
Allocation Cost Minimization for Periodic Hard Real-Time
Tasks in Energy-Constrained DVS Systems∗

Jian-Jia Chen
Department of Computer Science and

Information Engineering
National Taiwan University, Taiwan

r90079@csie.ntu.edu.tw

Tei-Wei Kuo
Department of Computer Science and

Information Engineering
Graduate Institute of Networking and Multimedia

National Taiwan University, Taiwan

ktw@csie.ntu.edu.tw

ABSTRACT
Energy-efficiency and power-awareness for electronic systems have
been important design issues in hardware and software implementa-
tions. We consider the scheduling of periodic hard real-time tasks
along with the allocation of processors under a given energy con-
straint. Each processor type could be associated with its allocation
cost. The objective of this work is to minimize the entire allocation
cost of processors so that the timing and energy constraints are both
satisfied. We develop approximation algorithms for processor types
with continuous processor speeds or discrete processor speeds. The
capability of the proposed algorithms was evaluated by a series of
experiments, and it was shown that the proposed algorithms always
derived solutions with system costs close to those of optimal solu-
tions in the experiments.

Keywords: Energy-aware systems, Task scheduling, Real-time
systems, Task partitioning, Multiprocessor synthesis, Dynamic volt-
age scaling.

1. INTRODUCTION
Performance boosting has been a highly important goal in system

designs in the past decades. Not until recently, energy efficiency has
become another critical feature being pursued in a wide variety of
products, especially for battery-powered devices. How to explore the
balance between the system performance and the power consumption
triggers the advance of the Dynamic Voltage Scaling (DVS) technol-
ogy, which provides a mean to adjust the supply voltage and thus the
speed of microprocessors. Well-known example microprocessors are
Intel StrongARM SA1100 and Intel XScale [14]. Technologies, such
as Intel SpeedStep R© and AMD PowerNOW!TM, are also introduced
for laptops to prolong the battery lifetime.

Energy-efficient designs and scheduling could not only extend the
power-on duration of battery-driven devices but also help in cut-
ting down the power bill of server systems significantly. In the past
decade, energy-efficient task scheduling with various deadline con-
straints has received a lot of attention. Many scheduling algorithms
has been proposed for uniprocessor task scheduling on DVS proces-
sors. Different heuristics were also proposed for energy consumption

∗Support in parts by research grants from ROC National Science
Council NSC-94-2213-E-002-007 and NSC-94-2219-E-002-013.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06 November 5–9, 2006, San Jose, CA.
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

minimization under different task models in multiprocessor DVS en-
vironments. Beside the minimization of energy consumption, the
maximization of the system performance under a given energy con-
straint is another important direction. In particular, researchers in
[2, 13] targeted the maximization problem of the system reward un-
der given timing and energy constraints. Alenawy et al. [1] consid-
ered the minimization problem of dynamic faults for soft real-time
systems under a given energy constraint. Pruhs et al. [11] explored
the performance metrics on the minimization of the average response
time of a given job set on a processor under a given energy constraint.

Beside energy-efficient real-time task scheduling, energy-efficient
designs are also explored in the minimization of the cost of allocated
processors, referred to as the system-level synthesis problem of mul-
tiprocessor platforms. How to schedule real-time tasks in a hetero-
geneous processing environment with the minimization of allocation
cost is explored in [15] without energy considerations. The synthe-
sis problem in energy-efficient task scheduling of periodic hard real-
time tasks was first explored under a given processor cost constraint
in [8], where processors might have different costs. Different vari-
ations of the synthesis problems of energy-efficient task scheduling
were discussed in [7]. When non-DVS processors are considered,
Hsu et al. [6] developed approximation algorithms for the minimiza-
tion of the allocation cost for periodic hard real-time tasks.

This paper targets energy-constrained scheduling of periodic hard
real-time tasks. The goal is to assign each task to a deployed DVS
processor such that the total cost of deployed processors is mini-
mized, the energy and task timing constraints are satisfied, and each
task executes at a valid speed. Note that processors under discussions
here could be ASIC chips, such as those for the encoding or decoding
of MPEG streams. The problem is NP-hard even when there is only
one available processor type. We show the non-existence of (1.5−ε)-
approximation algorithms, when there is only one processor type for
any positive ε, and the non-existence of constant-ratio approxima-
tion algorithms, when the number of processor types is not a con-
stant (unless NP = P). Polynomial-time algorithms are developed
with a (m + 2)-approximation ratio when processors are associated
with discrete available speeds, where m is the number of the avail-
able processor types. When there is only one processor type with
continuously available speeds, we propose a 1.5-approximation al-
gorithm with constraint violations and a 2-approximation algorithm.
Extensions are then made to multiple processor types with continu-
ously available speeds. Experimental results show that the proposed
algorithms in this paper can derive solutions with system costs close
to those of optimal solutions.

The rest of this paper is organized as follows: Section 2 defines
the multiprocessor synthesis problems explored in this paper. Sec-
tion 3 presents the proposed approximation algorithms for processor
types with discrete processor speeds. Section 4 considers systems for
processor types with continuous speeds. The experimental results for
the performance evaluation of the proposed algorithm are presented

255

in Section 5. Section 6 is the conclusion.

