
Timing-Driven Placement for Heterogeneous Field Programmable Gate
Array

Bo Hu

Velogix Inc. Santa Clara, CA 95054, USA
hu@velogix.com

Abstract - In this paper, a new timing-driven placement
algorithm is proposed to handle complicated placement
requirements inherent in FPGAs with heterogeneous
resources (dedicated logic block, memory block). The new
algorithm employs a multi-layer density system with each
layer modeling a drastically different architectural resource.
By introducing the multi-layer density system, a
heterogeneous placement task is translated to a set of
homogeneous ones, with each of them being handled at a
different density layer. We also present a new iterative
timing optimization scheme which is seamlessly integrated
in the placement process. The tight interaction between the
placement and timing optimization produces superior timing
results for industrial designs.

I Introduction

As semiconductor process advances into deep sub-micron
regime, the cost of manufacturing a complex
Application-Specific Integrated-Circuit (ASIC) chip using
the state-of-art technology is sky-rocketing. As a viable
solution to reduce cost, shorten product development cycle
and minimize production risk, Field Programmable Gate
Array (FPGA) has been gaining acceptance in various
applications than ever before. Traditional homogeneous
FPGA is mainly based on programmable Look-Up Tables
(LUTs). Its logic density and performance are usually
inferior to ASIC implementation. However, as the
leading-edge technology is more rapidly adopted in FPGA
industry, and more ASIC-like dedicated functional blocks
are integrated nowadays, the overall density and
performance disadvantages are mitigated in modern
high-end FPGAs [10][11]. The integration of such dedicated
blocks marks the transition from homogeneous architecture
to heterogeneous. Fig. 1 shows a simplified example of a
heterogeneous architecture. It consists of two-dimension
array of Basic Process Unit (BPU). Each BPU contains a
two-dimension array of LUTs, a computing unit (CU) and a
memory block. In this paper, heterogeneous FPGAs refer to
those architectures with heterogeneous resources (like CUs,
memory blocks) embedded sparsely in homogenous LUT
distribution.

Heterogeneous architectures present new challenges for
FPGA design tools, for example, placement tool. Given a
netlist of design components, the task of a timing-driven
placer is to assign the components into the proper locations

on the target FPGA chip while optimizing design
performance. A component might be as simple as a single
LUT; it can also be a complex functional block.

Conventional timing-driven FPGA placement algorithm

was based on simulated annealing [6]. It might be possible
to adapt simulated annealing to handle heterogeneous FPGA
architectures. But the excessive CPU-complexity of
simulated annealing makes it not an attractive solution.
Recently, analytical placement has regained attention in
design automation world due to its superior speed [8] and
excellent placement quality [4][5]. Analytical placement
formulation is adopted mostly to solve standard-cell or
mixed-size placement problems. The inputs to an analytical
placer are a graph representing the design netlist and a
region specifying where the netlist should be placed. If the
placer is timing-driven, it also reacts to timing analysis
results to produce an optimized timing result. Each node in
the graph is assigned a geometric shape. The output of the
placer is an overlapping-free placement of all the nodes in
the graph. Two nodes overlap if their geometric shapes
intersect with each other. One way of handling the
non-overlapping requirement is through density D(x,y).
D(x,y) is defined for every location (x,y) within the
placement region. It quantifies the amount of overlapping at
(x,y). Suppose that each node contributes a unit density to
any location where its shape covers. By making sure that the
density at any location is equal or less than a unit density,
the placer automatically produces an overlapping-free
placement. The geometric shape assigned to a node is
usually a rectangle. During the placement, rectangles are
mapped onto the placement region to compute density
distribution. The placement is done when the peak density is
less than a threshold value and/or other criteria are met.
Since D(x,y) is a two-dimension function, we call it a
single-layer density system. The only layer in this system
refers to xy plane. It has been shown in numerous literature

Basic Process Unit

Memory

Compute Unit

Figure 1: An abstract view of a simplified example
heterogeneous FPGA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’06 November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011…$5.00

383

[2][4][5][7][8] that this single-layer density system works
well for standard-cell or mixed-size placement. But as the
following example demonstrates, for FPGAs with
heterogeneous resources, using single-layer density system
makes it hard to choose an appropriate geometric shape for a
placement node.

