
Timing Model Reduction for Hierarchical Timing
Analysis

Shuo Zhou∗, Yi Zhu†, Yuanfang Hu†, Ronald Graham†,
Mike Hutton ‡, Chung-Kuan Cheng‡

Synopsys Corp. ∗, Department of Computer Science and Engineering University of California, San Diego†,
Altera Corp.‡

Abstract— In this paper, we propose a timing model reduction
algorithm for hierarchical timing analysis based on a biclique-
star replacement technique. In hierarchical timing analysis, each
functional block is characterized into an abstract timing model.
The complexity of analysis is linear to the number of edges in
the abstract timing model for timing propagation. We propose a
biclique-star replacement technique to minimize the number of
edges in the timing model. The experiments on industry test cases
show that by allowing acceptable errors, the proposed algorithm
can largely reduce the number of edges in the timing model.

Index Terms— Hierarchical Timing Analysis, Biclique-star Re-
placement

I. INTRODUCTION

In hierarchical timing analysis, a design is divided into
multiple blocks and each block is characterized into an abstract
timing model. For linear delay model, we add delays of edges
on a path linearly to get path delay and ignore the second
order effects such as nonlinear functions of slew rates and
output loads. We can use linear delay model in FPGA timing
analysis or at high level optimizations. As a result, the timing
calculation can be separated according to the boundary of the
partitions. Assume the timing relation inside each block is
fixed. During static timing analysis, we do not need to go
through the details in the blocks but use the pre-calculated
timing models for timing calculation. The analysis complexity
is linear to the number of edges in the abstract timing model
for timing propagation. Therefore, we should minimize the
number of edges in the timing model to improve the analysis
efficiency.

There are some previous works related to the timing model
minimization. Some techniques start from the timing graph
of the block, and iteratively reduce the number of edges in
the graph using graph transformations [1], [2]. However, the
transformation is a greedy heuristic, which may not always
produce the optimal solution. Another category of methods
try to represent delay metrics in the abstract timing model
with fewest edges. An optimal realization of a distance matrix
problem is formulated as constructing a graph that preserves

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

shortest-path distances while minimizing the total sum of
edge weights [3], [4]. A clique-star replacement technique is
proposed for the graph with unit edge delays [5], [6]. The
clique is replaced by the star by 1) inserting a Steiner vertex
at the center and 2) assigning 1/2 delay to each edge. However,
if the graph has general edge delays, the clique may not be
replaced by star due to infeasible edge delays. We are unaware
of reports that can identify cliques with feasible edge delays
for the star replacement in the graph with general edge delays.

In this paper, we propose a timing model reduction al-
gorithm which minimizes the number of edges for timing
propagations based on a biclique-star replacement technique.
Our contributions are as follows.

• We derive a biclique-star replacement technique, which
replaces a biclique of general edge delays by a star as far
as the edge delays from various inputs share a common
pattern. By inserting a Steiner vertex at the center of
the biclique, we utilize the common pattern and cover
multiple edge delays from each input by one edge, thus
reducing the number of edges.

• We present a heuristic algorithm which searches the
bicliques containing delay patterns. We allow don’t-care
edges in the delay pattern, thus maximizing the number
of edges reduced.

The remainder of this paper is organized as follows. In
section II, we introduce the terminologies. In section III, we
introduce the biclique-star replacement technique. Section IV
presents the timing model reduction algorithm. The experi-
mental results are presented in Section V. Finally, we give the
conclusions.

II. TERMINOLOGY

The timing graph of a hierarchical block H is a weighted
graph, denoted as GH . The weight of each edge (i, j), denoted
as edge delay di,j , is the corresponding gate or interconnect
delay estimated based on the linear delay model. The delay of
a path from input i to output j, denoted as dpi,j

, is the total
delay of edges on the path. The shortest path delay from input
i to output j in GH , denoted as dmin

Hi,j
, is the minimum of all

path delays dpi,j in GH . The longest path delay from input
i to output j, denoted as dmax

Hi,j
, is the maximum of all path

delays dpi,j
in GH .