2. PROBLEM DEFINITION

Processor Models. This paper is interested in a synthesis prob-
lem for multiprocessor environments. We consider an environment
with m different processor types. Let M be the set of the available
processor types. For each processor type Mi in M, an allocation cost
Ci is associated, where Ci could be the corresponding price, area, or
any property under considerations.

The power consumption function of a processor is mainly con-
tributed by the dynamic power consumption resulting from the charg-
ing and discharging of gates on the DVS CMOS circuits. The dy-
namic power consumption function Pi() of the dynamic voltage scal-
ing part of processor type Mi in M is a function of the adopted
processor speed s [12, §5.5]:

Pi(s) ∝ V 2
dds, (1)

where s = µi
(Vdd−Vt)

2

Vdd
, and Vt, Vdd, and µi denote the threshold

voltage, the supply voltage, and a hardware-design-specific constant,
respectively (Vdd ≥ Vt ≥ 0, and µi > 0). Pi() is a convex and
increasing function of processor speeds. When Vt is 0, the dynamic
power consumption function Pi(s) can be rephrased as a cubic func-
tion of the processor speed s. The power consumption function can
be phrased as a function proportional to sη , where η is a hardware-
dependent factor and 1 ≤ η ≤ 3.

This paper considers processor types in which the charging and
discharging of CMOS gates contribute the majority of the power
consumption with negligible leakage and short-circuit power con-
sumption. Hence, the power consumption function Pi(s) is a strictly
convex and increasing function of s for processor type Mi, so is the
energy consumption Pi(s)/s to execute a CPU cycle at speed s. The
time and energy overheads on speed (voltage) switching are assumed
to be negligible. The number of CPU cycles executed in a time in-
terval is linear of the processor speed. That is, the number of CPU
cycles completed in time interval (t1, t2] is

� t2
t1

s(t)dt, where s(t)

is the processor speed at time t. The energy consumed in (t1, t2] is� t2
t1

Pi(s(t))dt on a processor of processor type Mi.
In this study, we consider two DVS types of processors: (1) proces-

sors (of the processor type Mi) with a continuous spectrum of the
available speeds between the upper-bounded speed si,max and 0, and
(2) processors (of the processor type Mi) with Ki distinctive speeds,
i.e., (si,1, si,2, . . . , si,Ki), where si,1 < si,2 < · · · < si,Ki and
si,max is the alias of si,Ki . The former type of processors is de-
noted by ideal processors while the latter type is denoted by non-
ideal processors.

Task Models. We consider the scheduling problem of a set T of
n periodic real-time tasks without dependency constraints. A pe-
riodic task is an infinite sequence of task instances, referred to as
jobs, where each job of a task comes in a regular period. Each task
τi in T is characterized by three parameters: its computation re-
quirement, period, and relative deadline. ci,j denotes the worst-case
execution cycles required to complete any job execution of task τi

on one processor of processor type Mj . If there does not exist any
implementations of task τi on Mj , we assume that ci,j is infinity.
The period pi of task τi is the minimal arrival interval between two
consecutive jobs of the task. The relative deadline of task τi is the
longest span of the time interval between the latest completion time
and the release time of a job of τi. In this paper, the relative deadline
of a task is assumed to be equal to the period of the task.

For both ideal and non-ideal processors, we are requested to as-
sign an available execution speed for each task in T on the assigned
processor. If

ci,j

sj,max
> pi for some Mj , it is clear that executing

τi on one processor of Mj will unavoidably let τi miss its deadline.
For such a case, we just set ci,j as infinity. A task completes in time
means that all the jobs of the task completes before their correspond-
ing deadlines. The hyper-period of T, denoted by L, is defined so
that L/pi is an integer for any task τi in T. The number of jobs in
the hyper-period of task τi is L

pi
. For example, L is the least com-

mon multiple (LCM) of the periods of tasks in T when the periods
of tasks are all integers.

Multiprocessor Allocation for Energy-ConstrainedReal-
Time Task Scheduling (MARTS) Problem. As shown in [10],
the earliest-deadline-first (EDF) scheduling algorithm is an optimal
uniprocessor scheduling algorithm for independent real-time tasks.
A task set is schedulable if and only if the total utilization of the task
set is no more than 100%, where the utilization of a task is defined
as its execution time divided by its period. This paper considers the
joint scheduling and allocation problem, in which EDF scheduling is
applied to each allocated processor.

The problem considered in this paper is defined as follows: Con-
sider a set T of n independent tasks over a set M of m different
processor types. The available speeds and the power consumption
function Pj() of processor type Mj are specified. Each task τi ∈ T
is characterized by its period pi, where the relative deadline of τi

is equal to pi. When τi is executed on one processor of processor
type Mj ∈ M, τi is associated with its execution cycle ci,j for each
job execution on the processor type. Moreover, we are given an en-
ergy constraint E for the maximum energy consumption in the hyper-
period L of T.1 The objective of the problem is to derive a schedule
of T and a multi-subset of M for processor allocation such that each
task in T is executed on an allocated processor and completes in
time, the speed constraints are satisfied, the total energy consump-
tion in the hyper-period of T does not exceed E , and the total cost of
allocated processors is minimized.

A solution is feasible for the MARTS problem if the energy con-
straint is satisfied, each task is assigned on an allocated processor, all
the tasks complete in time, and each task is executed at an available
speed on the allocated processor on which the task is assigned. An
optimal solution for an input instance of the MARTS problem has the
minimum cost on the allocated processors among all feasible solu-
tions of the input instance.