Without loss of generality, let us suppose that the design
to be placed consists of only CUs and LUTs. Because LUT
distribution has the finest granularity, it can be conceptually
viewed as being available everywhere. We use

LUTWW and LUTHH to annotate the width and height
of the rectangle shape for a LUT. W is the width of the
placement region, and LUTW is the number of LUT

columns. So LUTWW is the average width of a LUT

column. Similarly, LUTHH defines the average height of
a LUT row. For CU, the selection of a geometric shape is not
straightforward. Compared to LUT, CU is much more
sparsely distributed across the chip. As a result, average
column width CUWW and average row height

CUHH are much larger than their counterparts for LUT. If

we use CUWW and CUHH to generate the rectangle
shape, as Fig. 2 shows, non-overlapping placement prevents
LUT components from using the available LUT resources
covered by the shape. On the other hand, if we assign CU a
smaller geometric shape, as can be seen from Fig. 3, a group
of CU components might be closely located in some local
region where there are not enough CU resources available.
To reduce the demand, some CU components need to be
moved away from their optimized positions. Because these
heterogeneous resources like CUs are sparsely distributed,
finding the nearest resource might still incur significant
placement disturbance. As a result, placement quality
(timing, routability, etc.) is likely to be damaged.

To handle the complicated placement requirements

inherent in FPGAs with heterogeneous resources (CU,
memory), a new timing-driven placement algorithm is
proposed. The new algorithm employs a multi-layer density
system with each layer modeling a drastically different
architectural resource. By introducing the multi-layer

density system, a heterogeneous placement task is translated
to a set of homogeneous ones, with each of them being
effectively handled at a different density layer. The
situations shown in Fig. 2 and Fig. 3 are thus avoided. We
also present a new iterative timing optimization scheme
which is seamlessly integrated in the placement process. The
tight interaction between the placement and timing
optimization produces superior timing results for industrial
designs.

The rest of the paper is organized as follows: section II

formulates the timing driven placement problem for
heterogeneous FPGAs. Section III presents the new
multi-layer density system. The new algorithm based on the
proposed density system is discussed in section IV. Section
V provides experimental validation and section VI gives the
conclusions.

II. Problem Formulation

Before we start the discussion on our major contributions,
let us first formulate the timing-driven placement problem
addressed in this paper:

(1) An architectural description for the target
heterogeneous FPGA chip. A placement region with width W
and height H is built based on the description. XW and

XH are the number of columns and rows respectively for
resource type X. So the total number of resources of type X
is XX HW × .

(2) A design M(C, I). C and I denote the set of
components and interconnects respectively. Each
interconnect i(D,R) in I connects a subset of C. D is the set
of driving components and R is the set of receiving
components. A connection in the design is defined as a
driver and receiver component pair),(CvCup ∈∈ . Each

connection is annotated with a slack ps based on static

timing analysis. worsts is the worst slack among all
connections. Slack is a metric to measure how well the
actual timing meets design requirements. Larger worsts
usually suggests that the design can function correctly at a
higher clock frequency. A component can be a terminal, a
LUT, or a computational block. A terminal is an interface of
the design to outside environment. In this work, all terminals
have fixed locations. A computational block (CB) is a
pre-designed functional block implemented using the

Memory

CU Placement graph nodes
for CUs with small
geometric shape cause
congestion.

Figure 3: small geometric shape causes congestion

Memory

CU
These covered LUTs,
Memory resources are
not available.

Placement graph node
for CU with large
geometric shape.

Figure 2: large geometric shape becomes blockage

384

resources available on the chip. The example CB shown in
Fig. 4 consists of 3 CUs, 3 memory blocks and 12 LUTs
relatively placed within a 2x2 BPU region.

The output is the legal assignment of all the LUTs and
CBs on the chip such that worsts is maximized.