The timing model of a hierarchical block H is a weighted
graph GM , which has the same input set B and output set D as

415

timing graph GH , and an edge set E. The shortest and longest
path delays from input i to output j in GM are equal to dmin

Hi,j

and dmax
Hi,j

in GH . Note the internal vertices in timing model
GM and edges in edge set E may or may not be the same as
those in timing graph GH . A bipartite maximum delay model,
denoted as Gmax

M , is a timing model, in which any vertex is
either an input or an output. On each edge (i, j) in Gmax

M

the attached edge delay di,j is equal to the longest path delay
dmax

Hi,j
. A bipartite minimum delay model, denoted as Gmin

M , is
a timing model, in which any vertex is either an input or an
output. On each edge (i, j) in Gmin

M the attached edge delay
di,j is equal to the shortest path delay dmin

Hi,j
.

Fig.1.(a) illustrates a timing graph GH of a hierarchical
block and the corresponding bipartite maximum delay model
Gmax

M . The input set contains three inputs, i.e., B = {1, 2, 3}.
The output set contains three outputs, i.e., D = {9, 10, 11}. On
edges between connected inputs and outputs the longest path
delays are attached. For example, the longest path from input 1
to output 10 is {(1, 4), (4, 5), (5, 7), (7, 8), (8, 10)} which has
delay 7. Thus, the delay attached on edge (1,10) is 7.

We formulate a delay matrix M(Gmax
M) based on the edge

delays in bipartite maximum delay model Gmax
M . The number

of rows, denoted as r, is the number of inputs, i.e., r = |B|.
The number of columns, denoted as c, is the number of
outputs, c = |D|. The element on the ith row the jth column,
denoted as mi,j , is (1) edge delay di,j if edge (i, j) ∈ E, or
(2) −∞ if input i disconnects with output j. The input delay
vector of input i, denoted as Ii, is a set of elements on the
ith row in matrix M , i.e., Ii = {mi,j |j ∈ [1..c]}. The output
delay vector of output j, denoted as Oj , is a set of elements
on the jth column in matrix M ,i.e., Oj = {mi,j |i ∈ [1..r]}.
Similarly, we can formulate the delay matrix for the bipartite
minimum delay model. The fill-in in the minimum delay
matrix for disconnected input-output is ∞.

The delay matrix of the bipartite maximum delay model in
Fig.1.(a) is shown in Fig.1.(b). Each row in the matrix contains
the edge delays from one input to all the connected outputs.
For example, the first row contains edge delays from input 1 to
outputs 9, 10, and 11, i.e., d1,9 = 3, d1,10 = 7 and d1,11 = 8.
If the input is disconnected with an output, the delay is set
to −∞. For example, input 2 is disconnected with output 9,
thus, the element on the 2nd row the 1st column is set to −∞.

A biclique is a complete bipartite graph Gc = {Bc, Dc, Ec},
i.e., ∀ input i in input set Bc is connected with ∀ output j
in output set Dc, i.e., Ec = {(i, j)|i ∈ Bc, j ∈ Dc}. Fig.2
illustrates a biclique and the corresponding delay matrix. Each
pair of input and output is connected. In the delay matrix, there
is no disconnected symbol −∞.

A star with a center vertex s is a weighted graph Gs =
{Bs, Ds, s, Es}, where Bs is the input set, Ds is the output
set, s is the vertex at the center, and Es is a set of edges from
inputs to s and from s to outputs. Each edge has a weight.
The weights of edges (i, s) and (s, j) are denoted as di,s and
ds,j , respectively.

Fig.3 illustrates a star. The vertex s at the center connects
with all inputs and outputs. On each edge, a weight is attached,
i.e., edge delay di,s or ds,j . For example, edge delay d1,s of
edge (1, s) is 1.

Fig. 1. Bipartite Timing Model and Delay Matrix

Fig. 2. Biclique and the Delay Matrix

III. BICLIQUE-STAR REPLACEMENT

In this section, we propose a biclique-star replacement
technique which replaces bicliques with general edge delays
by stars. Intuitively, a biclique with unit edge delays can be
replaced by a star, such that the edge delays are covered with
fewer edges. However, if a biclique contains general edge
delays, the delays may not coincide to be covered by a star.
We match edge delays from various inputs to a common delay
pattern and construct the star based on the pattern. By doing
so, we cover multiple edges from one input by one edge, thus
reducing the number of edges.

