
s0 is the source vertex, Vs is the set of sink vertices and Vn

is the set of internal vertices. Each sink vertex s ∈ Vs is
associated with sink capacitance Cs, and each edge e ∈ E is
associated with lumped resistance Re and capacitance Ce.
A buffer library B contains different types of buffers. Each
type of buffer b has a cost Wb, which can be measured by
area or any other metric, depending on the optimization
objective. Without loss of generality, we assume that the
driver at source s0 is also a buffer. A function f : Vn → 2B

specifies the types of buffers allowed at each internal vertex.
A buffer assignment γ is a mapping γ : Vn → B∪{∧} where
∧ denotes that no buffer is inserted. The cost of a solution
γ is W (γ) =

∑
b∈γ Wb. With the above notations, our RLC

buffering problem can be formulated as follows.
RLC Minimum Cost Buffer Insertion with Slew Con-
straint Problem: Given a routing tree T = (V, E), pos-
sible buffer positions defined by f , and a buffer library B,
find a buffer assignment γ such that the total cost W (γ)
is minimized, the RLC require arrival time at the driver is
no less than a given constant α and the input slew at each
buffer is no greater than a given constant β.

3.2 New Pruning Condition
The new RLC algorithm works under the dynamic pro-

gramming framework but using the impedance delay model.
In order to handle impedance, solution characterization and
pruning conditions need to be modified. These are described
as follows.

3.2.1 Handling Impedance
Unlike capacitance, impedance depends on frequency. Since

an input signal is expressed using basic and third frequency
information, our buffering algorithm needs to consider both
frequencies. Speedup techniques are necessary to obtain an
efficient algorithm. The speedup is based on the following
critical observations.

Observation 1 When adding a buffer/wire to drive an
RLC network, the delay of a buffer/wire decreases with the
real part of its downstream impedance and increases with
the imaginary part of its downstream impedance.

To validated this observation, we perform extensive SPICE

-800
-700

-600
-500

-400
-300

-200

0

20

40

60

80

100
35

40

45

50

55

60

65

70

75

Imaginary part of ImpedanceReal part of Impedance

D
e

la
y

(p

s)

Figure 4: Buffer delay trend with varying down-
stream impedence.

simulations on single transmission lines and general trees to
guarantee the accurate results. For a single transmission
line, we model the downstream interconnect line as 200 seg-
ments of unit length and each segment is modeled using
π model. First, we fix unit inductance to 1nH/mm and
vary unit resistance and unit capacitance. Figure 4 shows
the trend of the delay after adding a buffer due to differ-
ent downstream impedances. The trend of the delay after
adding a wire is similar. We then vary unit inductance from
0.6nH/mm to 1.3nH/mm, the trend remains. Cases with
different downstream lengths and input frequencies are also
investigated. For a general tree, the similar experiments are
performed and the same trend is observed.

Observation 2 The impedance at third-order frequency
has much less impact on delay than the impedance at basic
frequency.

This is straightforward as higher-order frequency shows
less impact on the output delay. In our case, since the mag-
nitude of the signal at third-order frequency is around 1/9
of that at the basic frequency, the impedance at third-order
frequency has much less impact on the output delay.

Although the impedance at third-order frequency is use-
ful for performing an accurate timing analysis on the circuit,
it is much less useful for comparing solutions. As a conse-
quence of Observation 2, timing comparison between two so-
lutions remains the same even when the impedance at third-
order frequency is dropped. As such, only impedance at ba-
sic frequency needs to be compared for domination check
and impedance at third-order frequency is just used for de-
lay evaluation. This allows a tremendous speedup over the
consideration of impedances at both basic and third-order
frequencies.

To handle impedance, the downstream impedance Z is in-
troduced to replace C in van Ginneken’s algorithm. Since Z
is a complex number consisting of a real part and imaginary
part, denoted by Zr, Zi, respectively. Denote by Z1r , Z1i the
impedance at basic frequency and by Z3r, Z3i the impedance
at third-order frequency.