A placement graph G(V, E) is created based on the
connectivity of the input design. V and E is the set of nodes
and edges respectively. Each node v in V represents a
component in C. The edge set E is built by constructing a
clique over set RD ∪ for every interconnect i(D,R) in I.
Each edge e is assigned an initial weight ()11 −+= RDwe .
Clearly, every connection has a corresponding edge in the
graph while some edges might not have corresponding
connections because set E is a superset of the set of all
connections.

III. Multi-layer Density System

We have discussed in the introduction that a single-layer
density system is not sufficient to handle complicated
placement requirements for heterogeneous FPGAs. More
specifically, each type of architectural resource (LUT, CU,
memory block) has its own distribution on the chip. Usually,
CUs and memory blocks are much more sparsely distributed
than LUTs. A single-layer density system is unable to satisfy
these drastically different distribution requirements
simultaneously. However, as demonstrated in standard-cell
ASIC designs, single-layer density system can handle
homogeneous resources very well. It seems feasible to
extend single-layer density system to multi-layer system
with each layer modeling a unique placement requirement
originating from a particular resource type. For example, for
the architecture shown in Fig. 1, three layers are constructed.
They are used to model the distribution of LUTs, CUs, and
memory blocks during the placement respectively.

Because a component represented by a placement node
can contain any type of resource, it contributes differently to
different density layer. Before a node is mapped to a density
layer, we need to first determine its geometric shape. For
different layers, the shape is different. Specifically, we
choose a rectangle with width

XWW and height
XHH

for a single resource of type X. If a component demands
multiple resources of X, multiple rectangles are combined
according to the relative position defined by the component.

In the following, we use the example component in Fig. 4 to
illustrate how rectangles are combined to form a complex
shape.
 Fig. 5 shows the complex shape generated for CU density
layer. The given component includes three CUs organized in
an upper triangular shape. It can be seen that the generated
shape matches exactly the triangular organization. Similarly,
Fig. 6 shows that the complex shape for memory blocks
resembles the L-shape composition. For twelve LUTs in the
component, two parallel strips are created as shown in Fig.7.

With the new multi-layer density system and the proper

shape generation procedure shown above, a heterogeneous
placement task is translated to a set of homogeneous ones,
with each of them being handled at a different density layer.
In other words, the placer needs to make sure that density is
properly distributed for all the layers in order to avoid both
resource waste (Fig. 2) and resource competition (Fig.3).
Because CUs and LUTs are mapped to different density
layers, overlapping between CUs and LUTs is legal and does
not cause resource competition.

As a remark on the multi-layer density system, we point
out that it can be applied in other placement contexts such as
thermal placement. If a design consists of several big power
consumers, it’s desired that they are placed far away from
each other to even out temperature distribution. This can be
done by constructing a two-layer density system with one
layer representing the power density.

IV. Timing-Driven Placement

The new multi-layer density system creates multiple

Figure 4: An example computational block (CB)

Figure 7: Complex shape for LUT density layer

Figure 6: Complex shape for memory block density layer

Figure 5: Complex shape for CU density layer

385

placement tasks of different characteristics. In general,
geometric shapes generated for sparsely distributed
resources (CUs, memory blocks) are usually a lot bigger
than those for LUTs. It is especially true when a
computational block involves complicated logic/arithmetic
computation. Distribution of these shapes is more like
floorplanning than placement in traditional sense. What it
means is that a traditional ASIC-standard-cell or a FPGA
LUT placer may be used for LUT layer while a ASIC
floorplanner or mixed-size placer is a good fit for CU and
memory block layers. Since the placement at one layer is
intimately affected by those at other layers, it is desirable to
perform the placement at each layer simultaneously. As can
be seen in the rest of this section, our new algorithm can be
viewed as starting a separate placement or floorplanning
engine for each individual layer at the same time and letting
them interact with each other along the process.

