
Fast and Accurate Transaction Level Models
using Result Oriented Modeling

Gunar Schirner and Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine, USA
{hschirne,doemer}@uci.edu

ABSTRACT
Efficient communication modeling is a critical task in SoC
design and exploration. In particular, fast and accurate
communication is needed to predict the performance of a
system. Recently, Transaction Level Modeling (TLM) is
used to speedup communication simulation at the cost of
accuracy.

This paper proposes a novel modeling technique called
Result Oriented Modeling (ROM) which removes the accu-
racy drawback of TLM. Using ROM, models yield the same
speed as their TLM counterparts, yet still are 100% accu-
rate in timing. ROM utilizes the fact that internal states in
the communication channel are not observable by the caller.
Hence, ROM omits the internal states entirely and optimisti-
cally predicts the end result. Retroactively, the outcome is
checked and, if necessary, corrective measures are taken to
maintain the accuracy of the model.

In this paper, we apply ROM to the AMBA AHB bus
architecture. Our experimental results show that ROM ex-
hibits the same high simulation performance as traditional
TLM, yet it retains the same accuracy as the bus functional
model. Thus, the proposed ROM approach eliminates the
speed/accuracy tradeoff exhibited by traditional TLM.

1. INTRODUCTION
System-On-Chip (SoC) design faces a gap between the

production capabilities and time-to-market pressures. The
design complexity grows with the improvements in produc-
tion capabilities, while at the same time shorter product life
cycles force an aggressive reduction of the time-to-market.
Addressing this gap has been the aim of recent system-level
research. As one solution, abstract models have been used.

Fast simulation is required especially during the early
stages of the design process. This need has pushed Transac-
tion Level Modeling (TLM) [5] which utilizes abstract mod-
els that execute dramatically faster than synthesizable, bit-
accurate models. TLM, however, usually comes at the price
of significantly reduced accuracy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’06, November 5-9, 2006, San Jose, CA USA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

In this paper, we introduce a novel modeling technique,
called Result Oriented Modeling (ROM), which delivers the
same speed as TLM. At the same time, ROM retains 100%
accuracy in timing. These apparently incompatible goals
are achieved using the following key ideas:

1. As with TLM, bus communication is simulated at the
level of user transactions. For every transaction, a con-
tiguous block of data is transferred from one bus node
to the other by use of a single memcopy operation.

2. The communicating parties observe the effects of the
bus transfer only at the boundaries of the transaction.

3. Events and context switches needed to facilitate the
transfer are hidden and therefore can be freely rear-
ranged.

4. If the arbitration checks and internal events are re-
arranged so that there are fewer context switches, a
performance gain will be achieved.

Using these ideas, we will describe ROM for the AMBA
AHB architecture [1], providing 100% accuracy at highest
simulation speed. As a result, the system designer is relieved
from the traditional speed/accuracy tradeoff and can focus
on the design space exploration instead of model selection.

1.1 Related Work
System level modeling has become an important research

area that aims to improve the SoC design process. Lan-
guages for capturing SoC models have been developed, e.g.
SystemC [5] and SpecC [3]. Capturing and designing com-
munication architectures using TLM [5] has received much
attention.

Sgroi et al. [10] address the SoC communication with a
Network-on-Chip approach. Here, communication is parti-
tioned into layers following the OSI structure.

Siegmund and Müller [11] describe with SystemCSV an
extension to SystemC and propose SoC modeling at three
different levels of abstraction: physical description at RTL,
a more abstract model for individual messages, and a most
abstract model utilizing transactions.

Coppola et al. [2] also propose abstract communication
modeling. They present the IPSIM framework and show its
efficient simulation.

Gerstlauer et al. [4] describe a layered approach and pro-
pose models that implement an increasing number of OSI [6]
layers. Simulation speedup up to 100x is shown, but the ac-
curacy analysis is limited and shows significant drawbacks.

Pasricha et al. [8] describe a similar approach using trans-
action-based abstraction. The paper introduces the concept

363

of a model that is cycle count accurate at transaction bound-
aries (CCATB). This also takes advantage of the limited
observability of a transaction to increase simulation perfor-
mance. However, only a very limited speedup of 55% over
the bus functional model is achieved1.