3.2.2 Pruning Conditions
The new pruning condition goes as follows. For any two

solutions γ1, γ2 at the same node, γ1 dominates γ2 if Q(γ1) ≥
Q(γ2), Z1r(γ1) ≥ Z1r(γ2), Z1i(γ1) ≤ Z1i(γi) and W (γ1) ≤
W (γ2). Whenever a solution becomes dominated, it is pruned
from the solution set without further propagation.

555

3.3 Algorithm
Our algorithm shares the same dynamic programming

framework as van Ginneken’s algorithm, but has critical un-
derlying differences. The differences include handling imped-
ance, frequency bin and slew constraint.

In the dynamic programming framework, a set of can-
didate solutions are propagated from the sinks toward the
source along the given tree. Each solution γ is character-
ized by tuples. The first tuple is (Q(ω), Z1r(ω), Z1i(ω), W),
which is used in domination check/pruning as mentioned
in Section 3.2.2. Note that ω is involved since delay and
impedance depend on the frequency ω. As frequency bin is
used in this paper, ω corresponds to the average frequency
in a frequency bin. The second tuple is (Z3r(ω), Z3i(ω)),
which is used for accurately calculating delay but not prun-
ing. The third tuple is (S(ω), C), which is only responsible
for eliminating infeasible solutions. Refer to [10] for slew
computation. Once again, although there are many tuples
in the algorithm, only the first tuple is used for domination
check and pruning dominated solutions. Thus, our algo-
rithm is still efficient.

The procedure of the new buffering algorithm is as follows.
At a sink node, Q is equal to the required arrival time at
that sink, Z1r(ω) = 0, Z3r(ω) = 0, Z3r(ω) = − 1

Cω , Z3i(ω) =

− 1
3Cω , W = 0 and S(ω) = 0, where C is sink capacitance

and ω represents a frequency bin.
Consider to propagate solutions from a node v to its par-

ent node u through edge e = (u, v). A solution γv at v be-
comes solution γu at u, Z1r(ω), Z1i(ω), Z3r(ω), Z3i(ω) can
be calculated by Eqn. (3), C(γu) = C(γv) + Ce, W (γu) =
W (γv). Q(ω) is not updated during wire insertion and up-
dating is carried out when performing buffer insertion and
branch merge.

In addition to keeping the unbuffered solution γu which is
corresponding to a certain frequency ω, a buffer bi can be in-
serted at u to generate a buffered solution γu,buf which can
be then computed as Q(γu,buf) = Q(γu) − D(γdown) − Kbi ,
where D(γdown) is the total downstream impedance delay
computed in Section 2.4 from the node u to its child node
(which can be a sink or buffer). Note that Q(γu,buf) may
correspond to a frequency other than γu due to buffer inser-
tion. Dγdown is computed using delay re-evaluation. This is
necessary as our delay model is not additive. After buffer in-
sertion, C(γu,buf) = Cbi , Z1r(ω) = 0, Z3r(ω) = 0, Z3r(ω) =
− 1

Cbi
ω

, Z3i(ω) = − 1
3Cbi

ω
, W (γu,buf) = W (γv) + Wbi and

S(γu,buf,ω) = 0.
Denote the left-branch solution set and the right-branch

solution set by Γl(ω) and Γr(ω), respectively. Since the sig-
nal frequencies of left child branch and right child branch are
always the same, only solutions at the same frequency bin
are merged. For each solution γl(ω) ∈ Γl(ω) and each solu-
tion γr(ω) ∈ Γr(ω), the corresponding merged solution γ′(ω)
can be obtained according to Q(γ′(ω)) = min{Q(γl(ω)),
Q(γr(ω))}. Each Z at its frequency can be merged by the
rule of calculating parallel impedance,

Z(γ′(ω)) =
Z(γl(ω))Z(γr(ω))

Z(γl(ω)) + Z(γr(ω))
. (6)

C(γ′) = C(γl)+C(γr), W (γ′) = W (γl)+W (γr) and S(γ′(ω)) =
max{S(γl(ω)), S(γr(ω))}.