It should be noted that one of our major contributions is
the introduction of multi-layer density system which makes
it feasible to apply existing placement, floorplanning, or
mixed-size placement algorithms [5][6] at individual layers
to solve heterogeneous FPGA placement problem. The
specific algorithms applied at individual layers are not our
focus. In this work, we choose to use expansion-based placer
[3][4] as the underlying placement engine and enhance it
with the new timing optimization scheme.

In the following, we first briefly review the expansion
technique. We then discuss how density is computed at
different layers, and finally present the new timing-driven
placement algorithm with multiple density layers.

A. Expansion Basics
Expansion refers to the process during which geometric
shapes are gradually distributed over a specified region.
Expansion in [3] is based on fixed-points addition technique.
Basically, in analytical placement formulation, nodes tend to
cluster to each other due to intrinsic attracting forces
induced by connections/edges. The magnitude of an intrinsic
force is determined by the weight and the length of the
connection. A connection with larger weight and longer
length induces stronger intrinsic force. Fixed-points are used
to apply additional attracting forces on the nodes and work
against intrinsic ones in order to pull the nodes away from
high density area. As a result, the peak density usually
decreases as expansion proceeds. The placer based on
expansion consists of a sequence of expansion iterations. It
stops when density distribution satisfies preset criteria.

B. Density
We impose a two-dimension bin structure on each layer.
Density at bin b is defined as follows:

)(/),(()(bAnbAbd
n
∑=

Where A(b,n) is the intersection area between b and node n;
A(b) is the area of bin b. A(b,n) is summed up over all nodes
intersecting bin b. To compute the density efficiently, the bin
size varies at different density layers. LUT layer has the
finest granularity while the ones for memory blocks and

CUs are larger depending on the architecture.

C. Timing-Driven Expansion
Our new timing-driven expansion algorithm, TD-ML, is
given in Fig. 8.

buildNodeShapes() builds a set of shapes, one per each layer,
for each placement node as Fig. 5-7 illustrate. Next, an
initial placement is generated before expansion starts. Within
the expansion loop, the first step is timing optimization. In
general, to maximize worsts , critical connections should be as
short as possible. In this work, it is done by adjusting
weights on critical connections. The basic idea is to increase
weights on long critical connections such that they become
shorter in next expansion iteration. First, timing analyzer is
called to calculate slack ps for all connections and the

worst slack worsts based on the present placement. We use
the following weighting strategy:

[] [] []()jfjwjw pp +×−= 0.11

[]jwp and []1−jwp is the weight for connection p at jth
and jth -1 expansion respectively. f[j] is the adjustment
factor at jth expansion and determined as follows:

[] []
















 −
×






 −
−

≤+>
= otherwise

l
llss

jf

llss
jf

p

ppworstp

ppworstp

max

min
0

min

1

||0

ε

ε

[]jf0 is the preset maximum adjustment factor at jth
iteration. As increasing weights on connections adversely
affects the expansion process by making it difficult to move
nodes due to larger intrinsic attracting forces induced by
increased weights, []jf0 is decreased as the placement

proceeds. In this work, []00f is set to be 1 and gradually
approaches to zero. ε is a preset value used to decide
whether a connection is critical. A connection is critical if

ps is smaller than ε+worsts . pl is the current length of

connection p. minpl and maxpl is the minimum and

maximum length of p respectively. minpl is determined by

TD-ML
{ buildNodeShapes();

 initialPlacement();
 expansion iterates until some stopping criteria {
 timingOptimization();
 For each density layer l{
 computeDensity(l);
 computeExpansionFixed-points(l);
 performExpansion(l);
 }
 }
 legalization();
}

Figure 8: The new algorithm

386

enumerating all possible placements for the driver and the
receiver component of the connection at all density layers.
Simply, minpl is the optimum length for connection p. The
conditional equation above suggests that a connection gets a
non-zero adjustment factor if and only if it is critical and its
length is larger than minpl . Clearly, there is no meaning to

further reduce the length beyond minpl because any length

less than minpl is infeasible in the architecture.








 −
−

ε
worstp ss

1 part represents the criticality of a connection. It

evaluates to be 1 if a connection is the most critical one.