In Section 2, we will introduce the general concept of Re-
sult Oriented Modeling, independent of its application to
communication modeling. We will then show in Section 3
the application of ROM to the AMBA AHB bus architec-
ture. We will also analyze the limitations of traditional
communication modeling and show the advantages of the
ROM approach. Section 4 provides experimental results
that clearly support the claimed benefits of ROM. Finally,
Section 5 concludes this paper with a summary and direc-
tions of future work.

2. RESULT ORIENTED MODELING
Result Oriented Modeling (ROM) is a general concept for

abstract and yet accurate modeling of a process. As such,
ROM is similar to the ”black box” concept.

2.1 Black Box Concept
The underlying assumption of ROM is the limited observ-

ability of internal state changes of the modeled process. It
is not necessary to show intermediate results of the process
to the user, as in a ”black box” approach. The only goal
of Result Oriented Modeling (ROM) is to produce the end
result of the process, not any intermediate states.

Hiding of intermediate states gives ROM the opportu-
nity for optimization. Often, intermediate states can be
entirely eliminated. Instead, ROM can utilize an optimistic
approach that predicts the outcome (e.g. termination time
and final state) of the process already at the time the process
is started.

2.2 Corrective Measures
Throughout the runtime of the process, a disturbing in-

fluence may change the system state, so that the initially
predicted results are no longer accurate. Therefore, ROM
checks at the end of the predicted time whether such a dis-
turbing influence has occurred. If so, ROM retroactively ad-
justs to the new conditions and takes corrective measures.
In other words, a mistake of an overly optimistic initial pre-
diction is fixed at the end.

The optimistic prediction of the end result reduces the
amount of computation and thus increases the execution
performance, if internal states can be skipped and the cost
for any corrective measures is low. This approach is in con-
trast to the traditional abstract modeling approach of reach-
ing the end result through a set of incremental state changes.
The traditional approach takes the disturbing influence in-
crementally into account and adjusts the intermediate states
accordingly. ROM, on the other hand, records any disturb-
ing influence over the predicted running time and makes any
necessary adjustment at the end.

Generally speaking, the ROM approach can be character-
ized by the following items:

1. The user does not need to observe internal states.

2. ROM does not model internal state changes. Instead,
it optimistically predicts the end result using available
system information at the beginning.

1Our results show a speedup of three orders of magnitude.

3. During the predicted runtime of the process, a disturb-
ing influence may change the system state.

4. At the end, ROM checks if the optimistic assumptions
still hold true, and takes corrective measures other-
wise.

Repeating the ”black box” comparison, ROM is a ”black
box” approach that additionally includes interaction with
other ”black box” instances (as disturbing influence) and
takes corrective measures in case the interaction is not as
predicted.

2.3 Example
Figure 1 illustrates the ROM approach using an example

of predicting the arrival time of an airplane. The real process
(a) exhibits continuous changes to the airspeed dependent
on the disturbing influence wind. The traditional abstract
modeling approach (b) approximates the result by incremen-
tally calculating the air speed in dependence of the wind in
(coarse-grain) discrete time steps. The ROM approach (c),
on the other hand, does not model the intermediate airplane
speed. Instead, it makes one initial optimistic prediction
about the arrival time, and finally corrects its prediction
retroactively for the average wind condition.

Arrival t i m e
sp

ee
d

Arrival t i m e

sp
ee

d
S t art

S t art

Arrival t i m eS t art E s t .
Arival

C o rre c t io n o f
i n i t ial p re d i c t io n
f o r av e ra g e
o c c u rre d w i n d .

a)
Re

al
b)

TL
M

c)
RO

M

Figure 1: ROM predicting an airplane arrival time.

3. AMBA BUS MODELING USING ROM
We will now describe how the general ROM concept can

be applied to modeling of a communication system. We will
use the example of an AMBA AHB, which is introduced
first. We then describe a set of layer-based AHB models as
reference. Finally, we will apply the ROM approach to the
AHB and analyze its benefits.

3.1 Introduction to the AMBA Bus
ARM has defined a widely used on-chip bus standard with

the Advanced Microprocessor Bus Architecture (AMBA)
[1] which contains a hierarchy of busses as shown in Fig-
ure 2. For this paper, we will focus on the Advanced High-
performance Bus (AHB), a system bus designed for connect-
ing high-speed components including ARM processors.

High-b a n d w id t h
Ex t e r n a l M e m o r y

In t e r f a c e

High-p e r f o r m a n c e
A RM p r o c e s s o r

High-b a n d w id t h
o n -c hip RA M

DM A b u s
m a s t e r

A HB o r A S B A P B
U A RT T im e r

K e y p a d P IO

B
R
I
D
G
E

Figure 2: AMBA bus architecture [1].