A. Replacement Covering All Edge Delays

In this section, we propose to replace a biclique by a star and
cover all the edge delays in the biclique by the star. We define
the edge delay coverage and the biclique-star replacement
first. After that, based on the observation on an example, we

Fig. 3. Star

416

introduce the technique matching edge delays to a pattern and
replacing a biclique by a star.

Definition 3.1: (Edge Delay Coverage) Edge (i, j) in bi-
clique Gc is covered in a star Gs if di,s + ds,j = di,j , where
di,j , di,s and ds,j are edge delays in Gc and Gs.

Definition 3.2: (Biclique-star replacement) A biclique-
star replacement replaces biclique Gc by a star Gs such that

1) Bs = Bc, Ds = Dc, where Bs and Ds are input and
output sets of Gs, Bc and Dc are input and output sets
of Gs;

2) all edges in biclique Gc are covered in Gs.
The reduction ratio is the number of edges in Gc over the
number of edges in Gs, i.e.,

r = (r × c)/(r + c), (1)

where r and c are the number of inputs and outputs in Gc.
One observation on biclique-star replacement is that the

delays from various input delay vectors are a pattern plus
various offsets. For example, Fig.4.(a) illustrates a biclique-
star replacement. Each edge in the biclique is covered by
a two-edge path in the star. For example, the edge (1,4)
in the biclique is covered by the path {(1, s), (s, 4)} in the
star because d1,4 = d1,s + ds,4 = 2. The delay matrix is
shown in Fig.4.(b). We find out that delay vector of input 1
is 0 + {2, 3, 4}, delay vector of input 2 is 1 + {2, 3, 4}, and
delay vector of input 3 is 2+ {2, 3, 4}. Thus, the delay vector
{2, 3, 4} is the common pattern shared by three input delay
vectors.

Fig. 4. Biclique-Star Replacement

The hint of the example is that we can replace a biclique
by a star as far as the input delay vectors share a common
pattern. To identify the pattern in the input delay vectors, we
define a vector subtraction operation as follows.

Definition 3.3: (Vector Subtraction) Given a delay matrix
M of a biclique Gc, a vector subtraction between two input
delay vectors Ia and Ib, denoted as Sub(Ia, Ib), performs
subtractions

δIa,Ib

j = ma,j − mb,j , (2)

where ma,j ∈ Ia and mb,j ∈ Ib and returns a distance vector
V Ia,Ib = {δIa,Ib

j |j ∈ [1..c]}, where c is the number of column
in M .

Definition 3.4: (Pattern of input delay vectors)

1 Two input delay vectors Ia and Ib in delay matrix
of biclique Gc share a pattern vector, denoted as
Îa, Ib, if in the distance vector V Ia,Ib after vector
subtraction Sub(Ia, Ib), all δIa,Ib

j s in distance vector
V Ia,Ib are equal. The value is termed δIa,Ib .

2 If ∀ two input delay vectors Ia and Ib in delay matrix
M share a pattern vector, i.e., Îa, Ib, the biclique Gc

contains an input pattern vector, denoted as Ĝc.
The biclique in Fig.4.(a) is an example of Ĝc. In the delay

matrix in Fig.4.(b), input delay vectors I1 = {2, 3, 4}, I2 =
{3, 4, 5}, and I3 = {4, 5, 6}. These three input delay vectors
share a patten vector {1, 1, 1}.

Lemma 3.1: Given delay matrix M of biclique Gc, the
complexity to evaluate the pattern vector in Gc is O(r × c),
where r and c are the numbers of rows and columns in M .

If a biclique contains an input pattern vector, we can replace
the biclique by a star using algorithm as follows.

Algorithm: Biclique-Star-Replacement(Gc)

1) Star Gs = {Bs, Ds, s, Es}, where input set Bs = Bc,
output set Ds = Dc, and edge set Es = {(i, s)|i ∈
Bs} ∪ {(s, j)|j ∈ Ds};

2) Pick input 0 ∈ Bs and assign d0,s = 0, ds,j = d0,j for
edge (s, j) ∈ Es;

3) For each input i ∈ Bs

di,s = di,0 −d0,0, where di,0 and d0,0 are delay of
edges (i, 0) and (0, 0) in Gc;