LEMMA 1. The MARTS problem is NP-hard in a strong sense
even when there is only one processor type for either ideal or non-
ideal processors.

PROOF. The MARTS problem can be proved NP-hard in a strong
sense by a reduction from the bin packing problem, which is NP-
complete in a strong sense [4].

We focus the study on approximation algorithms with worst-case
guarantees of processor allocation cost. Based on [16], a polynomial-
time α-approximation algorithm for the MARTS problem must have
polynomial-time complexity of the input size and could derive a fea-
sible solution with the total cost at most α times of an optimal so-
lution, for any input instance allowing feasible solutions, in which
α is also referred to as the approximation ratio of the approximation
algorithm. We also adopt constraint violation approaches [9] by vio-
lating the maximum speed. An (α, β)-approximation for the MARTS

problem derives a feasible solution with an α-approximation ratio
while the maximum speed constraint on the resulting solution is re-
laxed by β times. The use of the constraint-violation approach [9] is
to first set an artificial upper bound on the processor speed and then
derive feasible solutions based on the relaxed constraint of processor

1It might be difficult to define the energy constraint in a hyper-period. In
such a case, an average value Pavg on the power consumption constraint is
assumed, while E is set as PavgL.

256

speeds. The following theorem reveals the inapproximability result
of the MARTS problem when NP �= P .

THEOREM 1. For any positive constant ε, there does not exist
any (1.5 − ε)-approximation of the MARTS problem when there is
only one processor type for either ideal or non-ideal processors, un-
less P = NP .

THEOREM 2. There does not exist any polynomial-time approx-
imation algorithm for the MARTS problem with a constant approxi-
mation ratio when m is not a constant, unless NP = P , .

PROOF. The detail proofs of the above theorems are in [3].

3. ALGORITHMS FOR NON-IDEAL
PROCESSORS

This section considers the MARTS problem with non-ideal proces-
sors. The MARTS problem is first formulated as an integer linear
programming problem, and a series of relaxations is then performed
to derive a feasible schedule and a proper allocation of processors in
polynomial time. We will show that the proposed algorithms could
derive approximated solutions with the worst-case guarantees.

Suppose that the number of allocated processors of processor type
Mj is a non-negative integer ∆j . Clearly, ∆j is no more than n.
For each task τi in T, a binary variable zi,j,k,� is set as 1 if τi is
assigned to execute on the k-th allocated processor of processor type
Mj at speed sj,�; otherwise, zi,j,k,� = 0. The set Tj,k of tasks
assigned onto the k-th allocated processor of Mj is schedulable by

EDF if
�

τi∈Tj,k

�Kj

�=1 ui,j,� · zi,j,k,� ≤ 1, where ui,j,� is the uti-

lization of τi on a processor of Mj at speed sj,�, i.e., ui,j,� =
ci,j

pi·sj,�
.

The MARTS problem is formulated as an integer linear programming
problem as follows:2

minimize
�

Mj∈M ∆j · Cj

subject to�
Mj∈M

�
τi∈T

�n
k=1

�Kj

�=1 Ei,j,� · zi,j,k,� ≤ E ,�
Mj∈M

�∆j

k=1

�Kj

�=1 zi,j,k,� = 1 ,∀τi ∈ T,�
Mj∈M

�n
k=∆j+1

�Kj

�=1 zi,j,k,� = 0 ,∀τi ∈ T,�
τi∈T

�Kj

�=1 ui,j,� · zi,j,k,� ≤ 1 ,∀Mj ∈ M, k = 1, . . . , n,

zi,j,k,� ∈ {0, 1} ,∀τi ∈ T, ∀Mj ∈ M, k = 1, . . . , n,
� = 1, . . . , Kj ,

∆j ∈ {0, 1, . . . , n} ,∀Mj ∈ M,
(2)

where Ei,j,� is the energy consumption to execute task τi at speed
sj,� on processor type Mj in the hyper-period. That is, Ei,j,� =
Pj(sj,�)

ci,j

sj,�

L
pi

. In Equation (2), the first constraint requires that the

total energy consumption of all the tasks is no more than the given
energy constraint E , the second and third constraints require that each
task τi must execute on one allocated processor only, and the fourth
constraint means that the total utilization of the tasks executing on
one allocated processor must be no more than one (because of EDF
scheduling).

Instead of looking for an optimal solution of Equation (2), we
could derive an approximated solution in polynomial time by per-
forming a series of relaxations for any input instance. The first re-
laxation will be on the objective function to reduce the number of

2This formulation might not be feasible for some solvers such as GLPK [5].
It can be reformulated into another one that is solvable for any ILP solver.
However, the large amount of variables makes the programming intractable
in most solvers. For example, even when Kj is 1, GLPK [5] takes more than
a week for m = 4 and n > 15 and more than a day for m = 4 and n > 10
in our experiments. The formulation in Equation (2) is for the clearance of
the relaxation procedures in this section.