364

The AHB is a multi-master bus that operates on a single
clock edge. High performance is achieved by a pipelined op-
eration that overlaps arbitration, address, and data phases,
and by the usage of burst transfers. Split and retry transfers
allow the slave to free the bus if the requested data is tem-
porary unavailable. The AHB also employs a multiplexed
interconnection scheme to avoid tri-state drivers.

3.2 Layer-based Modeling
Following the ISO OSI reference model [6], we can model

the AHB using a layered architecture [9]. The AHB speci-
fication then falls into the second layer, the data link layer.
For modeling, we consider the media access control (MAC)
and the protocol sublayer, as well as the physical layer.

Important for this discussion is the granularity of data
handling in each of the layers. The media access layer pro-
vides a transmission service for a contiguous block of bytes,
called a user transaction. This layer divides the arbitrarily
sized user transaction into smaller bus transactions observ-
ing the bus addressing rules, and transfers these byte blocks
using the protocol layer. The protocol layer transfers data
as bus transactions which are bus primitives (e.g. bytes,
words, or 4 word burst). It uses the services of the physical
layer which provide a bus cycle access to sample and drive
individual bus wires.

time

U s er T r a n s a c ti o n
B u s T r a n s a c ti o n
B u s C y c l e

M A CT L M
P r o to c o lA T L M
P h y s i c a lB F M

LayerM o d el D at a G ran u l ari t y

Figure 3: Layer-based Bus Modeling.

Figure 3 shows the data granularity at each layer with
respect to time. A user transaction is successively split into
smaller units: bus transactions and bus cycles.

Following this layering, we can define three models which
we will refer to as TLM, ATLM, and BFM.

3.2.1 Transaction Level Model (TLM)
The TLM2 is the most abstract model, implementing only

the media access layer. Data is handled at the user trans-
action granularity and is transferred regardless of its size
in one chunk using a single memcpy. Timing is simulated
as a single wait-for-time statement, covering the entire user
transaction. Arbitration is abstracted to a semaphore used
once per user transaction.

3.2.2 Arbitrated Transaction Level Model (ATLM)
The ATLM models a bus access with AHB bus primitives

at the protocol level. It uses the MAC layer implementation
of the bus functional model to split user transactions into
bus transactions. The ATLM accurately models priority-
based arbitration, however only once for each bus transac-
tion. This model is not pin-accurate and not in all cases
cycle-accurate.

2Note that TLM is not clearly defined in the literature. For
this paper, we will use TLM as the name of the model at
the granularity of an entire user transaction.

3.2.3 Bus Functional Model (BFM)
The BFM is a synthesizable, cycle- and pin-accurate bus

model. It implements all layers down to the physical layer
and covers all timing and functional properties of the bus
definition. The BFM handles arbitration per bus transac-
tion and verifies the bus grant on each cycle of a burst.
We have implemented additional active components, such
as multiplexers, an arbiter and an address generator to ac-
curately model the bus architecture.

3.2.4 Limitations of layer-based models
To illustrate the limitations of the layer-based approach,

let us consider an unlocked burst transfer. In a burst trans-
fer, multiple data words are transferred over the bus as one
block of data. An unlocked burst transfer may be preempted
by a higher priority master. Hence, the active master has
to check arbitration for every bus cycle (beat). In case of a
preemption, the preempted master has to arbitrate again for
the bus and subsequently resume the preempted transfer.

BFM

A T L M

T L M

R O M

Figure 4: Arbitration check points when transfer-
ring two 8-beat bursts.

Figure 4 shows the arbitration check points as check marks
for the three models. A user transaction of 16 words is
transfered in two 8-beat bursts. The BFM performs full
arbitration at the beginning of each bus transaction and also
verifies the arbitration at each cycle. The ATLM checks
arbitration only at the bus transaction boundaries. The
TLM performs the least amount of checking. It arbitrates
only at the beginning of a user transaction.

As we will see below, the ROM proposed in this paper
performs two arbitration checks, at the beginning and at
the end of a user transaction, i.e. one more than the TLM.

It turns out that the number of arbitration checks is in
strong correlation with the performance of the model, since
these checks typically result in costly context switches in
the simulator. Thus, implementing all required arbitration
checks is the slowest, but delivers accurate time prediction.
The other extreme, the TLM, implements the fewest arbi-
tration checks yielding the highest performance, but results
in the worst accuracy.