Fig.5.(a) illustrates a biclique and the delay matrix. In
Fig.5.(b), we perform vector subtractions Sub(I2, I1) and
Sub(I3, I1) and get the distance vectors V I2,I1 = {1, 1, 1}
and V I3,I1 = {2, 2, 2}. Since the δs in each distance vector
are equal, the biclique contains an input pattern vector. In
Fig.5.(c), we construct a star for the biclique. We first cover
input delay vector I1 by setting edge delays d1,s = 0, ds,4 =
d1,4 = 2, ds,5 = d1,5 = 3, and ds,6 = d1,6 = 4. Then, we
cover input delay vectors I2 and I3 by setting edge delays
d2,s = δI2,I1 = 1 and d3,s = δI3,I1 = 2. As a result, all the
edges in the bicliques are covered in the star and the number
of edge is reduced from 9 to 6.

B. Replacement Allowing Don’t Care Edges

We allow don’t-care edges thus generalizing biclique-star
replacement to all bicliques. After the replacement, the edge
delays in the biclique may or may not be covered in the
star. However, as far as the number of edges covered is more
than the number of edges used in the star, the replacement is
beneficial.

A biclique can be replaced by star as far as the delay
from an input to an output in the star does not dominate the
corresponding edge delay in the biclique. The biclique-star
replacement allowing don’t-care edge is defined as follows.

Definition 3.5: (Biclique-star Replacement Allowing
Don’t Care Edges) Given a maximum delay biclique Gc, a

417

Fig. 5. Biclique-Star Replacement Based on Delay Pattern

biclique-star replacement allowing don’t care edges replaces
Gc by a star Gs such that

1) Bs = Bc, Ds = Dc, where Bs and Ds are input and
output sets of Gs, Bc and Dc are input and output sets
of Gc;

2) For edge (i, j) ∈ Ec, the delays di,s and ds,j of edges
(i, s) and (s, j) in Es satisfy

di,s + ds,j ≤ di,j . (3)

Edge (i, j) is a don’t care edge. The reduction ratio is the
number of edges covered in Gs over the number of edges in
Gs. Note an edge is covered in Gs only if di,s + ds,j = di,j .

For a minimum delay biclique, the definition is similar
except that the expression 3 is reversed in the direction of
its inequality.

By allowing don’t care edges, we can replace a biclique by
a star when some sub-vectors of input delay vectors share
a delay pattern and all other edges are don’t care edges.
After replacement, the edge delays in the sub-vectors sharing
a pattern are covered. The sub-vectors sharing patterns and
sub-vectors of don’t care edges are defined as follows.

Definition 3.6: .

• Sub-vector Sharing Pattern Given input delay vectors
Ia and Ib, the sub-vector Iδ

b ⊆ Ib shares a pattern with
corresponding sub-vector Iδ

a ⊆ Ia, i.e., Iδ
a = {da,j |db,j ∈

Iδ
b }, under δ if for ∀db,j ∈ Iδ

b , db,j − da,j = δ, i.e.,
∀δIb,Ia

j ∈ V Ib,Ia equals δ, where V Ib,Ia is the distance

vector.
• Sub-vector of Don’t Care Delays Given input delay

vectors Ia and Ib, a delay db,j is a don’t care delay under
δ if δIb,Ia

j > δ. All the don’t care delays formulates the
sub-vector, termed Iδ∗

b .
An example of sub-vectors sharing pattern and sub-vectors

of don’t care delays are in Fig.6. Fig.6.(a) illustrates a biclique
and the corresponding delay matrix. In Fig.6.(b), we perform
vector subtraction Sub(I2, I1) and Sub(I3, I1). The distance
vector V I3,I1 = {0, 0, 1, 1}. Under δ = 0, the sub-vector
{2, 3} ∈ I3 shares pattern with I1, and the sub-vector {5, 6} ∈
I3 contains don’t care delays. Under δ = 1, the sub-vector
{5, 6} ∈ I3 shares pattern with I1, and the sub-vector of don’t
care delays is empty.

When allowing don’t care edges, ∀ biclique Gc can be
replaced by a star Gs as follows.