 −

max

min

p

pp

l
ll is used to penalize longer critical connections

than shorter ones. If a connection is already close to its
minimum length, only a small change in weight might be
sufficient.
Compared to net weighting strategies in [2][7], our approach
introduces (1) an iteration-dependent maximum adjustment
factor []jf0

, which ensures well distribution of nodes at the
end of expansions; (2) a slack-dependent component








 −
−

ε
worstp ss

1 which avoids hard net constraints [7]; (3) a

length-dependent component which prevents short
connections from being assigned unnecessary weights while
penalizing long connections.
After the weight for every critical connection is updated,
expansion is iterated over all density layers. Note that the
expansions are subject to new connection weights and thus
work against the updated intrinsic attracting forces. At each
layer, we first compute the current density distribution. Then
for any placement nodes contributing density at this layer,
we compute expansion fixed-points aiming at reducing
highest density through expansion. Expansion fixed-points
are properly normalized such that expansions at different
density layers are executed at the same pace. The expansion
is performed when fixed-points are introduced into the
expansion solver and the locations of the nodes are updated
when the expansion is done. It is worthy mentioning that
even a node does not contribute density at current layer and
thus is not assigned an expansion fixed point at this
expansion, its location might still be changed due to the fact
that all the nodes are interconnected and the movement of a
single node might affect all the rest of movable nodes. For
instance, the expansion of shapes at CU layer might cause
relocations of the shapes at LUT layer.

The expansion described above is iterated until the peak
density among all layers is less than a threshold or the
number of iterations exceeds a preset maximum number.

Following the end of expansions, a legalization procedure
is called to fit the components on the input architecture
based on the expansion output. As a result, each component
is assigned to the closest empty legal location.

V. Experiments

We implement the proposed new placement algorithm in a

commercial FPGA design tool. A set of industrial Digital
Signal Processing (DSP) designs are used to validate its
effectiveness. Timing constraints are set for each design in
order to achieve maximum frequency. All the experiments
have been done on a 2.4Ghz Pentium 4 processor running
linux Redhat9.0. The target FPGA device is the latest one
from [9].

The new algorithm is first tested on a digital filter design
including a 2-D FFT module. This module contains more
than 100 CUs and 100 Memory blocks. We compare the new
algorithm to the one with one-layer density system. Fig. 9a
shows the placement using one density layer, and Fig. 9b
shows the corresponding distribution of CUs. Clearly,
although the density distribution is very well (Fig. 9a), CUs
are not distributed evenly. A lot of overlapping occurs in Fig.
9b. It means that many CUs compete for the same resource
during the legalization. Some CUs have to be moved away
from their original positions in Fig. 9b. As a result,
legalization incurs a significant discrepancy between the
placement produced by the expansion and the final legalized
result, and adversely affects timing. For this example, the
design runs at 308 MHz after legalization.
In Fig. 10a and Fig. 10b, we show expansion results at LUT
and CU layer for the same design using multi-layer density
system. Compare Fig. 9a and Fig. 10a, the expansions are
equally good. But new density system also did extremely
well on the floorplanning of CU blocks as shown in Fig. 10b.
The overlapping between CU shapes is marginal. After
legalization, the design runs at 426 MHz, a significant 38%
speedup over single-layer density system.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

’-’

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

’-’

Figure 9: (a) single-density layer placement, (b) CU-layer

floorplan

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

’-’

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

’-’

Figure 10: (a) LUT-layer placement (multi-layer), (b)

CU-layer floorplan (multi-layer)

We also test the new algorithm on other industrial designs.
In addition, a non timing-driven flow is constructed to
evaluate the effectiveness of our new timing optimization
scheme. In Table I, six industrial designs are listed. The
number of LUTs in these designs ranges from a few