3.3 Result Oriented Modeling
We will now apply the ROM approach to model the AMBA

AHB aiming at 100% accuracy and highest simulation per-
formance at the same time.

3.3.1 Assumptions as with TLM
As discussed earlier, ROM is based on separation of com-

putation and communication, and hiding of communication
internals from the user. It avoids using signals and individ-
ual wires and implements data transfers by use of a single

365

memcpy operation. As such, ROM uses the same principles
as TLM.

In ROM, the application is only aware of the timing at
the boundaries of a user transaction. All activities of the
bus model within the user transaction are hidden from the
communicating parties. Those are not aware that the trans-
action is split into multiple bus transactions and cycles, nei-
ther that there is arbitration involved.

Only the timing at the boundaries of the user transaction
is important for the application. For accurate timing, the
start and the end times of each transaction must match the
times reported by a bus functional model.

Between the start and end times, ROM can freely rear-
range and/or omit internal events and state changes in order
to eliminate costly context switches in the simulator.

As in TLM, the main idea for speeding up the simulation
is to replace the sequence of wait operations and arbitration
checks with one single wait-for-time statement. Reducing
the number of wait operations is the biggest contributor to
increased execution performance. This avoids running the
scheduling algorithm in the simulation engine and thus also
reduces the number of context switches.

3.3.2 Optimistic modeling
The ROM implements an optimistic approach. When a

master requests a user transaction, the earliest finish time
for this transfer is calculated and the master waits until that
time. The time prediction takes the current state of the bus
into account. In case a higher-priority transaction is already
active, the wait time is increased for its duration. After the
calculated time has passed, the master verifies whether the
predicted time is still accurate. If so, the transaction is
complete. Note that in this best case scenario only a single
wait statement is used (as in the TLM).

With a disturbing influence of a higher priority master
accessing the bus during a transaction, the predicted time
will be too short. Then, ROM recalculates the predicted
time and waits for it. This process is repeated until the
prediction is verified to be correct.

Note that an optimistic (short) prediction algorithm is
necessary to allow for corrections. With a pessimistic (too
long) prediction, a correction would need to go back in time,
which obviously is not possible.

3.3.3 Preemption
To compare ROM against the layered models, we will an-

alyze the case of a bus preemption in more detail, as shown
in Figure 5.

In (a) BFM, a burst transaction starting at t0 is pre-
empted at t1. The higher priority transfer completes at t3

when the preempted transfer resumes, terminating finally at
t4. Both masters perform arbitration checks for every bus
cycle, a total of 32 in this example.

In (b) TLM3, the low priority transaction is not properly
preempted and still ends at t2 (not at t4). Instead, the high
priority transaction is delayed until t2 and ends at t4 (not
at t3). Clearly, the abstract TLM is highly inaccurate in the
finish times of both transfers, but executes fast. Only two
arbitration checks are performed.

In (c) ROM, the inaccuracies of the TLM are corrected
by 3 additional arbitration checks. The low priority transfer
is initially predicted to finish at t2. Then, it detects that

3For brevity, we will omit the similar ATLM case here.

preemption

timet0 t1 t3 t4

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

preemption

timet0 t1 t4t2 t3

preemption

timet0 t1 t3 t4t2

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

(a)
 B
FM

(b)
 TL

M
(c)

 R
OM

Figure 5: Preemption in BFM, TLM, ROM

it has been preempted at t1 and recalculates its finish time
for t3 − t1 time units later at t4. The high priority master
wakes up at t3 and terminates its transaction, since it was
not preempted. At t4, the low priority master wakes up,
verifies that no other preemption has occurred, and thus
completes its transfer.

Note that the final two arbitration checks performed by
the ROM are inexpensive because no further waiting is nec-
essary and no context switch occurs.

BFM TLM ROM

Arbitration Checks 32 2 5
(in percent) 100% 6.3% 15.6%

Table 1: Preemption complexity comparison.

Table 1 compares the arbitration checks performed by the
models. The number of checks in ROM is close to the TLM
case and an order of magnitude lower than in the BFM.