variables required in the programming. For each task τi in T, a
binary variable yi,j,� is set as 1 if τi is assigned to execute on a
processor of processor type Mj at speed sj,�; otherwise, yi,j,� = 0.��n

i=1

�Kj

�=1 ui,j,� · yi,j,�

�
is an under-estimated number of the re-

quired number of processors of processor type Mj . However, for
some processor speed sj,� of processor type Mj , executing task τi at
such a speed might lead the utilization ui,j,� of task τi being greater
than 1. Such a case must be eliminated. Suppose that κi,j is the min-
imum index �∗ with

ci,j

pi·sj,�∗
≤ 1. If no such a speed exists for task

τi on Mj , let κi,j be Kj + 1. Equation (2) could be relaxed into the
following integer linear programming problem:

minimize
�

Mj∈M

��
τi∈T

�Kj

�=κi,j
ui,j,� · yi,j,�

�
Cj

subject to
�

Mj∈M

�
τi∈T

�Kj

�=κi,j
Ei,j,� · yi,j,� ≤ E,�

Mj∈M

�Kj

�=κi,j
yi,j,� = 1 ,∀τi ∈ T, and

yi,j,� ∈ {0, 1} ,∀τi ∈ T, ∀Mj ∈M, κi,j ≤ � ≤ Kj .
(3)

For any feasible solution of Equation (3), each task is assigned to
exactly one processor type at a feasible processor speed. Let task set
Tj be the set of the tasks in T assigned on the processors of proces-
sor type Mj for a solution of Equation (3), i.e., Tj = {τi ∈ T |
yi,j,� = 1 for some κi,j ≤ � ≤ Kj}. We adopt the first-fit strategy
to assign tasks in Tj to processors of Mj (referred to as Algorithm
FF). In each iteration, we assign an un-assigned task τi in Tj to an
allocated processor at the speed sj,� with yi,j,� = 1 if the result-
ing total utilization of the tasks assigned on the processor is no more
than 100%. If no such an allocated processor exists, we must get a
new processor of Mj and assign τi to the newly allocated processor.
The time complexity of Algorithm FF is O(|Tj |2). The energy con-
sumption of the resulting solution is no more than E . Algorithm FF

was shown as a 2-approximation algorithm of the bin packing prob-
lem [16, §9]. The following lemma shows that the number of the
allocated processors of a solution derived by Algorithm FF is at most
max{1, 2

�
τi∈Tj

�Kj

�=κi,j
ui,j,� · yi,j,�} for any Tj .

LEMMA 2. Given a task set Tj , the number of the allocated
processors of processor type Mj in Algorithm FF is at most

max{1, 2
�

τi∈Tj

�Kj

�=κi,j
ui,j,� · yi,j,�}.

PROOF. It could be proved by applying the proof for the first-fit
algorithm in [16, §9]. The detail proof is in [3].

We might relax the integral constraints of yi,j,� so that yi,j,� could
be any fractional number. However, the lower bound provided by an
optimal solution of the naive relaxation might be far away from an
optimal solution of the MARTS problem in the worst case, even for
the case that κi,j = 1 and Kj = 1 for all τi in T and Mj in M.

We show that we could relax Equation (3) in a parametric manner
so that the gap between an optimal solution of Equation (3) and an
optimal solution of the relaxed problem is bounded for any input in-
stance. First, we re-index the available processor types in M so that
C1 ≤ C2 ≤ · · · ≤ Cm. The idea behind the parametric relaxation
of Equation (3) is that we restrict the solution of the input instance.
When the parameter is specified as m′, the solution of the input in-
stance is not to use any processor of Mj with j > m′ and to use at
least one processor of Mm′ . Clearly, the minimum solution of the
following integer programming problem among m′ = 1, 2, . . . , m

257

is a lower bound of the MARTS problem:

minimize
�m′−1

j=1

�
τi∈T

�Kj

�=κi,j
ui,j,� · yi,j,� · Cj

+

��
τi∈T

�Km′
�=κi,m′ ui,m′,� · yi,m′,�

�
· Cm′

subject to
�

τi∈T

�Km′
�=κi,m′ yi,m′,� · ui,m′,� > 0,�m′

j=1

�
τi∈T

�Kj

�=κi,j
Ei,j,� · yi,j,� ≤ E,�m′

j=1

�Kj

�=κi,j
yi,j,� = 1 ,∀τi ∈ T, and

yi,j,� ∈ {0, 1} ,∀τi ∈ T, 1 ≤ j ≤ m′, κi,j ≤ � ≤ Kj ,
(4)

where the first constraint guarantees that processor type Mm′ is used.
For each specified m′, we relax Equation (4) by relaxing the in-

tegrals constraint of yi,j,� so that yi,j,� could be any non-negative
fractional number. As a result, for each m′, we could relax Equa-
tion (4) into the following two sub-equations:

minimize
�m′

j=1

�
τi∈T

�Kj

�=κi,j
ui,j,� · yi,j,� · Cj

subject to
�

τi∈T

�Km′
�=κi,m′ yi,m′,� · ui,m′,� ≥ 1,�m′

j=1

�
τi∈T

�Kj

�=κi,j
Ei,j,� · yi,j,� ≤ E,�m′

j=1

�Kj

�=κi,j
yi,j,� = 1 ,∀τi ∈ T, and

yi,j,� ≥ 0,∀τi ∈ T, 1 ≤ j ≤ m′, κi,j ≤ � ≤ Kj .

