
Algorithms for MIS Vector Generation and Pruning
Kenneth S. Stevens

Electrical and Computer Engineering
University of Utah

Salt Lake City, Utah

kstevens@ece.utah.edu

Florentin Dartu
Synopsys, Inc.

Advanced Technology Group
Hillsboro, OR 97124

fdartu@synopsys.com

ABSTRACT
Ignoring the effect of simultaneous switching for logic gates
causes silicon failures for high performance microprocessor
designs. The main reason to omit this effect is the run time
penalty and potential over-conservatism. Run times are di-
rectly proportional to the vector sizes. Efficient algorithms
are presented that prune the multiple input switching (MIS)
vector set to a worst-case covering using a boolean logic
abstraction of the gate. This non-physical representation
reduces the vector size to approximately n vectors for an
n-input gate. This is effectively the same vector set size as
the optimal single input switching vector set. There are no
errors for 88% the simulations using a Monty-Carlo coverage
on a 90nm static library, and the magnitude of the errors
are less than 5% on average.

1. INTRODUCTION
Accurately modeling silicon may seem feasible consider-

ing the progress made in computational power and timing
analysis models and algorithms. Unfortunately, exponen-
tially larger circuits are being built in silicon technologies
that increasingly emphasize unwanted effects such as short
channel, capacitive coupling, inductance, process variations,
etc. As a result, all timing analysis tools still have to trade
accuracy for run time.

Multiple input switching (MIS) is a very good example
of an important effect that can substantially modify timing,
but is commonly ignored in static timing tools. This de-
lay variation can be measured in all gates with more than
one input, as demonstrated in Figure 1. If in2 switches
long before in1, the delay from in1 to the output remains
constant. However, as the separation between in1 and in2

approaches zero, the delay from in1 to the output can in-
crease substantially. Figure 1 presents the maximum delay
as a percentage of the single input switching (SIS) delay
of in1. Observe that when the inputs switch concurrently
(same 50% point) the delay pushout is larger than 25%. It
is not difficult to find cases where the delay variation from
SIS to MIS is as high as 70-80%.

Given such significant MIS delay variation, it is difficult to
claim that static timing analysis always computes an upper
delay bound. Indeed, MIS delay pushout has been confirmed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

-2.5 -2.0 -1.5 -1.0 -0.5 0
0

5

10

15

20

25

Slack (FO4)

p
u
sh

o
u
t

(%
)

�ca

b

-

-

Figure 1: MIS Maximum Delay Pushout Effect

as a source of failure in high performance microprocessor
silicon. MIS has also been shown to significantly change the
performance properties of certain circuit configurations[5].

The series/parallel relationship between transistors is the
primary cause of delay variation due to simultaneous switch-
ing. Second order effects include transistor sizing and order-
ing, charge sharing, voltages on non-switching transistors,
legging, internal node voltages, and parasitic capacitance
due to layout configurations. The current state of the art
is to prune multiple input switching vectors based on the
physical layout and topology of the gate [1, 2, 3, 4, 6]. This
paper presents a significantly different approach in that no
explicit topological information is used to create vectors.

The topology of transistors in a gate is inexorably related
to the logic function of the gate: AND’ed literals require
series transistors and OR’ed literals must be in parallel de-
vices. Hence, given a boolean equation for a gate, one can
easily extract the most significant topological relationship of
transistors that cause MIS delay variation. This paper takes
the novel approach of applying pure logic to create vectors
based on the implied topological relationships.

This purely logical approach, if successful, has a number of
advantages. The algorithms are very efficient and have been
applied to the MIS characterization of a large microproces-
sor design using transistor level static timing analysis (STA).
Since vectors are generated directly from a logic definition,
the layout and schematics are not needed in cell-based design
(CBD) methodologies. The vector generation algorithms are
very flexible and correctly generate vectors for static gates,
domino logic, sense amps, and other classes of gates. Finally,
if more accuracy is required, this approach can rapidly create
initial vector sets for further pruning based on more com-

408

plicated topological searches taking into account transistor
sizes, parasitics, internal node voltages, etc.

Certain topological relationships are not exposed in the
logical domain, such as transistor sizing and ordering, leg-
ging, etc. This can result in coverage errors in the vector
set. Therefore a commercial 90nm static library was evalu-
ated to determine the quality of the vector set produced by
these algorithms.