Algorithm: Biclique-Star-Replacement-Allowing-Don’t-
Care(Gc,a)

1) Construct star Gs = {Bs, Ds, s, Es}, where input set
Bs = Bc, output set Ds = Dc, and edge set Es =
{(i, s)|i ∈ Bs} ∪ {(s, j)|j ∈ Ds};

2) Randomly choose input a and assign da,s = 0, ds,j =
da,j for each edge (s, j) ∈ Es;

3) For each input i ∈ Bs

a) Vector subtraction Sub(Ia, Ii);
b) di,s = min{δIa,Ii

j |δIa,Ii

j ∈ V Ia,Ii};
We keep the direct edge (i, j) in the timing model to cover

the edge delay of each don’t care edge when replacing a
biclique by a star. An example of the replacement allowing
don’t care edges is illustrated in Fig.6. Fig.6.(a) illustrates the
biclique and the delay matrix. In Fig.6.(b), we get the distance
vectors V I2,I1 and V I3,I1 . The minimum δs in V I2,I1 and
V I3,I1 are 1 and 0, respectively. In Fig.6.(c), we construct
the star by assigning delays in input delay vector I1, i.e.,
{2, 3, 4, 5}, to edges (s, 4), (s, 5), (s, 6) and (s, 7). The
minimum δI2,I1 = 1 and δI3,I1 = 1 are assigned to edges
(2, s) and (3, s). We keep the don’t care edges (3,6) and (3,7)
after the replacement. From the biclique to the star, the number
of edge is reduced from 12 to 9.

IV. TIMING MODEL REDUCTION BASED ON

BICLIQUE-STAR REPLACEMENTS

In this section, we search bicliques containing delay patterns
in the abstract timing model and minimize the number of edges
by replacing bicliques by stars. The problem is equivalent to
the minimum biclique covering problem without considering
the edge delays, which is NP complete [6]–[8]. Therefore, we
develop a set of heuristics to solve the problem in polynomial
time.

A. Main Flow of Bipartite Timing Model Reduction

The main flow contains three steps. Firstly, we achieve a set
of bicliques in the timing model as the replacement candidates.
After that, we evaluate the reduction ratio for each biclique.
A high reduction ratio indicates that a large number of edges
can be reduced after the replacement. Finally, we choose the
biclique with the maximum reduction ratio to replace.

418

Fig. 6. Biclique-Star Replacement Allowing Don’t Care Edges

Bipartite Timing Model Reduction(G)
1) Biclique Pool = Biclique-Search(G);
2) Repeat

a) Evaluate the reduction ratio for each biclique in
Biclique Pool;

b) if max reduction > 1

i) Replaces Gc with the max reduction by a star;
ii) Remove Gc from BicliquePool;

3) Until max reduction < 1

The Indentify-Bicliques procedure returns a set of bicliques
as the candidates to be replaced. We evaluate all the bicliques
in the Biclique Pool, and replace the one with the maximum
reduction ratio by a star using the Biclique-Star-Replacement-
Allowing-Don’t-Care algorithm. We repeat the evaluation and
replacement steps until all the reduction ratios are smaller
larger than 1, which means the number of edges can not be
reduced further.

B. Biclique Search in Bipartite Timing Model

We search bicliques in the timing model as the replacement
candidates and try to maximize the edge reduction. Although
any biclique can be replaced by a star by allowing don’t care
edges, the edge reduction produced by the replacement is
different. We devise two rules for biclique search according
to reduction ratio defined in equation 1. The definition is
not accurate for some cases, such as the biclique including
don’t care edges and some edges covered in various bicliques.

However, it indicates the reduction potential of the biclique,
and thus can be used in the biclique search.

1) Maximize Biclique Size Bicliques of larger size poten-
tially have higher reduction ratio.

2) Maximize Edge Coverage We try to cover as many as
possible edges with bicliques. If an edge is not covered
by any biclique, we need one direct edge to cover
the edge delay in the timing model after minimization.
However, if the edge is covered by a biclique with
reduction ratio r, after the biclique is replaced by a star,
the edge delay is covered by 1/r edge. As far as r > 1,
there are benefits.

Following these two rules, the biclique search algorithm is as
follows.