(5a)

minimize Cm′ +
�m′−1

j=1

�
τi∈T

�Kj

�=κi,j
ui,j,� · yi,j,� · Cj

subject to
�

τi∈T

�Km′
�=κi,m′ yi,m′,� · ui,m′,� ≤ 1,�m′

j=1

�
τi∈T

�Kj

�=κi,j
Ei,j,� · yi,j,� ≤ E,�m′

j=1

�Kj

�=κi,j
yi,j,� = 1 ,∀τi ∈ T, and

yi,j,� ≥ 0, ∀τi ∈ T, 1 ≤ j ≤ m′, κi,j ≤ � ≤ Kj .
(5b)

Our proposed algorithm, denoted as Algorithm ROUNDING, first
derives a minimum feasible solution among the 2m equations of all
combinations in Equation (5). Since Equations (5a) and (5b) are both
standard linear programming problems, applying a polynomial-time
linear programming solver, such as that in [5], could derive an op-
timal solution of Equation (5a) or Equation (5b) in polynomial time
of n and m′ for a fixed parameter m′ if a feasible solution exists.
If there does not exist any feasible solution for a fixed m′ for Equa-
tion (5a) or Equation (5b), the infeasibility could also be determined
in polynomial time. For a specified m′, let yi,j,� be 0 for any j > m′,
or � < κi,j for notational brevity. If no feasible solution is derived
from these 2m linear programming problems, there does not exist
any feasible solution for such an input instance. Otherwise, let the
variable assignment with the minimum value in the objective func-
tion of Equation (5) be y∗

i,j,�, while Y ∗ is the abbreviated vector for
the variable assignment. (Ties are broken arbitrarily.)

Let TI,j be {τi ∈ T | ∃1 ≤ � ≤ Kj with y∗
i,j,� = 1} for j =

1, 2, . . . , m. A task in TI,j is referred to as an integral task. For the
other tasks that are not in TI,j for any j = 1, 2, . . . , m, we denote
these tasks as fractional tasks. Let TF be the set of fractional tasks,
i.e., TF = {τi ∈ T | ∃j, � with 0 < y∗

i,j,� < 1}. For each fractional
task τi in TF , we insert τi into TI,j∗ by executing τi on Mj∗ , where
Mj∗ is the processor type Mj with y∗

i,j,� > 0 and the minimum
Ei,j,�, i.e., j∗ = argj=1,2,...,m min

�=1,...,Kj and y∗
i,j,�

>0
Ei,j,�. For

tasks in TI,j , let y′
i,j,� be

���
k=1 y∗

i,j,k

�
−
���−1

k=1 y∗
i,j,k

�
. That

is, y′
i,j,� is 1 when � is the minimum index with y∗

i,j,� > 0, and
y′

i,j,� is 0, otherwise. We then assign task set TI,j by applying Al-
gorithm FF to allocate processors of Mj and assign tasks onto the
allocated processors of task set TI,j at the speed sj,� with y′

i,j,� = 1
for j = 1, 2, . . . , m. After all, we schedule these tasks by applying
EDF individually on each allocated processor at the assigned speed.

It is not difficult to see that Algorithm ROUNDING guarantees to
derive a feasible solution of the MARTS problem if feasible solutions
exist. The time complexity is O(mΨ + n2), where Ψ is the time

Algorithm 1 : ROUNDING

1: sort processor types so that C1 ≤ C2 ≤ · · · ≤ Cm;
2: let Y ∗ be the vector of y∗

i,j,�s with the minimum objective value among

feasible solutions of Equations (5a) and (5b) for m′ = 1, 2, . . . , m;
3: TI,j ← {τi ∈ T | ∃1 ≤ � ≤ Kj with y∗

i,j,� = 1}, for j =

1, 2, . . . , m;
4: TF ← T \ (∪m

j=1TI,j);
5: for each τi in TF , TI,j∗ ← TI,j∗ ∪{τi}, where Mj∗ is the processor

type Mj with y∗
i,j,� > 0 for some � and the minimum Ei,j,�;

6: y′
i,j,� ←

���
k=1 y∗

i,j,k

�
−
���−1

k=1 y∗
i,j,k

�
, for each task τi in TI,j ;

7: apply Algorithm FF to allocate processors of Mj for the tasks τis of task
set TI,j at speed sj,� with y′

i,j,� = 1, for j = 1, 2, . . . , m;

complexity for the applied linear programming solver. Algorithm
ROUNDING is presented in Algorithm 1. The following theorem
shows the approximation ratio of Algorithm ROUNDING.

THEOREM 3. Algorithm ROUNDING is a polynomial-time (m +
2)-approximation algorithm for the MARTS problem.

PROOF. The proof is shown in [3].

Another algorithm, denoted as Algorithm E-ROUNDING, to en-
hance the quality of the derived solutions of Algorithm ROUNDING

could be done as follows: Let Y ∗
1 , Y ∗

2 , . . . , Y ∗
∇ be the vectors of

yi,j,�s for the feasible solutions of the 2m different linear program-
ming problems in Equation (5). For each vector Y ∗

k with 1 ≤ k ≤ ∇,
we find a feasible allocation solution with the same allocation strat-
egy of Algorithm ROUNDING. Algorithm E-ROUNDING selects the
solution with the minimum resulting allocation cost among these ∇
solutions. It is not difficult to see that Algorithm E-ROUNDING per-
forms no worse than Algorithm ROUNDING does, and, hence, Algo-
rithm E-ROUNDING is also a (m + 2)-approximation algorithm.