2. VECTOR SETS AND RUN TIME
Static timing analysis trades off some accuracy through

applying worst-case switching conditions for a considerable
improvement in run time. The run time for library char-
acterization is sensitive to two parameters: the number of
vectors and the number of simulations required for every
vector. Exhaustive simulation to characterize any n-input
gate requires 22nkp simulations (kp simulations per vector
for each of the 22n vectors), where p is the number of sim-
ulation parameters for k simulation points per parameter.
Exhaustive SIS simulation requires n2nkp simulations. This
balloons to (2n − n − 1)2nkp simulations for MIS, where p
will likely be larger than for SIS characterization.

To reduce the run time and CBD table size, model order
reduction is applied to library characterization reducing p
to two parameters: input slope and the output load mod-
eled as effective capacitance Ceff . The number of simula-
tion points k for each parameter is chosen such that a table
with a simple interpolation between these points gives suf-
ficient accuracy across the electrically valid slope and Ceff

range. Five simulation points are usually sufficient (best,
worst, nominal and the two points in between), resulting in
kp = 52 = 25 simulations per vector. Under MIS characteri-
zation, each input can have an independent slope and delay
offset from the latest arriving signal. If both of these addi-
tional parameters are modeled for three switching signals,
then p = 2n+1 = 7, requiring 78,125 simulations per vector
and a substantially larger interpolation table. New model
order reduction techniques can be developed to reduce the
number of MIS parameters and required simulations. How-
ever, run time remains highly sensitive to vector sizes.

Transistor level STA does not need any precharacteriza-
tion. The actual slopes, loads, and signal separations are
used for simulation. However, all applicable worst-case vec-
tors must be simulated on every gate in the design.

The minimum number of SIS vectors required to simulate
an n-input gate is 2n – with each input pin rising and falling.
Our algorithm computes, for a static cell library, an average
of approximately 2n MIS vectors per gate.

Definition 1. A simulation vector v consists of a pair
of boolean n-cubes where each literal value is a member of the
set {0, 1}. This pair is represented as a single transition
vector where each literal in the n-cube is a member of the
set {0, 1, r, f}. If the literal is unchanged in both vectors it
retains its value of 0 or 1. If the value in the first cube is 0

and the second is 1, then the literal value in the transition
cube is r (rising), otherwise it is f (a falling literal).

The exhaustive 22n vectors can be broken down into three
classes: n2n SIS vectors, (2n − n − 1)2n MIS vectors, and
2n stable vectors. The n2n SIS vector set for a two input
gate is {0r, 1r, 0f, 1f, r0, r1, f0, f1}, while the (2n−n−1)2n

MIS vector set is {rr, fr, rf, ff}. The 2n stable vectors are
{00, 10, 01, 11}.

2.1 First Order Affects
There are two aspects of vector pruning: logical (func-

tional) constraints and topological constraints. The com-
plete vector set 22n is substantially pruned by the simple
functional requirement that each input vector must toggle
an output. The 2n stable vectors are not useful for any gate
and are deleted. The remaining 22n − 2n vectors are eval-
uated based on the logic function of the gate, and vectors
that don’t switch an output are also removed. Topological
constraints cannot be used to reduce the valid single input
switching vectors remaining from the n2n candidates. These
vectors require physical information, such as transistor or-
dering, legging, device sizing, parasitic charge sharing, etc.
However, when multiple signals switch, topological relation-
ships largely determine if the gate will speed up, slow down,
or be relatively unaffected by MIS in comparison to a single
input switching on one of the input pins.

Delay variation in a gate due to simultaneous switching
is primarily affected by the topological serial and parallel
nature of a gate. Take the NAND gate of Figure 1. If
the two inputs fall concurrently the circuit will speed up
considerably. This occurs because the two PMOS transistors
are in parallel and effectively double the drive of the gate. If
the inputs rise concurrently then the output will be delayed.
This is due the increased miller and body effect in the series
pulldown stack. This allows us to make a first-order pruning
of the the MIS vector set based on logical information.

The algorithms in this paper apply to any single diffu-
sion connected network (DCN) such as a static and ratioed
CMOS gates. Cells with pass gates as inputs are not admit-
ted. Cells with multiple DCNs are not allowed except for
a few special cases: when a second DCN is part of a feed-
back cycle, or it is an inverter that is on an output. While
these algorithms could be applied to some cells with multiple
DCNs (some XOR implementations), the disparity between
topology and logic could introduce significant error. These
two restrictions do not seem to represent a major limitation
for many standard gate libraries.