Algorithm: Biclique-Search(G)

1) Biclique Pool = ∅;
2) Repeat

a) Randomly choose edge (p, q) ∈ E which is not
covered by any biclique;

b) Input set Bc = {p}, edge set Ec = {(p, j)|(p, j) ∈
E}, output set Dc = {j|(p, j) ∈ E};

c) For each input i connected with output q Biclique-
Expansion(G,Gc, p, q, i);

d) Add biclique Gc to Biclique Pool;

3) Until all edges covered;

In the algorithm, we iteratively construct bicliques starting
from uncovered edges thus maximizing the edge coverage.
When we construct the biclique for edge (p, q), all the edges
(p, j) from input p are added to the biclique first. Then, we
expand the biclique to cover edges from other inputs. When
performing biclique expansion to input i, we try to cover as
many as possible edges from input i and remove as few as
possible edges already in the biclique. By doing so, the size of
the biclique is maximized. The Biclique-Expansion algorithm
is as follows.

Algorithm: Biclique-Expansion(G,Gc, p, q, i)

1) Vector subtraction Sub(Ii, Ip) between input delay vec-
tors Ii and Ip;

2) max = 0;
3) For each δ ≤ δ

Ii,Ip
q

a) Get sub-vector Iδ
i sharing a pattern with Ip under

δ;
b) Get sub-vector Iδ∗

i of don’t care delays under δ;
c) current = Added-over-Removed(Gc, I

δ
i , Iδ∗

i , δ);
d) If (current > max)

max = current, max vector = Iδ
i ;

4) If max > 0

a) For each output j in Dc

i) If di,j ∈ Iδ
i Add edge (i, j) to Ec;

ii) else Remove output j and all input edges to j
from Gc;

Function: Added-over-Removed(Gc, I
δ
i , Iδ∗

i , δ)

1) Added = |Iδ
i |, Removed = 0;

2) For each output j in Dc

a) If di,j /∈ Iδ
i ∪ Iδ∗

i

419

b) Removed = Removed + #Edges to output j with
delays covered in Gc;

3) Return(Added - Removed);

We first perform vector subtraction between input delay
vectors Ii and Ip. Then, we use the Added-over-Removed
function to evaluate the number of edges covered for each
δ ≤ δ

Ii,Ip
q as if we perform the Biclique-Star-Replacement

with di,s = δ. According to the Biclique-Star-Replacement-
Allowing-Don’t-Care algorithm, when assigning di,s = δ, an
edge (i, j) is covered if delay di,j ∈ Iδ

i , where Iδ
i is a sub-

vector of input delay vector Ii sharing a pattern with Ip. The
edges (i, j) with delays di,j /∈ Iδ

i ∪ Iδ∗
i can not be added.

Therefore, we need to remove output j to keep the biclique
complete. As a result, the edges to j which are originally
covered in the biclique are counted as removed edges. After
the evaluation, we expand the biclique based on the δ which
maximizes the edge coverage. The edge (i, j) is added if di,j

belongs to the union Iδ
i ∪ Iδ∗

i . Otherwise, the output j and
the edges to j are removed. By restricting δ

Ii,Ip

j ≤ δ
Ii,Ip
q , we

ensure that di,q ∈ Iδ
i ∪ Iδ∗

i , thus keeping output q and edge
(p, q) in the biclique.

Fig.8 and Fig.9 illustrate a biclique expansion example
based on the bipartite timing model in Fig.7. We want to
construct the maximum biclique covering edge (1,6). Fig.8
illustrates steps 1, 2 and 3 of the expansion. Fig.9 illustrates
steps 4 and 5.

Fig. 7. Bipartite Timing Model and the Delay Matrix Example

C. Edge Reduction Evaluation

We use reduction ratios to evaluate benefits of replacing
bicliques by stars. However, the reduction ratio defined in
equation 1 is not accurate when there are don’t care edges in
the biclique or some edges are covered by multiple bicliques.
A more accurate and general definition of the reduction ratio
is as follows.

Definition 4.1: (Reduction Ratio) Given a biclique Gc, if
Gc can be replaced by a star Gs, the reduction ratio r =
c/(m+n), where c is the number of edge delays covered and
only covered by Gs, m + n is the number edges in Gs.

Therefore, when replacing a biclique by a star, we label
the edges covered by the star. After the replacement, we
re-compute the reduction ratios for the bicliques left in the
Biclique Pool. All the edges with labels are not counted.

Fig. 8. Biclique Expansion Starting from Edge (1,6) in Bipartite Timing
Model (Fig.7): Steps 1 to 3.

Fig. 9. Biclique Expansion Starting from Edge (1,6) in Bipartite Timing
Model (Fig.7) : Steps 4 and 5.