387

thousands to more than 20k. Each design contains a different
DSP algorithm. Compared to non-timing-driven expansion
algorithm NTD-SL (by skipping timing optimization in Fig.
8), timing optimization TD-SL shows on the average 9%
improvement. If multi-layer density system is used, an
average 24% better timing is achieved. Two observations
can be made from the results. First, TD-ML is most effective
for CU-intensive designs (the first three designs). As
expected, for the designs with low CU utilization (the last
three designs), little difference between TD-ML and TD-SL
is observed. Overall, over 25% performance improvement
was obtained. Interestingly, TD-SL sometimes is unable to
improve timing (Filter1 and Filter2) because the timing
optimization effort is overwhelmed by significant
legalization discrepancy due to unbalanced CU/memory
distribution as shown in Fig. 9b. Second, for the designs
with low CU/memory usage (the last three designs), an
average 20+% better performance was achieved by timing
optimization.

Table II lists the total wire length and runtime results for
three flows. CPU times are given in seconds. Overall,
timing-driven flows (TD-SL and TD-ML) requires more
CPU time than non-timing-driven one because of static
timing analysis. Between TD-SL and TD-ML, the runtime
difference is negligible. It can be also observed that TD-ML
not only achieves much better timing, it also results in less
total wire length, on the average 6% less than NTD-SL. This
is because multi-layer density system ensures balanced
distribution for all architectural resources (LUT, CU,
memory block), and consequently causes much less
placement discrepancy before and after legalization.

TABLE I
Performance comparison

Frequency(MHz) Designs

NTD-SL TD-SL TD-ML

Filter1 317 308 426

Filter2 281 308 339

Filter3 339 317 426

Mult 278 376 380

Video 205 244 244

Encoder 167 179 179

Ave 1.0 1.09 1.24

VI. Conclusions

We presented a timing-driven placement algorithm based on
a new multi-layer density system. The new algorithm is
proved to be very effective to handle complex placement
requirements inherent in heterogeneous FPGAs and produce

superior timing results for industrial designs.

References

[1] L. Cheng, M. D.F. Wong, “Floorplan Design for
Multi-Million Gate FPGAs”, in Proc. Intl. Conf. on CAD, pp.
292-299, 2004.
[2] H. Eisenmann, F. M. Johannes, “Generic Global
Placement and Floorplanning”, in Proc. ACM/IEEE DAC,
1998.
[3] B. Hu, and M. Marek-Sadowska, "FAR: Fixed-points
and Relaxation based Placement", Proc. Intl. Symp. on
Physical Design, San Diego, 2002
[4] B. Hu, Y. Zeng and M. Marek-Sadowska, "mFAR:
Fixed-points Addition based Placement Algorithm",
ISPD05. April, 2005
[5] A. B. Kahng, S. Reda, Q. Wang, “APlace: A General
Analytic Placement Framework”, in Proc. Intl. Symp. on
Physical Design, pp. 233-236, 2005.
[6] A. Marquardt, V. Betz and J. Rose, “Timing-Driven
Placement for FPGAs,” in Proc. Intl. Symp. FPGAs, pp.
203-213, 2000.
[7] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A.
Chowdhary, B. Halpin, “Timing Driven Force Directed
Placement with Physical Net Constraints”, in Proc. Intl.
Symp. on Physical Design, pp. 60-66, 2003.
[8] N. Viswanathan and C. C.-N Chu, “FastPlace: Efficient
Analytical Placement using Cell Shifting, Iterative Local
Refinement and a Hybrid Net Model,” in Proc. Intl. Symp.
on Physical Design, 2004.
[9] Velogix, Inc. http://www.velogix.com
[10] http://www.xilinx.com
[11] http://www.altera.com

TABLE II
Total wire length and CPU time comparison

NTD-SL TD-SL TD-ML Designs

WL CPU WL CPU WL CPU

Filter1 5.23 70 5.12 210 5.60 216

Filter2 1.72 16 1.81 116 1.39 119

Filter3 1.16 10 1.26 95 1.01 102

Mult 6.48 25 5.90 242 5.73 247

Video 2.98 12 3.3 33 2.91 34

Encoder 6.14 9 6.24 13 6.24 14

Ave 1.0 1.0 1.01 5.6 0.94 5.8

388

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