The algorithms presented here support full MIS vector
generation from 2 to n inputs switching for an n-input gate.
Additional flexibility is provided because the algorithms ac-
cept an upper bound on the number of inputs that are al-
lowed to switch at the same time. This adds flexibility in
the run time/accuracy trade off in algorithms that apply
these vectors to static timing analysis. As expected, the
more inputs that are allowed to switch simultaneously, the
larger the number of potential MIS vectors but the smaller
the probability of such a case actually occurring in the cir-
cuit. For clarity, we have set this parameter to limit multiple
input switching to 2 signals in the reported results.

Vector generation proceeds through three steps: 1. Cre-
ate reduced superset of vectors. 2. Prune based on gate
functionality. 3. Prune to the worst-case covering.

3. LOGICAL GATE REPRESENTATION
A gate representation is created using boolean logic with

the structure D = {I, O, B, L, o, s, r} where I is set of input
literals, O the output literals, B the feedback nodes, and L
the inputs to the DCN where L ⊆ I ∪B. Boolean functions
s and r operate over the literals in L and produce output
o(v) ∈ {0, 1, ∗} ∀ outputs o ∈ O. The algorithms create
a vector set v ∈ V mapping each literal in L to the set

409

vi ∈ {0, 1, r, f, -}, where ‘-’ is a don’t care value and ‘r’ and
‘f’ are rising and falling transitions respectively.

This model assumes a CMOS process. All passive devices
are abstracted into either conducting terminals or open cir-
cuits with nodes being the conductive connections between
terminals of the transistors. The model uses gates that can
be extracted from a design as single DCNs where all source
and drain terminals are all connected through the source
and drains to power and ground.

A feedback node is a DCN input that can be traced back
to an output of this DCN through at most one other DCN.
Feedbacks are of two types: direct feedbacks, such as are
found in sense amps, or keeper feedbacks as are found in
domino gates. These signals have special behavior in our
algorithms because they are both inputs and outputs to the
DCN and hence cannot be freely given state assignments
like unconstrained inputs due to their output dependency.

Definition 2. The set function s is ∀o ∈ {1, ∗}, {x :
s(x) = 1} asserts when the output is high or unknown (∗).
The reset function r is ∀o ∈ {0, ∗}, {x : r(x) = 1} asserts
when the output is low or unknown. The conflict set zc is
{s∩r} asserts when both s and r are asserted and the output
is unknown. The ternary function for o is fully covered by
s ∪ r.

The functions s and r are boolean representations of the
transistor network between an output and the power rail,
and the output and ground respectively. The definition for
s and r supports ratioed gates and keeper feedbacks by ab-
stracting the pullup and pulldown paths as demonstrated in
Equation 1. A week pullup transistor will be ignored if it is
turned on at the same time as a strong pulldown.

f =

8><>:
0 pullup � pulldown

∗ pullup ≈ pulldown

1 pullup � pulldown

(1)

The precondition of a transition vector •v is the starting
boolean cube generated by mapping r to 0 and f to 1. The
postcondition v• creates the destination cube swapping 1
and 0 in the precondition.

There are many ways to structurally connect the gates,
and there are many boolean representations. However, in
this work we only use the canonical sum of products (SOP)
and product of sums (POS) or conjunctive normal form.
Thus we get a single logical representation that covers dif-
ferent topologies.

Both cell-based and transistor level flows are supported.
For CBD, the functions s and r must be defined, and the
signals sets I, O, B, and L are either provided or created.
Our code automatically creates D from layout or schematics
for the transistor level flow. The description of the transistor
level code is omitted for brevity.

4. CREATING POTENTIAL VECTORS
This section describes the generation of a set of potential

vectors using logical and topological information provided
by the logical behavior of the gate.

Some gate topology is encoded in the canonical SOP for-
mat. Each minterm encodes the series relations between
transistors. Parallelism exists between literals in different
minterms. The algorithms use these topological implications

a
b
c

� b o

b bb c qba q q- o

a
c

b

Figure 2: Static Gate o = (a + bc)

to make worst case vector coverings for max-delay (pushout)
and min-delay (pullin).