420

We repeat the reduction ratio evaluation and biclique-star
replacement steps until no bicliques in the biclique pool
can provide further edge reduction. The timing model after
reduction is shown in Fig.10. The number of edges in the
bipartite timing model is reduced from 22 to 16.

Fig. 10. Bipartite Timing Model (Fig.7) Reduction : The number of edges
is Reduced from 22 to 16.

Theorem 4.1: The complexity of constructing maximum
biclique for edge (p, q) is Opq = O((d−(q)×d+(p)2)), where
d+(p) and d−(q) are output and input degree of input p
and output q. The complexity of biclique evaluation Oe =
O(|E| × k), where E is the edge set of the timing model and
k is the number of bicliques in Biclique Pool. The complexity
of timing model reduction is O(Σ(Opq) + k × Oe).

D. Iterative Timing Model Reduction

We iteratively perform the bipartite timing model reduction
to reduce the number of edges further. A vertex splitting and
a star recover technique are proposed to maintain the timing
model a bipartite graph. Based on the bipartite timing model,
we can repeat the bipartite timing model reduction process
until no improvement, thus maximizing the edge reduction.

After replacing a set of bicliques by stars, the timing model
is not bipartite graph any more. The inserted vertices, which
are the centers of the stars, partition a part of the timing model
into two bipartite graphs. Intuitively, we can repeat the timing
model reduction on each bipartite partition and accumulate
the results into the whole timing model. However, we may
lose the ability to discover larger bicliques crossing multiple
bipartite partitions, which makes the reduction less efficient.
For example in Fig.11, the timing model is partitioned by
vertices s1 and s2 into several bipartite graphs. The biclique
circled in the figure which includes inputs 1,2,3, vertices s1

and s2, and output 9, is hard to be discovered.
We propose a vertex splitting technique to transform the

timing model into a bipartite graph. By doing so, we can
discover larger bicliques thus improving the reduction ratio.
We split vertex s of each star Gs as follows.

Algorithm: Vertex-Splitting(G,Gs)
1) Split vertex s into vertices s and s′;
2) Input set B = B ∪ {s′}, output set D = D ∪ {s};
3) For each output j in output set Ds

E = E − {(s, j)} and E = E ∪ {(s′, j)}

Fig. 11. Bicliques Crossing Multiple Bipartite Partitions

We add the duplicated vertex s′ into the input set and push
vertex s into output set D. All the edges originally from s to
j are moved to vertex s′.

As the reverse process of the vertex splitting, we recover a
star by merging the corresponding vertices s′ and s.

Algorithm: Star-Recover(G′, s, s′)

1) B = B − {s′}, D = D − {s};
2) For each edge (s′, j)

Add edge (s, j);

Fig.12 illustrates an example of the vertex splitting and star
recover. From left to right, we split vertices s1 and s2, add s′1
and s′2 into the input set, and push s1 and s2 into the output set.
After the vertex splitting, the timing model G is transformed
into a bipartite graph. The star recover is the reverse process,
which merges s1 with s′1, and s2 with s′2. The bipartite graph
is recovered into the timing model.

Fig. 12. Vertex Splitting and Star Recover

With the vertex splitting and star recover, we can iteratively
perform the bipartite timing model reduction to minimize the
number of edges in the timing model.

Algorithm: Iterative-Reduction(G)

1) Repeat

a) Bipartite-Timing-Model-Reduction(G);
b) For all stars Gs Vertex-Splitting(G, Gs)

2) Until no edge reduction
3) For all duplicate vertices s and s′ Star-Recover(G, s, s′)

Theorem 4.2: Edge delay di,j of any connected input i and
output j in timing model G is covered by the longest path
delay d′i,j from input i to output j in timing model G′ after
the reduction.