4. EXPERIMENTAL RESULTS

4.1 Experiments Setup
All algorithms are implemented in C++ and are tested

on a Pentium IV computer with a 3.2GHz CPU and 1GB
memory. Our test cases are extracted from an industrial
ASIC chip, which consists of 1000 nets with more than 50000
nodes including sinks, branching nodes and buffer positions.
Among them, 682 nets have ≤ 5 sinks and all the remaining
nets have ≤ 20 sinks. The sink capacitances range from
2.5fF to 200fF . The unit resistance is 16.42Ω/mm, the
unit capacitance is 194.2fF/mm and the unit inductance is
1.017nH/mm. The buffer library consists of 12 buffers, in
which 7 are non-inverting and 5 are inverting . Buffer slew
resistances range from 60Ω to 730Ω and input capacitances
range from 2.1fF to 76.0fF . The range of input frequency
bin is from 1GHz to 3GHz, we discretize the input signal
into 5 frequency bins and the downstream capacitance into
10 capacitance bins. The time unit for this section is ps if
not specified. SPICE simulation is based on RLC model in
all the experiments below.

For convenience, all algorithms in comparison are listed
below together with their abbreviations.

• VGL: van Ginneken/Lillis’s min-cost timing buffering
based on the Elmore delay.

• NEW: new RLC min-cost timing buffering algorithm
based on impedance delay.

• NEW+S: new RLC min-cost timing buffering algo-
rithm with slew constraint.

4.2 The Optimality of NEW Algorithm
Forty small testcases each having a dozen candidate buffer

positions are used to verify the optimality of our algorithm.
The testcases include 20 balanced trees and 20 unbalanced
trees. For simplicity, only a single buffer type is used. Since
all trees are very small, we can verify the optimality of our
algorithm through exhaustive search based on SPICE. To
this end, we enumerate all possible buffering solutions and
compare the best solution there with the one by our algo-
rithm. SPICE simulation is used for timing analysis. Com-
pared to the best solution by exhaustive search, the new
algorithm inserts the same number of buffers at the same
positions in 16 balanced trees and 13 unbalanced trees, and
adds/misplaces one or two buffers in the other trees. All
of our timing analysis results are close to SPICE simula-
tions. The results of eight example trees are summarized in
Table 2, where B1, B2, B3, B4 refer to balanced trees and
UB1, UB2, UB3, UB4 refer to unbalanced trees.

Table 2: Comparison between VGL, NEW and Ex-
haustive SPICE Search.

VGL NEW SPICE (Exhaustive)
Test Buffered # Buffered # Buffered #
Cases Delay Buf. Delay Buf. Delay Buf.
B1 126 2 114 1 114 1
B2 161 3 151 2 151 2
B3 113 4 95 3 95 3
B4 110 4 100 3 92 2

UB1 141 2 115 1 115 1
UB2 307 5 280 3 273 3
UB3 404 4 372 1 372 1
UB4 332 5 322 4 310 3

556

Table 3: Comparison between VGL and NEW on
five sets of testcases, each having 200 nets.

VGL NEW
Test Avg. # CPU Avg. # CPU SP- Buf.
Sets De. Buf. (s) De. Buf. (s) ICE Saving
S1 2072 1722 465 1664 1130 1430 1502 34.4 %
S2 1983 2207 510 1432 1552 1357 1289 29.7 %
S3 1656 1929 502 1306 1332 1364 1172 30.9 %
S4 1591 1593 448 1239 1256 1302 1155 21.2 %
S5 1488 1579 430 1192 1209 1293 1079 23.4 %

4.3 Comparison between VGL and NEW
We compare buffer reduction and CPU time between VGL

and NEW algorithms. The results on totally 1000 nets are
summarized in Table 3 where “buffer saving” refers to per-
centage difference in the number of buffers. We make the
following observations:

• The new algorithm saves up to 34.4% buffers over VGL
algorithm. One reason for huge buffer saving is that
the delay of NEW is approaching linear with induc-
tance effect. Another reason is that delay is overesti-
mated using the traditional Elmore delay model and
thus excessive buffers are inserted.

• SPICE simulation is performed on the circuits result-
ing from NEW algorithm. One can see that the aver-
age timing error is only 10%.