4. ALGORITHMS FOR IDEAL PROCESSORS
This section considers the MARTS problem for ideal processors.

We first explore the case in which there is only one processor type.
In such a case, the objective is to minimize the number of allocated
processors. A lower bound on the allocation cost is first derived.
Based on the lower-bound solution, approximation algorithms for
ideal processors are developed. Algorithms presented in Section 3
are extended to cope with multiple processor types of ideal proces-
sors.

4.1 One Processor Type
For notational brevity, let ci be the execution cycle of task τi on

the processor type, the power consumption function be normalized
as P (s) = sη with 1 ≤ η ≤ 3, and the maximum available speed
be smax. For the rest of this subsection, we only consider cases in
which ci/pi ≤ smax for every task τi in T since there does not exist
any feasible solution for the MARTS problem for the other case.

Given a specified number m† of processors of the processor type,
where m† ≥ �

τi∈T
ci

pismax
, the lower bound of the minimum en-

ergy consumption to schedule tasks in T at speed no more than smax

can be derived as follows, where the total utilization is no more than
m†, and the utilization of every task in T is no more than 1:3 If
(
�

τi∈T
ci
pi

)/m† is less than ci∗
pi∗

of task τi∗ in which τi∗ is the task

τi in T with the greatest ci/pi, we assign task τi∗ at speed ci∗
pi∗

and
perform the algorithm recursively by removing τi∗ in T on the re-
maining m† − 1 processors until T consists of no tasks; otherwise,
we assign all the tasks in T at speed (

�
τi∈T

ci
pi

)/m†. Let Φ(m†)
be the total energy consumption of all the tasks in T following the

3By applying the well-known KKT optimality condition, it is not difficult to
see the optimality.

258

Algorithm 2 : S-LEUF

1: find the integer m∗ , and the estimated utilization of tasks in T;
2: return “no feasible solution” if m∗ does not exist;
3: sort tasks in T in a non-increasing order of the estimated utilization;
4: m̂← m∗ − 1;
5: repeat
6: m̂← m̂ + 1;
7: U1 ← · · · ← Um̂ ← 0, and T1 ← · · · ← Tm̂ ← ∅;
8: for i← 1 to |T| do
9: find the smallest U�; (break ties by choosing the smallest �)

10: T� ← T� ∪ {τi} and U� ← U� + u∗
i ;

11: for �← 1 to m̂ do
12: for each task τi ∈ T� do
13: t′i ← t∗i × 1

U�
;

14: let Sm̂ be the EDF schedule to execute task τi in T� (1 ≤ � ≤ m̂) at
the speed ci/t′i on the �-th processor;

15: until the energy consumption of schedule Sm̂ ≤ E ;
16: return the resulting EDF schedule Sm̂;

speed assignment above. m∗ is the smallest integer no less than�
τi∈T

ci
pismax

such that Φ(m∗) is no more than E for input task
set T. That is, it is not possible for any schedule to complete all the
tasks in T in time without violating the timing or energy constraint
when we are given m∗ − 1 homogeneous processors. Hence, if no
such an m∗ exists, no feasible schedule can be produced without vi-
olating the energy constraint E .

For the rest of this subsection, we only focus on the case in which
such an m∗ exists. m∗ is a lower bound on the number of required
processors of an optimal schedule. For notational brevity, let t∗i be
the execution time according to the above speed assignment when
the specified number of processors is m∗. The estimated utilization
u∗

i of task τi in T is defined as t∗i /pi. Similar to Lemma 2, applying
Algorithm FF according to the above estimated utilization results in
a 2-approximation solution.

We now present a 1.5-approximation algorithm with constraint vi-
olation. Tasks in T are sorted in a non-increasing order of their esti-
mated utilization. Let m̂ be initialized as m∗. We adopt the Largest-
Estimated-Utilization-First strategy to assign tasks by increasing the
number of available processors m̂, until the energy consumption of
the resulting schedule is no more than E . The proposed algorithm
is illustrated in Algorithm 2 and denoted as Algorithm S-LEUF. Let
T� be the set of tasks assigned to the �-th allocated processor. U�

is the total estimated utilization of T�. Since the utilization of each
allocated processor is 100%, and, hence, the EDF schedule on each
allocated processor completes all the tasks in time. The performance
guarantee of the algorithm is analyzed as follows.

LEMMA 3. For any fixed m̂, if there exists a task set T�∗ con-
sisting of at least two tasks and U�∗ > 1, then U� ≥ 1

2
U�∗ for any

� = 1, 2, . . . , m̂.

PROOF. The inequality U�∗ ≤ 2U� holds since u∗
j ≤ U� and

U�∗ − u∗
j ≤ U� (τj is the last task inserted into T�∗).

THEOREM 4. The number of processors required for the sched-
ule returned by Algorithm S-LEUF is at most 1.189m∗ + 1.

PROOF. The proof is omitted and shown in [3].

The time complexity of Algorithm S-LEUF is O(|T|2 log |T|) by a
straightforward implementation. It can be reduced to O(|T| log2 |T|)
by searching the values of m∗ and m̂ both in a binary search manner.
We can have the following corollary.

COROLLARY 1. Algorithm S-LEUF is a (1.5, 2)-approximation
algorithm for the MARTS problem with constraint violations.

