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ABSTRACT
Embedded systems are constrained by the available memory. Code
compression techniques address this issue by reducing the code size of
application programs. Dictionary-based code compression techniques
are popular because they offer both good compression ratio and fast
decompression scheme. Recently proposed techniques [8, 9] improve
standard dictionary-based compression by considering mismatches. This
paper makes two important contributions: i) it provides a cost-benefit
analysis framework for improving the compression ratio by creating
more matching patterns, and ii) it develops an efficient code compres-
sion technique using bitmasks to improve the compression ratio without
introducing any decompression penalty. To demonstrate the usefulness
of our approach we have used applications from various domains and
compiled for a wide variety of architectures. Our approach outperforms
the existing dictionary-based techniques by an average of 15%, giving
a compression ratio of 55% - 65%.

1. INTRODUCTION
Memory is one of the key driving factors in embedded system design

since a larger memory indicates an increased chip area, more power
dissipation, and higher cost. As a result, memory imposes constraints
on the size of the application programs. Code compression techniques
address the problem by reducing the program size. Figure 1 shows
the traditional code compression and decompression flow where the
compression is done off-line (prior to execution) and the compressed
program is loaded into the memory. The decompression is done during
the program execution (online).
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Figure 1: Traditional Code Compression Methodology

The first code compression technique for embedded processors was
proposed by Wolfe and Chanin [1]. The idea of using a dictionary to
store the frequently occurring instruction sequences has been explored
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by various researchers [2, 12]. Lekatsas and Wolf [6] proposed SAMC,
a statistical method for code compression using arithmetic coding and
Markov model. There has been a significant amount of research in the
area of code compression for VLIW and EPIC processors. The tech-
nique proposed by Ishiura and Yamaguchi [10] splits a VLIW instruc-
tion into multiple fields and each field is compressed using a dictionary-
based scheme. Nam et al. [13] also uses a dictionary-based scheme to
compress fixed format VLIW instructions. Xie et al. [14] used Tun-
stall coding to perform a variable-to-fixed compression. Lin et al. [3]
proposed a LZW-based code compression for VLIW processors using
a variable-sized-block method.

Dictionary-based code compression techniques are popular because
they provide both good compression ratio and fast decompression mech-
anism. The basic idea is to take advantage of commonly occurring
instruction sequences by using a dictionary. Recently proposed tech-
niques [8, 9] improve the dictionary-based compression technique by
considering mismatches. The basic idea is to create instruction matches
by remembering a few bit positions. However, the efficiency of these
techniques are limited by the number of bit changes (hamming dis-
tance) used during compression. The cost of storing the information for
more bit positions offsets the advantage of generating more repeating
instruction sequences. Studies [9] have shown that it is not profitable
to consider more than three bit changes when 32-bit vectors are used
for compression. Section 2 presents a detailed cost-benefit analysis
for creating matching instructions. Compression ratio, widely accepted
primary metric for measuring the efficiency of code compression, is
defined as,

Compression Ratio =
Compressed program size

Original program size
(1)

We propose an efficient code compression technique to improve the
compression ratio further by aggressively creating more matching se-
quences using bitmask patterns. We use the decompression engine be-
tween the instruction cache and the processor that increases cache hits
and reduces bus bandwidth. Our design of the decompression unit
is analogous to the one-cycle decompression hardware proposed by
Lekatsas et al. [4] except one additional XOR at the output to handle
the use of bitmasks. We have used applications from various domains
(Mediabench and MiBench) and compiled them for a wide variety of
architectures including TI TMS320C6x, MIPS, and SPARC. Our ex-
perimental results demonstrate that our approach outperforms the ex-
isting dictionary-based compression techniques by an average of 15%
without introducing any additional decompression penalty.

The rest of the paper is organized as follows. Section 2 describes our
cost-benefit analysis framework for creating more repeating patterns.
Section 3 presents our code compression algorithm and decompression
mechanism followed by a case study in Section 4. Finally, Section 5
concludes the paper.