421

TABLE I

EDGE REDUCTION WITH ERROR BOUNDS

Block 1 EG = 138,360 EB = 262,491 Block 2 EG = 103,414 EB= 465,190
Error(ns) Ea rG rB Error(ns) Ea rG rB

0 249,032 -80.0% 5.1% 0 397,384 -284.3% 14.6%
0.1 41,696 69.9% 84.1% 0.01 49,613 52.0% 89.3%
1.0 36,980 73.3% 85.9% 0.10 29,477 71.5% 93.7%

10.0 35,981 74.0% 86.3% 1.0 21,192 79.5% 95.4%
100.0 36,169 73.9% 86.2% 10.0 20,262 80.4% 95.6%

Buffer × 1 delay = 1.34ns. Buffer × 1 delay = 0.74ns

V. EXPERIMENTAL RESULTS

We test the proposed approach on industry test cases. The
algorithm is implemented in C and run on a Pentium 4 Linux
machine. We construct and minimize the timing models for
two circuit blocks (Table I). Circuit block 1 contains 8499
inputs, 16885 outputs, 138,360 edges in the timing graph of
the block, and 262,491 edges in the bipartite timing model.
Circuit block 2 contains 4260 inputs, 103,414 edges in the
timing graph of the block, and 7728 edges in the bipartite
timing model.

We compare the number of edges in the timing model after
reduction with both the number of edges in the timing graph
of the block and the number of edges in the bipartite timing
model. Two reduction ratios are defined as follows.

rG = (EG − Em)/EG (4)

rB = (EB − Em)/EB , (5)

where EG is the number of edges in the timing graph of the
block, EB is the number of edges in the bipartite timing model,
and Em is the number of edges in the timing model after the
reduction.

We allow error bounds on edge delays. For any connected
input i and output j, the error bound is defined as follows.

di,j − d′i,j ≤ error bound, (6)

where di,j and d′i,j are the longest path delays in timing
models before and after the model reduction. In Table I, we
show the number of edges in the timing model after the
reduction, i.e., Em, and the reduction ratios, i.e., rG and rB .
For block 1, if the error bound is 0, Em will be larger than
EG and smaller than EB because the number of edges is
increased when we transform the timing graph of the block
into the bipartite timing model. By allowing 0.1ns error bound,
the number of edges is reduced by 69.9% compared with the
timing graph and 84.1% compared with bipartite timing model.

We produce timing models of acceptable accuracy using
small error bounds. In block 1, the delay of minimum size
buffer, Buffer×1, is 1.34ns, which is the delay of a minimal
sized inverter with one fan-out. Typically, the critical path
delay is 10 to 20 times of the minimum buffer delay. Therefore,
the impact of 0.1ns error bound on the critical path delay is
less than 1%, which is acceptable in terms of the accuracy. By
further increasing the error bounds, we can reduce more edges.
However, the improvement is not substantial and if the error

bound is too large, the abstract timing model is not accurate.

VI. CONCLUSION

We propose an abstract timing model reduction algorithm
for hierarchical timing analysis based on a biclique-star re-
placement technique. The number of edges in the abstract
timing model for timing propagations are minimized, thus
improving the analysis efficiency. By allowing reasonable
error bounds, the experiments results show that the proposed
algorithm effectively reduces the number of edges in the
timing model.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the California MICRO
program.

REFERENCES

[1] C. Visweswariah and A. R. Conn. Formulation of static circuit opti-
mization with reduced size, degeneracy and redundancy by timing graph
manipulation. In Proc. of the Intl. Conf. on Computer-Aided Design, page
244C251, 1999.

[2] C.W. Moon, H. Kriplani, and K. P. Belkhale. Timing model extraction of
hierarchical blocks by graph reduction. In Proc. of the Design Automation
Conf., page 152C157, 2002.

[3] S. L. Hakimi and S. S. Yau. Distance matrix of a graph and its
realizability. Quart. Appl. Math., 22:305C317, 1964.

[4] F. Chung, M. Garrett, R. Graham, and D. Shallcross. Dis-
tance realization problems with applications to internet tomography.
http://www.math.ucsd.edu/?fan.

[5] T. Feder, A. Meyerson, R. Motwani, L. OCallaghan, and R. Panigrahy.
Representing graph metrics with fewest edges. In Proc. of Symp. on
Theoretical Aspects of Computer Science, pages 355–366, 2003.

[6] T. Feder and R. Motwani. Clique partitions, graph compression and
speeding up algorithms. In Proc. of the ACM Symposium on Theory
of Computing, pages 123–133, 1991.

[7] J. Orlin. Containment in graph theory: Covering graphs with cliques.
Indag. Math., 39:211–218, 1977.

[8] H. Muller. On edge perfectness and classes of bipartite graphs. Discrete
Math., 149:159–187, 1996.

422

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