PROOF. The speed violation bound comes from Lemma 3. The
1.5-approximation factor comes as follows: If m∗ = 1, Algorithm
S-LEUF derives an optimal schedule. As for the case that m∗ > 1,
m̂ ≤ 1.5m∗ because of Theorem 4.

If the maximum speed violation is not permitted, Algorithm S-
LEUF can be revised into Algorithm RS-LEUF by changing Step 15
with ”until the energy consumption of schedule Sm̂ is no more than
E and ci/t′i ≤ smax∀τi ∈ T”. The time complexity remains, and
the approximation ratio of Algorithm RS-LEUF is 2 − 1

n
.

4.2 Multiple Processor Types
For multiple processor types, we can divide the available speeds

into a user-defined spectrum with a number of discrete speeds on
each processor type. After that, we apply Algorithm ROUNDING or
E-ROUNDING to assign tasks in T. For tasks assigned onto a proces-
sor type Mj , the energy constraint of these tasks on the processor
type is the sum of the energy consumption of these tasks. Under the
energy constraint of each Mj , we apply Algorithms S-LEUF or RS-
LEUF to allocate processors of processor type Mj and schedule the
assigned tasks.

5. PERFORMANCE SIMULATION
This section provides extensive evaluations of the proposed algo-

rithms. The hyper-period was 1000. The number of jobs of task τi

within the hyper-period, denoted by ζi, was an integer uniformly dis-
tributed in the range of [1, 50]. The period of task τi was set as 1000

ζi
.

The maximum speed sj,max of processor type Mj was a random
variable between [1, 10]. The power consumption function Pj(s) of
processor type Mj was hjs

ηj , where hj was random variable uni-
formly distributed in the range of [0.1, 10], and ηj was in the range
of [2.5, 3]. The execution cycles ci,j of jobs of task τi on processor
type Mj was a random variable uniformly distributed in the range
of [1, 1000

ζi×sj,max
]. For each processor type Mj , the cost Cj was an

integral variable uniformly distributed in the range of [100, 1000].
For non-ideal processor type Mj with a specified number Kj of

available speeds, the lowest available speed sj,1 was 0.2 × sj,max,
while sj,Kj was sj,max. sj,� was sj,1 + (sj,max − sj,1)

�−1
Kj−1

. For a
specified energy constraint ratio f , the energy constraint E for a task
set T on a set of processor types M was set as (Emax − Emin)f +
Emin, where Emin =

�
τi∈T Ei,min and Emax =

�
τi∈T Ei,max.

Ei,max was max
Mj :

ci,j
pi·sj,max

≤1
Pj(sj,max)

ci,j

sj,max

L
pi

, and Ei,min was

minMj :κi,j≤Kj Pj(sj,κi,j)
ci,j

sj,κi,j

L
pi

for non-ideal processor types

or Ei,min was min
Mj :

ci,j
pi

≤sj,max
Pj(

ci,j

pi
)pi

L
pi

for ideal processor

types.
For non-ideal processor types, we had two types of experiments by

varying the number of processor types and the number of tasks and
by adjusting the energy constraint, while Kj for processor type Mj

was an integral variable uniformly distributed in the range of [2, 20].
For the first type, the numbers of processor types and tasks were from
2 to 10 and 6 to 50, respectively. For the second type, we varied the
energy constraint ratio from 0.05 to 1, stepped by 0.05, where the
number of processor types was an integral variable in the range of
[2, 10], and the number of tasks was an integral variable in the range
of [2, 50]. For systems with one ideal processor type, the number
of tasks was from 5 to 50, and the energy constraint ratio was from
0.05 to 1, stepped by 0.05. Each configuration was evaluated with
independent settings.

For non-ideal processor types, the normalized allocation cost of
an algorithm for an input instance was the ratio of the allocation cost
of a solution derived from the algorithm to that of the lower bound
derived from the minimum cost among the 2m linear programming
problems of Equation (5). For one ideal processor type, the normal-
ized allocation cost of an algorithm for an input instance was the
ratio of the allocation cost of a solution derived from the algorithm
to the value of m∗ derived in Algorithm S-LEUF.

Figure 1(a) shows the average normalized allocation cost of Al-
gorithms ROUNDING and E-ROUNDING when the energy constraint

259

 2 3 4 5 6 7 8 9 10

 6 10 14 18 22 26 30 34 38 42 46 50

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 Number of

 processor types

Number of tasks

N
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st

ROUNDING
E-ROUNDING

(a)

 1.36

 1.4

 1.44

 1.48

 1.52

 1.56

 1.6

 1.64

 1.68

 1.72

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st

Energy constraint ratio

ROUNDING
E-ROUNDING

(b)

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3

Number of tasks

Energy constraint ratio

N
or

m
al

iz
e

al
lo

ca
tio

n
co

st

FF
RS-LEUF

 5 10 15 20 25 30 35 40 45 50
 0 0.2 0.4 0.6 0.8 1

(c)

Figure 1: The experimental results: (a) the number of available non-ideal processor types ranged from 2 to 10, and the number of
tasks ranged from 6 to 50 with energy constraint ratio equal to 0.2, (b) the energy constraint ratio ranged from 0.05 to 1, the number
of available non-ideal processor types was an integer in [2, 10], and the number of tasks was an integer in [2, 50], and (c) one ideal
processor type.

ratio was 0.2, the number of processor types varied from 2 to 10,
and the number of tasks varied from 6 to 50 stepped by 4. The per-
formance of E-ROUNDING was no worse than that of ROUNDING in
the experimental results. Both of the proposed algorithms could de-
rive solutions with costs close to those of optimal solutions. The
performance gap between the two algorithms became wider for a
larger number of processor types. In Figure 1(a), the average nor-
malized allocation cost became larger when the number of proces-
sor types increased. However, the growing tendency was slow. Fig-
ure 1(b) shows the average normalized allocation cost of Algorithms
ROUNDING and E-ROUNDING when the energy constraint ratio var-
ied from 0.05 to 1 with a step equal to 0.05. Both of the proposed
algorithms could derive solutions with costs close to those of optimal
ones. Moreover, Algorithm E-ROUNDING outperformed Algorithm
ROUNDING in all the cases.