2. COST-BENEFIT ANALYSIS
We have studied how to match more bit positions without adding sig-

nificant information in the compressed code. We have considered 32-bit
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code vectors for compression. Clearly, the hamming distance between
any two 32-bit vectors is between 0 and 32. The compression adds ex-
tra 5 bits to remember each bit position in a 32-bit pattern. Moreover,
extra bits are necessary to decide how many bit changes are there in the
compressed code. For example, if the code allows up to 32 bit changes,
it requires extra 5 bits to indicate the number of changes. As a result,
this process requires the total of 165 extra bits (32x5 + 5) when all 32
bits are different. Clearly, it is not profitable to compress a 32-bit vec-
tor using 165 extra bits along with a codeword (index information) and
other details.

We have explored the use of bit-masks for creating repeating pat-
terns. For example, a 32-bit mask pattern is sufficient to match any two
32-bit vectors. Of course, it is not profitable to store extra 32 bits to
compress a 32-bit vector but definitely better than 165 extra bits. We
considered mask patterns of different sizes (1-bit to 32-bit). When a
mask pattern is smaller than 32 bits, we need to store information re-
lated to starting bit position where the mask needs to be applied. For
example, if we use a 8-bit mask pattern, and want to consider all 32-bit
mismatches, it requires four 8-bit masks, and extra two bits (to identify
one of the 4 bytes) for each mask pattern to indicate where it will be
applied. In this particular case, we require extra 42 bits.

In general a dictionary contains 256 or more entries. As a result, a
code pattern will have fewer than 32 bit changes. If a code pattern is
different from a dictionary entry in 8 bit positions, it requires only one
8-bit mask and its position i.e., it requires 13 (8+5) extra bits. This
can be improved further if we consider bit changes only in byte bound-
aries. This leads to a tradeoff - requires fewer bits (8+2) but may miss
few mismatches that spread across two bytes. Our study uses the latter
approach that uses fewer bits to store a mask position.

Table 1: Cost of Various Matching Schemes

Bit Changes Size of the Mask Pattern
1-bit 2-bit 4-bit 8-bit 16-bit 32-bit

32 bits 165 100 59 42 35 32
16 bits 84 51 30 21 17
8 bits 43 26 15 10
4 bits 22 13 7
2 bits 11 6
1 bit 5

An entry is left blank when that combination is not possible.

Table 1 shows the summary of our study. Each row represents the
number of changes allowed. Each column represents the size of the
mask pattern. A one-bit mask is essentially same as remembering the
bit position. Each entry in the table (r, c) indicates how many extra
bits are necessary to compress a 32-bit vector when r number of bit
changes are allowed and c is the size of the mask pattern. For example,
we require 15 extra bits to allow 8-bit (row with value 8) changes using
4-bit (column with value 4) mask patterns. This analysis forms the
basis of our bitmask-based code compression technique as described in
Section 3.

3. CODE COMPRESSION USING BITMASKS
The motivation of our work is based on the analysis presented in Sec-

tion 2. Our approach tries to incorporate maximum bit changes using
mask patterns without adding significant cost (extra bits) so that the
compression ratio is improved. Our compression technique also en-
sures that the decompression efficiency remains the same compared to
the existing techniques. Our scheme considers a 32-bit program code
(vector) and uses mask patterns. Figure 2 shows the generic encoding
scheme used by our compression technique. A compressed code can
store information regarding multiple mask patterns. For each pattern,
the generic encoding stores the mask type, (requires two bits to dis-
tinguish between 1-bit, 2-bit, 4-bit, or 8-bit), the location where mask
needs to be applied, and the mask pattern.

Location
Mask

patterntype
Mask

Location
Mask
patterntype

MaskNumber of
mask patterns

.....