4.1 Remove Conflict and “tristate” Cubes
A superset of the valid vector set is created from the

minterms in the s or r functions after removing the conflict
cubes zc and keeper cubes. Keeper cubes are all minterms
that contain the output as a literal. Such cubes only retain
the previous state, so they are not used for vector gener-
ation. Keeper cubes are removed from s and r by apply-
ing the Shannon cofactor on output o ∈ O to the boolean
functions, as so and ro. This leaves the cubes which can
actively switch the output up or down. The conflict cubes
are removed through set subtraction, giving a simplified ris-
ing output function s′ = so − zc, and the falling function
r′ = ro − zc.

This gives a set of minterms across which we can iterate to
generate the superset of SIS and MIS vectors. These vector
sets are pruned and refined in Section 5 using the full logic
function to create the final valid vector set.

4.2 Creating Complete SIS Vector Superset
This algorithm iterates across every minterm in either the

canonical SOP s (when output o↑ rises) or r. The superset
of SIS vectors is created by setting each literal in every cube
to rise or fall.

if o↑ then f ←− so − zc else f ←− ro − zc

∀ c ∈ f

∀ li ∈ L if li ∈ c ∧ li 6∈ B ∪O create v:

v[j] =

8>>>>><>>>>>:

r j = i ∧ c[i] = 1 ∨ lj = o ∧ o↑
f j = i ∧ c[i] = 0 ∨ lj = o ∧ o↓
0 j 6= i ∧ lj ∈ c ∧ c[j] = 0

1 j 6= i ∧ lj ∈ c ∧ c[j] = 1

- lj 6∈ c ∧ lj 6= o

This procedure applies Shannon decomposition to remove
the keeper, and subtracts conflict minterms. A superset of
SIS vectors are generated for every remaining minterm cube
c ∈ f . A new vector is created for each literal in the cube
that is not an output or feedback. The vector is the size of
the cardinality of the input to the DCN |L|. For each vector,
the literal li in v is set to rising if the literal is asserted in
the cube, else it is set to fall. If the output o is an element
of the vector, then it is set to rise (fall) when using function
s (r). For all other literals lj , the value of v[j] is set to 0 or
1 if the literal lj is in the cube based on the literal’s value.

410

If the literal lj is not in the cube then its value in the vector
is don’t care.

Refer to the gate in Figure 2. The reset function r =
{a, bc}, the conflict and feedback sets zc and B are empty,
the output set O = {o}, and the input literals are L =
{a, b, c}. This produces the three vectors {r--, -r1, -1r}
with a vector signal order of “abc”.

4.3 Complete MIS Vector Superset
The MIS vector superset set is generated from the SIS

vectors. All possible vectors are created by allowing don’t
care and controlling values to rise or fall as permitted by
their minterm cubes. MIS vectors can have anywhere from
2 to n literals in the set L switching where 2 ≤ n ≤ |L|.
These algorithms take parameter n to limit the maximum
number of signals that can switch concurrently. This limit is
set to 2 in the results of this paper without loss of generality.
The MIS vector set M (initialized ∅) is calculated with the
recursive function g(v, i, k, n) where v is a SIS vector, i is
the literal index, and k is the current switching count, n is
the max switching ceiling:

For all vectors v in SIS vector set, call g(v, 0, 1, 2):

if i = |L| then when k ≥ 2, M = M ∪ v

else

g(v, i + 1, k, n)

if v[i] 6∈ {r, f} ∧ k < n

if v[i] 6= 0
g(v : v[i]←− r, i + 1, k + 1, n)

if v[i] 6= 1
g(v : v[i]←− f, i + 1, k + 1, n)

For each SIS vector v, a recursive call is made using the
next literal i. When we have iterated across all literals in
the vector, we add the MIS vector to our vector set if it
has at least two signals switching. If the current literal is
not rising or falling and the switching ceiling has not been
reached, then we recursively call this function on the next
literal up to two times, incrementing the MIS count k. If
the value of the current literal in the SIS vector is not zero,
we set the current value in the MIS vector to rising and
recurse. If the value of the literal is not one, we set the
literal to falling and recurse.

The complete MIS pulldown vector set for the circuit of
Figure 2 is {rr-, rf-, r-r, r-f, f1r, fr1, -rr}. This was cre-
ated from the three SIS vectors in the example from Sec-
tion 4.2.