3.3.4 Multiple prediction updates
In general, multiple prediction updates are necessary if

multiple preemptions occur. Figure 6 shows an example
where a long transaction is frequently preempted. Although
this transfer is preempted 15 times, only 4 prediction up-
dates are needed by the ROM. A closer looks shows 8 pre-
emptions during the initially predicted period, 4 in the next,
then 2 and finally only one. This exponential drop indicates
that, for most transfers, only very few prediction updates
are expected, even under high bus load.

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

Figure 6: Exponentially decreasing number of pre-
diction updates.

366

3.3.5 Complexity Considerations
It should be noted that the advantages of ROM come at

the price of a more complex model implementation. The
BFM and TLM implementations, on one hand, incremen-
tally advance time and can therefore use step-by-step deci-
sions. ROM, on the other hand, implements all bus schedul-
ing decisions explicitly at the boundaries of a user transac-
tion. This requires the model to keep track of outstanding
transactions, and reevaluate decisions if they were overly op-
timistic, requiring a higher effort from the model developer.

4. EXPERIMENTAL RESULTS
In order to validate the benefits of the proposed ROM

approach, we have implemented the AMBA AHB using the
four models discussed above. We have analyzed the perfor-
mance of the models in two test setups, a single and a multi
master scenario.

4.1 Single Master Setup
To measure the best case for the ROM where no predic-

tion updates are necessary, we have connected a single mas-
ter to a single slave via the AHB. The master issues user
transactions repeatedly, with no delay in between. We have
measured the simulation time on a Pentium 4 at 2.8 GHz.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

Si
m

ul
at

io
n

Ti
m

e
[m

se
c]

Transaction Size [bytes]

Bus Functional Model
Arbitrated TLM
TLM
ROM

Figure 7: Transfer time for single master setup.

Figure 7 shows the ROM model as fast as the TLM. Both
are three orders of magnitude faster than the BFM. This
shows the best possible performance for the ROM. Since
only a single master is connected to the bus, there is no
disturbing influence, and hence no prediction updates are
necessary. Note that both, the ROM and the TLM, are
independent of the transfer size, since essentially only one
wait and a memcpy operation are needed.

4.2 Multiple Master Setup
In the second test setup, we have examined the perfor-

mance with prediction updates using two masters and two
slaves. The high priority master puts an equally distributed
base load of 33% on the bus by sending 8-beat burst trans-
actions. The low priority master issues transactions of in-
creasing size without a delay in between, as before4.

4For a fair comparison, we also ensure that all models trans-
fer the same amount of user transactions.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

Si
m

ul
at

io
n

Ti
m

e
[m

se
c]

Transaction Size [bytes]

Bus Functional Model
Arbitrated TLM
TLM
ROM

Figure 8: Transfer time with 33% base utilization.

Figure 8 shows the time to simulate the low priority mas-
ter over an increasing message size while the high priority
master is running at the same time. Again, both ROM
and TLM are equally fast, three orders of magnitude faster
than the BFM, and one order of magnitude faster than the
ATLM. However, the simulation time now increases with the
transaction size. This is due to the fact that, with an increas-
ing duration of a transaction, also the number of preempting
requests per transaction increases. Hence, the amount of
work to simulate both the high and the low priority master
increases.

4.3 Prediction Updates
It is interesting that even though the ROM has to per-

form an increasing number of prediction updates with the
increased size, the ROM performs as fast as the TLM, even
for large transactions. Simulating the preempting transac-
tions of the high priority master (which is done equally for
the ROM and TLM) dominates over the additional work of
the ROM for the prediction updates.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 1 2 3 4 5 6 7 8

Pe
rc

en
t o

f U
se

r T
ra

ns
ac

tio
ns

Number of Prediction Updates

Figure 9: Histogram of prediction updates for ran-
dom transactions at 50% contention.

As discussed in Section 3.3.4, we expect an exponentially
decreasing number of prediction updates for a linear distri-
bution of preemptions through higher masters. In order to
verify this very low number of prediction updates, we have
established a random transfer setup. Two masters transfer
transactions of random size (1-200 bytes) with a random de-
lay in between. 50% bus contention is controlled through the

367

maximum delay between transfers and the maximum size.
Figure 9 shows a histogram of the number of prediction

updates per low priority transaction over a set of 100000
transfers. Most transactions require only a single prediction
update, despite the high amount of contention. As expected,
the number of transactions with more than one prediction
update reduces exponentially. Only 1.1% require 4 predic-
tion updates. Note that 27.5% of the transactions complete
without a single update. These are mainly small transac-
tions (58% of the transactions with 0 updates are 50 bytes
or smaller in size). This distribution clearly shows that the
excellent performance of ROM can be generally expected.