Figure 1(c) shows the average normalized allocation cost of Algo-
rithms FF and RS-LEUF proposed in Section 4 for one ideal processor
type. Algorithm RS-LEUF derived solutions close to optimal ones.
Algorithm RS-LEUF outperformed Algorithm FF greatly when the
energy constraint ratio was large and the number of tasks was small,
i.e., f ≥ 0.4 and n ≤ 20. We also simulated Algorithm S-LEUF. The
results were very close to Algorithm RS-LEUF with slight violation
on the speed when the energy constraint ratio was large. Simulation
results for multiple types of ideal processors are omitted, due to the
similar trends and the space limitation.

6. CONCLUSION
This paper targets energy-constrained scheduling of periodic hard

real-time tasks. The goal is to minimize the total cost of proces-
sors, and the energy and task timing constraints are satisfied. The
problem is NP-hard even when there is only one available proces-
sor type. When the number of processor type is not a constant,
there does not exist any constant-ratio approximation algorithm (un-
less NP = P). Polynomial-time algorithms are developed with a
(m+2)-approximation ratio when processors have discrete available
speeds, where m is the number of processor types. When there is
only one processor type with continuously available speeds, we pro-
pose a 1.5-approximation algorithm with constraint violations and a
2-approximation algorithm. Extensions are made to multiple proces-
sor types with continuously available speeds. The proposed algo-
rithms could also be applied to systems consisting of ideal and non-
ideal processor types. The proposed algorithms were evaluated by a
series of experiments, in which the system costs of the derived solu-
tions were close to those of optimal solutions.

For future research, it is interesting to explore energy-constrained
system synthesis for more general models, such as tasks with prece-
dence constraints or processor types with non-negligible leakage power

consumption in nano-meter manufacturing. The hardness results in
this research still hold for these general cases. Moreover, for sys-
tems with non-negligible leakage power consumption, the derivation
of a feasible solution to satisfy the energy constraint can be proved
to be NP-hard in a strong sense by a reduction from the 3-Partition
problem [4], and, hence, constraint violation might be useful.

References
[1] T. A. Alenawy and H. Aydin. Energy-constrained scheduling for

weakly-hard real-time systems. In Proceedings of the 26th IEEE
Real-time Systems Symposium (RTSS’05), pages 376–385, 2005.

[2] J.-J. Chen and T.-W. Kuo. Voltage-scaling scheduling for periodic
real-time tasks in reward maximization. In the 26th IEEE Real-Time
Systems Symposium (RTSS), pages 345–355, 2005.

[3] J.-J. Chen and T.-W. Kuo. Allocation cost minimization for periodic
hard real-time tasks in energy-constrained DVS systems. Technical
Report 0604, Department of Computer Science and Information
Engineering, National Taiwan University, 2006.

[4] M. R. Garey and D. S. Johnson. Computers and intractability: A guide
to the theory of NP-completeness. W. H. Freeman and Co., 1979.

[5] GNU Linear Programming Kit.
http://www.gnu.org/software/glpk/glpk.html.

[6] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo. Multiprocessor synthesis for
periodic hard real-time tasks under a given energy constraint. In
ACM/IEEE Conference of Design, Automation, and Test in Europe
(DATE), pages 1061–1066, 2006.

[7] N. K. Jha. Low power system scheduling and synthesis. In Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided
design, pages 259–263, 2001.

[8] D. Kirovski and M. Potkonjak. System-level synthesis of low-power
hard real-time systems. In Proceedings of the 34th ACM/IEEE
Conference on Design Automation Conference, pages 697–702, 1997.

[9] J.-H. Lin and J. S. Vitter. ε-approximations with minimum packing
constraint violation. In Symposium on Theory of Computing, pages
771–782. ACM Press, 1992.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[11] K. Pruhs, P. Uthaisombut, and G. J. Woeginger. Getting the best
response for your erg. In 9th Scandinavian Workshop on Algorithm
Theory (SWAT), pages 14–25, 2004.

[12] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits. Prentice Hall, 2nd edition, 2002.

[13] C. Rusu, R. Melhem, and D. Mossé. Multiversion scheduling in
rechargeable energy-aware real-time systems. In EuroMicro
Conference on Real-Time Systems (ECRTS’03), pages 95–104, 2003.

[14] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/.
[15] Z. Shao, Q. Zhuge, X. Chun, and E. H.-M. Sha. Efficient assignment

and scheduling for heterogeneous dsp systems. IEEE Transaction on
Parallel and Distributed Systems, 16(6):516–525, June 2005.

[16] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

260

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