4.4 Maximum Delay MIS Vector Superset
To the first order, the maximum delay for a DCN operat-

ing under MIS occurs when transistors in a series stack are
switching. The topological information in the SOP format
is used to create a set of vectors covering all combinations of
series transistors that can simultaneously switch. The func-
tion e(v, c, i, k, n) is called creating a transition vector v for
the set or reset function. The function produces the MIS
vector set M (initialized ∅) using minterm cube c, literal
index i, transition count k, and MIS concurrency ceiling of
n.

if o↑ f ←− (s(o∪B) ∩ sB)− zc

else f ←− (r(o∪B) ∩ rB)− zc

∀ c ∈ f call e(v, c, 0, 0, 2)

if i = |L| then when k ≥ 2, M = M ∪ v

else

v[i] =

8><>:
- li 6∈ c

h c[i] = 1

l c[i] = 0

e(v, c, i + 1, k, n)

if k < n ∧ li ∈ c

v[i] =

(
r c[i] = 1

f c[i] = 0

e(v, c, i + 1, k + 1, n)

This algorithm creates transition cubes by first removing
keeper and feedback cubes with Shannon decomposition and
subtracting the conflict set from either the rising or falling
outputs. The function e is then called for each minterm
cube. At the end of the recursive iteration, the vector is
added to the set only if it has at least two transitioning
literals. The vector index is set to don’t care if its corre-
sponding literal is not in the cube. Otherwise it is set to
high or low based on the literal’s value, and a recursive call
is made incrementing the literal index. When the MIS ceil-
ing has not been reached, the current literal is set to rising
or falling, based on the value of the literal in the cube. A re-
cursive call is then made incrementing the literal index and
transition count.

Using the reset function r = {a, bc} from Figure 2, the
max delay MIS vector set {-rr} is created.

4.5 Minimum Delay MIS Vector Superset
To the first order, the minimum delay occurs when multi-

ple paths to power or ground are concurrently enabled. The
minterms in a POS format create all parallel bisections in
the gate topology. The algorithm for calculating maximum
pushout in Section 4.4 can be used when slightly modified
to create the maximum pullin.

Following the Shannon decomposition on functions s and
r the function f is translated into POS format f̂ . The
recursive function e is slightly modified into function ê which
replaces the initial vector assignment with its dual as shown
in Equation 2; if the literal is asserted (unasserted) in the
cube it is unasserted (asserted) in the vector. This ensures
that the minterm is only enabled by rising or falling literals.

v[i] =

8><>:
- li 6∈ c

l c[i] = 1

h c[i] = 0

(2)

The POS format for the pulldown of Figure 2 is r̂ =
{ab, ac}, equivalent to the CNF form (a + b)(a + c). The
maximum delay vectors for this function are {rr-, r-r}.

5. PRUNING POTENTIAL VECTORS
Four candidate vector supersets were generated in Sec-

tion 4. Each vector set is pruned for functional validity us-
ing the s and r functions. Further optimizations or unique
constraints for maximum or minimum delay effects are ap-
plied when applicable. Pruning can be called concurrently
with vector generation to increase efficiency in an implemen-
tation.

411

5.1 Functional Vector Pruning
Every vector in a vector set must meet the following three

functional correctness constraints. While these ensure a
functionally correct transition, they do not require the tran-
sition to be glitch-free or stable at intermediate vector values.

1. correct initial voltage: if o↑ then f(•v) = 0 else f(•v) =
1

2. vector ends in conducting state: If o↑ then v• ⊆ so−zc

else v• ⊆ ro − zc

3. feedbacks not controlling: when li ∈ B then v′[i] ←−
•v[i] else v′[i] ←− v[i]• ∧ if o↑ then f(v′) = 1 else
f(v′) = 0

This requires that a rising vector must start low, end high,
and cannot be controlled by the feedbacks. This will prune
the example SIS set generated in Section 4.2 to the final
falling set {r0-, r10, 0r1, 01r}. Don’t care vectors are fully
instantiated for simulation, so this gives in five pulldown
(o↓) vectors.

5.2 Functional MIS Vector Pruning
Functional pruning is sufficient for the complete SIS and

MIS vector sets when evaluating static gates. An additional
condition must hold when evaluating dynamic gates with
feedback through a separate DCN. The auxiliary DCNs must
also be functionally correct such that the pre- and postcon-
ditions generate the appropriate logic levels. This is not
necessary if the keeper gate is an inverter, but is necessary
for more complicated keeper logic.