4.4 Timing Accuracy
Knowing now that ROM is equally fast as TLM, we need

to analyze the accuracy of the models with respect to timing.
As discussed above, the start and end times of a transaction
are of importance to the designer. The start time is auto-
matically correct for each model, so we have measured the
duration of a large number of individual random transfers
and have compared those against the cycle-accurate BFM.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50

Av
er

ag
e

Er
ro

r i
n

Pe
rc

en
t

Bus Contention in Percent

Bus Functional Model
Arbitrated TLM
TLM
ROM

Figure 10: Accuracy comparison for unlocked trans-
fers of the high priority master.

Figure 10 shows the average error in transaction duration
for the high priority master over a varying degree of bus
contention. As targeted, the ROM shows 0% error for all
measurements, lying right on top of the x axis (same as the
BFM). In contrast, the TLM and ATLM show significant er-
ror rates, linear increasing with growing bus contention. At
45% contention, the TLM reaches 45% error, making any
system timing analysis based on TLM questionable. The
ROM, however, shows 100% accuracy, enabling fast and ac-
curate design space exploration.

5. CONCLUSION
In this paper, we have introduced a novel modeling con-

cept, Result Oriented Modeling (ROM), and its application
to the modeling of communication in SoC design. ROM is
an abstract modeling approach similar to TLM that hides
internal states and minimizes them to gain execution speed.
Moreover, ROM is based on an optimistic paradigm. It pre-
dicts the end result at the beginning. Under a disturbing
influence, corrective measures are taken at the end, in order
to adjust the prediction for 100% accuracy.

We have implemented the ROM concept for an AMBA
AHB example and have compared the new model against
traditional layer-based models. Detailed analysis shows that
the cost of corrective measures is low due to an exponential
decreasing number of necessary prediction updates.

Our experimental results demonstrate the tremendous ben-
efits of ROM. While the traditional models suffer from a
significant speed/accuracy tradeoff, ROM delivers highest
speed and 100% accuracy at the same time. This enables
true design space exploration at the abstract system level.

For the future, we plan to apply the ROM approach to
other bus architectures and applications beyond communi-
cation modeling.

6. REFERENCES
[1] Advanced RISC Machines Ltd (ARM). AMBA

Specification (Rev. 2.0), ARM IHI 0011A.
www.arm.com/products/solutions/AMBA Spec.html.

[2] M. Coppola, S. Curaba, M. Grammatikakis, and
G. Maruccia. IPSIM: SystemC 3.0 enhancements for
communication refinement. In Proceedings of the
Design, Automation and Test in Europe (DATE)
Conference, Munich, Germany, March 2003.

[3] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and Design
Methodology. Kluwer Academic Publishers, 2000.

[4] A. Gerstlauer, D. Shin, R. Doemer, and D. Gajski.
System-Level Communication Modeling for
Network-on-Chip Synthesis. In Proceedings of
ASPDAC, Shanghai, China, January 2005.

[5] T. Grötker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Publishers,
2002.

[6] Internation Organization for Standardization (ISO).
Reference Model of Open System Interconnection
(OSI), second edition, 1994. ISO/IEC 7498 Standard.

[7] M. Lajolo, C. Passerone, and L. Lavagno. Scalable
Techniques for System-level Co-Simulation and
Co-Estimation. IEE Proceedings - Computers and
Digital Techniques, 150(4):227–238, July 2003.

[8] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Fast
exploration of bus-based on-chip communication
architectures. In CODES and ISSS, Stockholm,
Sweden, September 2004.

[9] G. Schirner and R. Dömer. Quantitative Analysis of
Transaction Level Models for the AMBA Bus. In
Proceedings of the Design, Automation and Test in
Europe (DATE) Conference, Munich, Germany, March
2006.

[10] M. Sgroi, M. Sheets, M. Mihal, K. Keutzer, S. Malik,
J. Rabaey, and A. Sangiovanni-Vincentelli. Addressing
the system-on-a-chip interconnect woes through
communication based design. In Proceedings of the
Design Automation Conference, June 2001.

[11] R. Siegmund and D. Müller. SystemCSV : An
extension of SystemC for mixed multi-level
communication modeling and interface-based system
design. In Proceedings of the Design, Automation and
Test in Europe (DATE) Conference, Munich,
Germany, March 2001.

368

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