Extra bits for considering mismatches

(1−bit)
Decision

(32 bits)
Uncompressed Data

Decision
(1−bit)

Dictionary Index

Format for Compressed Code

Format for Uncompressed Code

Figure 2: Encoding Format for Our Compression Technique

The number of bits needed to indicate a location will depend on the
mask type. A mask of size s can be applied on (32÷ s) number of
places. For example, a 8-bit mask can be applied only on four places
(byte boundaries). Similarly, a 4-bit mask can be applied on eight
places (byte and half-byte boundaries). Consider a scenario where a
32-bit word is compressed using one 4-bit mask at second half-byte
boundary, and one 8-bit mask at fourth byte boundary, the compressed
code will appear as shown below.

0 10 mask
4−bit 11 11 8−bit

mask Dictionary Index10 010

00: 1−bit, 01: 2−bit, 10: 4−bit, and 11: 8−bitMask Types:

The generic encoding scheme can be further optimized. For code
compression, we have found that using up to two bitmasks is sufficient
to achieve a good compression ratio. We explored various customized
version of our encoding format to figure out which encoding format
works better across the target architectures. Clearly, a 32-bit mask pat-
tern is not profitable. The 16-bit mask is also not useful unless there
are too many mismatches which a 4-bit or 8-bit (or combined 12 bit)
mask cannot capture. We explored all possible encoding scenarios us-
ing 4-bit and 8-bit masks and observed that three customized encoding
formats shown in Figure 3 work very well across applications and tar-
get architectures. The first encoding (Encoding 1) uses a 8-bit mask,
the second encoding (Encoding 2) uses up to two 4-bit masks, and the
third encoding (Encoding 3) uses up to two masks where first mask can
be either 4-bit or 8-bit whereas the second mask is always 4-bit.
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Figure 3: Three Customized Encoding Formats

We first explain our code compression algorithm. Next, we present
our decompression mechanism. In Section 4, we report performance of
these customized encoding formats.

3.1 Compression Algorithm
Algorithm 1 shows the four basic steps of our code compression al-

gorithm. The algorithm accepts the original code consisting of 32-bit
vectors. The first step creates the frequency distribution of the vectors.
We consider two types of information to compute the frequency: re-
peating sequences and possible matching sequences by bitmasks. First,
it finds the repeating 32-bit sequences and the number of repetition de-
termines the frequency. This frequency computation is similar to any
dictionary-based code compression scheme and provides an initial idea
of the dictionary size. Next, all the high frequency vectors are upgraded
(or downgraded) based on how many new repeating sequences they can
create from mismatches using bitmasks with cost constraints. Table 1
provides the cost for the choices. For example, it is costly to use two
4-bit masks (cost: 15 bits) if an 8-bit mask (cost: 10 bits) can create
the match. The second step chooses the smallest possible dictionary
size without significantly affecting the compression ratio. It is useful
to consider larger dictionary sizes when the current dictionary size can-
not accommodate all the vectors with frequency value above certain
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threshold. However, there are certain disadvantages of increasing the
dictionary size. The cost of using a larger dictionary is more since the
dictionary index becomes bigger. The cost increase is balanced only if
most of the dictionary is full with high frequency vectors. Most impor-
tantly, a bigger dictionary increases the access time and thereby reduces
decompression efficiency.

Algorithm 1: Code Compression using Mask Patterns
Input: Original code (binary) divided into 32-bit vectors
Outputs: Compressed code and dictionary
Begin

Step 1: Create the frequency distribution of the vectors.
Step 2: Create the dictionary based on Step 1.
Step 3: Compress each 32-bit vector using cost constraints.
Step 4: Handle and adjust branch targets.
return Compressed code and dictionary

End

The third step converts each 32-bit vector into compressed code (when
possible) using the format shown in Figure 2. The compressed code
along with any uncompressed ones are composed serially to generate
the final compressed program code. The final step of the algorithm
resolves the branch instruction problem by adjusting branch targets.
Wolfe and Chanin [1] proposed the LAT, however, it requires an ex-
tra space and degrades overall performance. Lefurgy [2] proposed a
technique which patches the original branch target addresses to the new
offsets in the compressed program. This approach does not require any
additional space but it is not suitable for handling indirect branches.
Our technique handles branch targets by:

• patching all the possible branch targets into new offsets in the
compressed program, and padding extra bits at the end of the
code preceding branch targets to align on a byte boundary,

• creating a minimal mapping table to store the new addresses for
the ones that could not be patched.