5.3 Maximum Delay Vector Pruning
MIS vector delay is maximized when all switching transis-

tors are topologically connected in series. Since the potential
vector set was generated based on a single minterm, it is pos-
sible that multiple minterms can be concurrently enabled,
speeding up the gate. An additional constraint is therefore
added to ensure multiple minterms are not asserted. The
function g(v, f) is true when only one minterm in function
f is asserted for the vector v. A second pruning condition
ensures that the vector cannot enable the output until all
rising or falling signals have switched. This holds if the vec-
tor transitions properly when all but one of the rising or
falling literals are set to don’t care in the precondition of
the vector.

1. single asserted minterm: if o↑ g(v•, so) else g(v•, ro)

2. stable until output: If o↑ f ←− r − zc else f ←−
s − zc. f(•v′) = 1 : ∀ v[i] ∈ {r, f} : (∀ v[j] : i 6=
j ∧ v[j] ∈ {r, f} then v′[j]←− -)

For Figure 2 only vector {0rr} holds for falling outputs.

5.4 Minimum Delay Vector Pruning
Each vector is set to deliver maximum current to the out-

put to minimize the delay. Each potential minimum delay
vector from Section 4.5 is expanded to fully instantiate don’t
cares. The vector is kept if for each vector literal that is 1,
the function is positive unate (fli

⊆ fli) or not negative
unate for that literal. Likewise, for each vector literal that
is 0, the function must be negative unate (fli ⊆ fli

) or not
positive unate for that literal.

in- Full Full MIS MIS
function put SIS MIS max-del min-del

pins sets sets o↑ o↓ o↓ o↑
ab 2 2 1 0 1 0 1

a + b 2 2 1 1 0 1 0

abc 3 3 3 0 3 0 3

a + b + c 3 3 3 3 0 3 0

a + bc 3 5 7 2 1 2 1

ab + ac 3 5 7 1 2 1 2
ab + ac + bc 3 6 6 3 3 3 3

abcd 4 4 6 0 6 0 6

abc + abd 4 8 16 1 6 1 6

a + bcd 4 10 24 3 3 3 3

a + bc + bd 4 10 22 6 2 4 2

ab + acd 4 10 22 2 6 2 4

ab + cd 4 12 26 4 6 4 2
(a + b)(c + d) 4 12 26 6 4 2 4
abcd + abce 5 11 28 1 12 1 12

abc + abde 5 15 42 2 15 2 9

abc + ade 5 19 54 4 18 4 6

ab + acde 5 19 60 3 13 3 7

ab + cde 5 23 70 6 16 6 4

a + bcde 5 19 66 4 6 4 6
a(b + c)(d + e) 5 21 62 6 12 2 12
(a + b)(c + d)

(e + f) 6 54 207 27 24 3 24

abc + def 6 42 159 9 42 9 6
All vectors 94 630 1836 94 201 60 123
Average 4.1 27.4 79.8 4.1 8.7 2.6 5.3

Table 1: Vector results for 90nm static cell library.
The function of the cell is listed with input pin
count, the complete single input switching (SIS) and
multiple input switching (MIS) vector set sizes for
rising and falling outputs sets, the worst case max-
delay vectors for rising outputs o↑ and for falling
outputs o↓, and the worst case min-delay vectors for
outputs that fall and rise.

1. maximal drive: if o↑ f ←− ŝ else f ←− r̂ : ∀ v[i] if
v[i] = 1 then fli

⊆ fli ∨ fli * fli
. if v[i] = 0 then

fli ⊆ fli
∨ fli

* fli .

This prunes the four possible vectors for our example to the
final set {rr1, r1r}

6. RESULTS
The vector generation and pruning algorithms were run

on 25 different cells consisting of 23 different logic func-
tions. There were two different 2-input NAND and NOR
topologies.