4.4 Comparison between VGL and NEW un-
der timing constraints

We carry out the algorithms on 100 nets whose results are
summarized in Table 4. At the driver, the solution satisfying
the timing constraint with minimum number of buffers is
chosen. Again, delay evaluation uses SPICE. From Table 4,
we make the following observations:

• NEW algorithm always gives better solutions than VGL
algorithm. For the same delay, NEW algorithm uses
less number of buffers.

• NEW can reduce up to 26.1% of buffers for different
timing constraint.

• Tight timing constraint may cause VGL to return no
feasible solutions while NEW is still able to return fea-
sible solutions.

Table 4: Comparison between VGL and NEW under
different timing constraints.

Timing #Buf. #Buf. Buffer
Constraint VGL NEW Saving

1800 1606 1187 26.1%
2000 1114 863 22.5%
2200 825 676 18.1%
2400 491 414 15.6%
2600 379 343 9.5%

4.5 Comparison between NEW and NEW+S
Results are summarized in Table 5. Comparing to Table 3,

we observe the following:

• The number of buffers decreases for NEW+S as the
slew constraint loosens. This makes sense since a looser
constraint means that buffers can be spaced further
apart.

• NEW+S is up to 4× faster than the NEW algorithm,
in spite of considering all the 12 buffers in the buffer
library. A lot of infeasible solutions have been pruned
due to slew constraint violation. For example, when
we set the slew constraint to 300ps, there are only 5
solutions on average for each frequency bin of each net,
while the number is 60 without slew constraint.

• Considering slew, one sees that NEW+S only slightly
sacrifices delay. This demonstrates that slew buffering
is effective to speed up the algorithm.

Table 5: Comparison of buffering between NEW and
NEW+S on five sets of testcases. Each set consists
of 200 nets.

Slew=300ps Slew=500ps
Test Avg. # CPU Avg. # CPU
Sets Delay Buf. (s) Delay Buf. (s)
S1 1715 1492 482 1681 1339 873
S2 1465 1887 367 1442 1734 797
S3 1323 1649 371 1314 1466 805
S4 1258 1546 359 1242 1433 788
S5 1223 1453 310 1217 1360 725

5. CONCLUSION
This work proposes a new buffering algorithm consider-

ing inductance effects to meet the demand of accurate tim-
ing optimization in high frequency digital circuits. The new
algorithm proposes an efficient yet accurate buffering formu-
lation to estimate inductance effects and guide the solution
pruning. The algorithm is also extended to include buffer
cost and slew constraints for practical use. Experiments on
industrial netlists show that buffer insertion considering in-
ductance effects can save up to 34.4% of the resources while
giving more accurate timing.

6. REFERENCES
[1] Y.I. Ismail and E.G. Friedman, “Effects of inductance on

the propagation delay and repeater insertion in VLSI
circuits,” DAC, pp. 721–724, 1999.

[2] Y.I. Ismail, E.G. Friedman and J.L. Neves, “Repeater
insertion in tree structured inductive interconnect,”
ICCAD, pp. 420 – 424, 2001.

[3] Y. Ismail, E. Friedman, and J. Neves, “Figures of merit to
characterize the importance of on-chip inductance,” DAC,
pp. 560–565, 1998.

[4] Y.I. Ismail and E.G. Friedman, “Effects of inductance on
the propagation delay and repeater insertion in VLSI
circuit: a summary,” IEEE Circuits and Systems
Magazine, vol. 3, no. 1, pp. 24–28, 2003.

[5] C.J. Alpert, A. Devgan and S.T. Quay, “Buffer insertion
with accurate gate and interconnect delay computation,”
DAC, pp. 479–484, 1999.

[6] K. Gala, V. Zolotov, R. Panda, B. Young, J. Wang, and
D. Blaauw, “On-Chip inductance modeling and analysis,”
DAC, pp. 63–68, 2000.

[7] “http://www.mosis.com.”

[8] G. Chen and E. Friedman, “An RLC interconnect model
based on fourier analysis,” TCAD, vol. 24, no. 2, pp. 170 –
183, 2005.

[9] L.N. Dworsky, Modern Transmission Line Theory and
Applications, 1979.

[10] S. Hu, C.J. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi and
C.-N. Sze, “Fast algorithms for slew constrained minimum
cost buffering,” DAC, pp. 308–313, 2006.

557

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