This approach significantly reduces the size of the mapping table re-
quired, allowing very fast retrieval of a new target address. This tech-
nique is very useful since more than 75% control flow instructions are
conditional branches (compare and branch) and they are patchable. It
leaves only 25% for a small mapping table. Our experiments show that
more than 95% of the branches taken during execution do not require
the mapping table. Therefore, the effect of branching is minimal in
executing our compressed code.

3.2 Decompression Mechanism
Decompression time is critical since decompression is done at run-

time. The decompression unit must be able to provide an instruction
at the rate of the processor to avoid any stalling. Our design of the
decompression engine is based on the one-cycle decompression engine
(DCE) presented by Lekatsas et al. [4]. Figure 4 shows the design of
our bitmask-based decompression unit. To expedite the decoding pro-
cess, the DCE is customized for efficiency, depending on the choice
of bit-masks used. Using two 4-bit masks (Encoding 2 in Section 3),
the compression algorithm generates 4 different types of encodings: i)
uncompressed instruction, ii) compressed without bitmasks, iii) com-
pressed with one 4-bit mask, and iv) compressed with two 4-bit masks.
In the same manner, using one bitmask creates only 3 different types
of encodings. Decoding of uncompressed or compressed code without
bitmasks remain virtually identical to the previous approach.

For compressed encodings using bitmasks, our decompression unit
provides two additional operations: generating an instruction-length
(32-bit) mask, and XORing the mask and the dictionary entry. The
creation of an instruction-length mask is straightforward as done by
applying the bitmask on the specified position in the encoding. For
example, a 4-bit mask can be applied only on half-byte boundaries (8
locations). If two bitmasks were used, the two intermediate instruction

length masks need to be OR-ed to generate one single mask. The ad-
vantage of our design is that generating an instruction length mask can
be done in parallel with accessing the dictionary, therefore generating a
32-bit mask does not add any additional penalty to the existing DCE.

The only additional time incurred in our design, compared to the
previous one-cycle design, is in the last stage where the dictionary en-
try and the generated 32-bit mask are XOR-ed. We have surveyed the
commercially manufactured XOR logic gates and found that many of
the manufactures produce XOR gates with the propagation delay rang-
ing from 0.09ns - 0.5ns, numerous under 0.25ns. The critical path of
decompression data stream in [4] was 5.99ns (with the clock cycle of
8.5 ns). Additional 0.25ns satisfies the 8.5ns clock cycle constraint.
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Figure 4: Decompression Engine for Bitmask Encoding

Our DCE can decode multiple instructions per cycle (with hardware
support). If the codeword (with the dictionary index) is 10 bits, the
encoding of instructions compressed only using the dictionary will be
12 bits or less. Instructions compressed with one 4-bit mask has the cost
of additional 7 bits (total 18-19 bits). Therefore a 32-bit stream with any
combination with a 12-bit code contains more than one instruction and
can be decoded simultaneously. The best case is when a 32-bit stream
contains two 12 bit encodings and prev comp register holds 4 bits of
the compressed data from the previous cycle, the DCE engine has three
instructions in hand that can be decoded concurrently.

4. EXPERIMENTS
We performed various code compression experiments by varying both

application domains and target architectures. In this section, we present
experimental results using nine embedded applications for three target
architectures. The nine benchmarks are collected from Mediabench
and MiBench benchmark suites: adpcm en, adpcm de, cjpeg, djpeg,
gsm to, gsm un, mpeg2enc, mpeg2dec, and pegwit. We compiled the
benchmarks for three target architectures:TI TMS320C6x, MIPS, and
SPARC. We used TI Code Composer Studio to generate binary for TI
TMS320C6x. We used gcc to generate binary for MIPS and SPARC.
We computed the compression ratio using the Equation (1). Our com-
putation of a compressed program size includes the size of the com-
pressed code as well as the dictionary and the small mapping table.