6.1 Vector Set Analysis
Table 1 summarizes the size of the vector sets for each of

the cell families. The logic function of the gates are shown
in the first column. The gates ranged from two to six input
pins, as shown in the second column. The third and fourth
columns show the size of the complete set of single input
switching and multiple input switching vectors that toggle
the gate’s output. The full set sizes were the same for rising
and falling outputs. The next two columns show the set

412

Class Vectors for falling output o↓
Full SIS r00 r01 r10 0r1 01r

Full MIS rr0 rr1 rf0 r0r r0f r1r 0rr

max-delay 0rr

min-delay rr1 r1r

Table 2: Pruned worst-case vectors for circuit of
Figure 2

Vector Full set Reduced set Reduced
class base / rel. base / rel. Percent

optimal SIS 1260 / 1.0 188 / 1.0 85%
max-delay 3672 / 2.9 295 / 1.6 92%
min-delay 3672 / 2.9 183 / 1.0 95%

Table 3: Vector Set Sizes from Table 1. Comparison
of total vector set sizes between the minimum SIS
vector set baseline and the worst case MIS vector
sets. Full sets and SIS set multiplied by two for
combined rise and fall comparison. Minimum SIS
set size assumed to be equal to # input pins.

sizes for worst case max-delay pushout vectors for falling
and rising outputs. The last two columns show the set sizes
for worst case min-delay pullin for falling and rising outputs.
The final two rows shows the total vectors and the average
per gate. The minimum SIS vector set size is equal to the
number of input pins for all cases (min and max rise and
fall delay), since at least each input pin must switch.

Note that some of the MIS pruned vector sets contain no
entries - such as the rising max-delay for the NAND gate
in the first row. In such cases the pruning algorithm has
determined there are no MIS vectors that will delay the
output because there are no transistors in series.

The complete set of vectors for the falling output for the
example gate of Figure 2 are shown in Table 2. This gate
(a + bc) is in row 5 of Table 1.

The vector sizes directly impact the library characteriza-
tion for static CBD timing and runtime for transistor level
timing. Table 3 shows the average number of vectors for
these gates. This assumes the minimum SIS vector set
needing a single vector per input pin can be found that
sufficiently covers the worst case delay for all slopes and
loads. Note that the MIS worst case min-delay vector count
is smaller than the SIS vector size. The max delay MIS vec-
tor size is about 60% larger than an optimal SIS vector set.
The optimal SIS vector set has an 85% reduction in vector
size from the full vector set. The worst case MIS min and
max delay vector sets show a 92% and 95% reduction from
the full vector set respectively.

6.2 Simulation Results
A simulation study of the 25 gates was performed to de-

termine the quality of the reduced MIS vector set. The
fully extracted parasitics for each cell were used in the sim-
ulations. Each cell had a range of sizes to support various
output loads. Monte Carlo analysis was performed by ran-
domly picking one of the cell types, a valid output load and
an associated cell size, and an independent input slope for
each switching input. The 50% transition point for all in-
puts were aligned. A complete simulation run for random
parameters was performed on the cell for the full rising and
falling MIS vector sets – 2 × 79.8 simulations per cell on av-

Figure 3: Graph of max-delay (pushout) errors.

Figure 4: Graph of min-delay (pullin) errors.

erage. The worst case delay and its vector were recorded for
the complete vector set and the pruned vector sets for each
of the simulation runs. This loop was iterated 25,000 times
for approximately 4 million simulations. The result for the
full set was compared against the pruned set to determine if
the worst case was covered. If not, the size of the error was
calculated.

The data for these runs is plotted in Figures 3 and 4. The
error for the max-delay pushout is reported as a percentage
difference from the actual worst case. For min-delay, the
value is normalized by dividing the error by an aggressive
clock frequency for this technology node. This shows that
the largest max or min delays were contained in the reduced
vector set in approximately 88% of the simulations. In ap-
proximately 94% of the cases the error was zero or relatively
insignificant (within 5%). This shows that the automatic
pruning algorithm did a good job of covering the worst case
vectors.

The vector that created the worst case delays for each
random slope and load combination were recorded. Just as
in the SIS case, a single vector is not sufficient to cover the
worst case delays in a gate for all valid slope and load com-
binations. Table 4 shows the average number of MIS simula-
tion vectors required to correctly cover the worst case condi-
tion. An average of two vectors per cell is required to cover
worst case conditions for falling transitions; slightly less for

413

a b
b b
c b
d b �

� o

b ba cb bb dq q�o

a bq q
c d

Figure 5: Gate f = ac + ad + bc + bd

rising. Only one-third to one-fourth of the reduced MIS vec-
tors generated by this algorithm were needed to cover the
worst case conditions. This implies that other means, such
as some structural pruning following the logical pruning,
may be a useful means of further reducing vector sets.

Eight of the 25 cells contained one or more slope, load,
and sizing condition where the worst case required a vector
outside the pruned set. All errors occurred on the rising
outputs; none on falling outputs. One gate contained only
a single vector with an error of less than 0.1%. Two cells
contained errors in all of their rising outputs.