4.1 Results
In Section 3, we presented our generic encoding format as well as

three customized formats. Encoding 1 uses one 8-bit mask, Encod-
ing 2 uses up to two 4-bit masks, and Encoding 3 uses 4-bit and 8-bit
masks. Figure 5 shows the performance of each of these encoding for-
mats using adpcm en benchmark for three target architectures. We used
dictionary with 2K entries for these experiments. Clearly, the second
encoding format performs the best by generating a compression ratio
of 55-65%. Our experience with other benchmarks also suggests the
same trend. We use the second encoding format (Encoding 2) for all
the results presented in the remainder of this section.

Our technique performs well for different dictionary sizes. Figure 6
shows the efficiency of our compression technique for all the nine bench-
marks compiled for SPARC using dictionary sizes of 4K and 8K entries.
As expected, we can observe three scenarios. The small benchmarks
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Figure 5: Compression Ratio for adpcm en Benchmark

such as adpcm en and adpcm de perform better with a small dictio-
nary since a majority of the repeating patterns fits in the 4K dictio-
nary. On the other hand, the large benchmarks such as cjpeg, djpeg, and
mpeg2enc benefit most from the larger dictionary. The medium sized
benchmarks such as mpeg2dec and pegwit do not benefit much from
the bigger dictionary size. On an average, our technique generates 59%
compression ratio.

Figure 6: Compression Ratio for Different Benchmarks

Table 2 compares our approach with the existing code compression
techniques. Our technique improves the code compression efficiency
by 15% compared to the existing dictionary based techniques [8, 9].
The compression efficiency of our technique is comparable to the state-
of-the-art compression techniques (IBM CodePack[7] and SAMC[6]).
However, due to the encoding complexity, the decompression band-
width of those techniques are only 6-8 bits. As a result, they can not
support one instruction per cycle decompression and it is not possible
to place the DCE between the cache and the processor to take advan-
tage of the post-cache design. Our decompression mechanism supports
one instruction per cycle delivery as well as parallel decompression.

Table 2: Comparison with Various Compression Schemes
Compression Target Compression Decomp Parallel

Method Architecture Ratio Bandwidth Decomp

Wolfe [1] MIPS 73% 8 bits No
IBM [7] PowerPC 60% 8 bits No

CodePack
SAMC [6] MIPS 57% 6-8 bits No
V2F [14] TMS320C6x 70-82% 4.9-13 bits No

MCSSC [3] TMS320C6x 75% 14.5-64 bits Yes
Prakash [8] TMS320C6x 76-80% N/A Yes

Ros [9] Itanium 72-80% N/A Yes
TMS320C6x

Our MIPS, SPARC 55-65% 32-64 bits Yes
Approach TMS320C6x

Smaller compression ratio implies better compression technique.

5. CONCLUSIONS
Embedded systems are constrained by the memory size. Code com-

pression techniques address this problem by reducing the code size of
the application programs. Dictionary-based code compression tech-
niques are popular since they generate a good compression ratio by
exploiting code repetitions. Recent techniques use bit toggle informa-
tion to create matching patterns and thereby improve the compression
ratio. However, due to lack of an efficient matching scheme, the exist-
ing techniques can match up to three bit differences.

We developed an efficient matching scheme using bitmasks that can
significantly improve the code compression ratio. We applied our tech-
nique using applications from various domains and compiled them for
different architectures to demonstrate the usefulness of our approach.
Our experimental results show that our approach reduces the original
program size by up to 45%. Our technique outperforms all the existing
dictionary-based techniques by an average of 15%, giving compression
ratios of 55%-65%. We also proposed the design of a simple and fast
decompression unit that is capable of decoding an instruction per cycle
as well as performing parallel decompression.

Currently, our technique generates up to 95% matching sequences.
We plan to investigate further in terms of possibilities in creating more
matches with fewer bits (cost). One possible direction is to introduce
the compiler optimizations that use hamming distance as a cost mea-
sure for generating code. We also plan to study the power saving and
performance improvement by our technique, as it reduces the code size
and simplifies the decompression process.
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