Of the 3012 erroneous max-delay simulation sets, all but
one were from vectors with both rising and falling liter-
als. The algorithm for pruning MIS vectors did not consider
these vectors as candidates, and therefore they were not in-
cluded in the pruned set. The mechanism that appears to
have resulted in these failures is demonstrated with the cir-
cuit of Figure 5, with the set function s = {ab+ cd} and the
reset function r = {ac+ad+bc+bd}. One worst case vector
is 1rf0. Note that cube ac is initially pulling the gate low,
and the other reset cubes are off. Cube ac de-asserts and
cube cd is asserted to pull the gate high. However, during
this transition, reset cube bc has signal b rising and c falling.
This creates a glitch on the output of this cube as this term
partially asserts during the transition, sourcing current that
fights the pullup cube cd. This condition is exacerbated with
strong NMOS devices compared to the PMOS, particularly
with slow transition times.

7. SUMMARY
An algorithm was described that uses logic to represent

circuit topology and automatically create full and worst-case
multiple input switching vector sets. This algorithm was
tested on a modern static cell library at a 90nm design node.
The algorithms presented here generate the full set of vectors
that will flip the output under both single and multiple input
switching conditions. This set is then automatically pruned
to generate the worst-case rising and falling min- and max-
delay vector sets with a reduction of 92-95% over the full
vector set. The reduced set sizes are approximately the same

used used used/ used/
o↑ o↓ set size set size

max-delay 1.2 2.0 30% 23%
min-delay 2.3 2.0 39% 69%

Table 4: Actual worst-case vectors from simulation
versus pruned set

size as the minimum single-input switching vector sets. Each
set can be characterized and used independently.

The accuracy of the reduced vector set was evaluated
against the complete MIS vector set using Monte Carlo sim-
ulation. Random input slopes, output loads, and cell sizes
were selected. The reduced set showed satisfactory accuracy,
as 88% of the simulation sets were error free, and in 94% of
the cases the error was deemed insignificant. The maximum
error was less than 16%. Examination of the erroneous vec-
tors indicates that the errors all appear to be caused by sec-
ond order effects such increased short circuit current from
glitching cubes. The patterns of the error vectors from this
study indicate that it may be possible to improve the error
characterization of the reduced within the logic framework
by adding an additional small set of vectors.

In many cells two or more vectors exhibited the worst-case
delays for different rise time and load. However, this still
only included a fraction of the worst-case vector sets as only
23–30% were needed to model the worst-case delays. This
leaves significant room to improve this reduced vector set
using either logical or structural methods, or a combination
of both, if one is only searching for the worst case min or
max delay for a cell.

8. ACKNOWLEDGMENTS
The bulk of the work and all of the results presented

here were obtained while the authors were with Intel Corp.,
Strategic CAD Labs, Hillsboro Oregon.

9. REFERENCES
[1] V. Chandramouli and K. A. Sakallah. Modeling the

Effects of Temporal Proximity of Input Transitions on
Gate Propagation Delay and Transition Time. In 33rd
Design Automation Conference Proceedings 1996, pages
617–622, June 1996.

[2] L.-C. Chen, S. K. Gupta, and M. A. Breuer. A New
Gate Delay Model for Simultaneous Switching and its
Applications. In Design Automation Conference
Proceedings, pages 289–294, June 2001.

[3] Y.-H. Jun, K. Jun, and S.-B. Park. An Accurate and
Efficient Delay Time Modeling for MOS Logic Circuits
Using Polynomial Approximation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 8(9):1027–1032, Sept. 1989.

[4] L. McMurchie and C. Sechen. WTA: Waveform-Based
Timing Analysis for Deep Submicron Circuits. In
International Conference on Computer-Aided Design
(ICCAD’02), pages 625–631, November 2002.

[5] C. E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau,
S. M. Fairbanks, and I. E. Sutherland. Two FIFO Ring
Performance Experiments. Proceedings of the IEEE,
87(2):297–307, February 1999.

[6] K. T. Tang and E. G. Friedman. Delay Uncertainty
Due To On-Chip Simultaneous Switching Noise in High
Performance CMOS Integrated circuits. In IEEE
Workshop on Signal Processing Systems, pages
633–642. IEEE, Oct. 2000.

414

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

