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ABSTRACT
In this paper1 we propose a framework for Statistical Static
Timing Analysis (SSTA) considering intra-die process varia-
tions. Given a cell library, we propose an accurate method to
characterize the gate and interconnect delay as well as slew
as a function of underlying parameter variations. Using these
accurate delay models, we propose a method to perform SSTA
based on a quadratic delay and slew model. The method is
based on efficient dimensionality reduction technique used for
accurate computation of the max of two delay expansions. Our
results indicate less than 4% error in the variance of the de-
lay models compared to SPICE Monte Carlo and less than 1%
error in the variance of the circuit delay compared to Monte
Carlo simulations.

1. INTRODUCTION
With the CMOS technology reaching 45nm node, the para-

metric yield loss due to large variations in delay and leakage
has become the dominant contributing factor to the total yield
loss. This has resulted in a significant amount of work in the
area of statistical methods for parametric yield analysis and
optimization of digital circuits in recent years. A number of
techniques for statistical static timing analysis (SSTA) [5, 14,
2] and statistical leakage analysis [10] have been proposed.
Previously proposed SSTA approaches can be classified into
either path-based [8] or block-based [5, 12, 16, 14].

Initial block based SSTA methods [5, 12] were based on
modeling the delay as a linear canonical function of Gaus-
sian random variables and then approximating the max oper-
ation using Clarke’s approximation. The intra-die correlations
were captured by de-correlating the random variables model-
ing device parameters using Principal Component Analysis.
However, the approximation of max of two delays as a linear
function can result in significant errors. To solve this prob-
lem methods to propagate quadratic delay models were pro-
posed [16, 14]. The authors in [16] use a conditional linear
max operator to propagate the delay functions. [14] proposed
an efficient moment matching based technique for propagat-
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ing quadratic delay functions. The authors in [11] described a
method to propagate linear delay models of non-Gaussian and
Gaussian sources of variations. The max of two delays is also
modeled as a linear function of non-Gaussian and Gaussian
random variables.

To develop accurate models for gate and interconnect delays,
we propose a novel technique based on Polynomial Chaos. In
order to reduce the number of random variables in the analysis
used for modeling the correlations due to intra-die variations,
we use Karhunen-Loéve expansion (KLE) expansion. KLE
provides a much more compact representation of the process
variations and can provide the same degree of accuracy as
the grid based approach with up to 4-5 times less number of
random variables [4].

Once we have obtained accurate delay and slew models, we
propose an approach to propagate delay and slew functions
across the circuit graph to perform SSTA. Our method is based
on an efficient dimensionality reduction technique for obtain-
ing the coefficients of the max of two delays. The representa-
tion of the delay models using orthogonal polynomials allows
us to independently compute the coefficients of the max of
two delay expansions instead of solving a system of equations
obtained using moment matching [14]. We also demonstrate
how to account for non-Gaussian sources of variations in our
proposed SSTA algorithm.

The outline of the rest of the paper is as follows: Section 2
provides the background material on Polynomial Chaos. Given
a cell library, the library characterization for obtaining accu-
rate delay and slew models is described in Section 3. Section 4
describes the process of de-correlating the random variables
using KLE. Our method for performing SSTA is outlined in
Section 5 and results are given in Section 7.

2. BACKGROUND
Let H be a complete metric space with an inner product

〈·, ·〉 defined. The norm ‖f‖ of any function f in H is defined

as ‖f‖ =
p
〈f, f〉. Using the results of polynomial chaos [6],

a second-order stochastic process (a process whose second mo-
ment is finite) can be represented as

f =

∞X
i=0

〈f, ψi〉ψi =

∞X
i=0

aiψi. (1)

The equality in (1) is such that the series on the right converges
to f in the norm. The functions, ψi’s are orthonormal basis
functions, that is

〈ψi, ψj〉 = E[ψi · ψj ] = δij =


1 if i = j
0 otherwise

(2)

where E[·] is the expectation over the concerned probability
space. In our problem, the basis functions, ψi’s are functions of
the random variables (RVs) modeling the underlying process
variations. For example, if the process variations are mod-
eled using normal RVs ξ = (ξ1, ξ2, . . . , ξr), the resulting basis
functions are known as Hermite polynomials. The first few
uni-variate Hermite polynomials are given by
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ψ0(ξ) = 1 ψ1(ξ) = ξ
ψ2(ξ) = ξ2 − 1 ψ3(ξ) = ξ3 − 3ξ

(3)

The multi-variate Hermite polynomials are simply products of
lower order uni-variate Hermite polynomials. Previously, [13]
used the PCE in Hermite polynomials to model the voltage
response of an interconnect.

2.1 Obtaining the PCE for a System Response
The expansion in (1) is an infinite series and in practice has

to be truncated to a finite number of terms, say n. As shown
in (1) the i-th coefficient ai in the PCE of a random function
f is simply the inner product of f with the i-th basis function
ψi. Thus representation of f in the form of (1) requires an
accurate computation of this inner product. In the case where
we have some implicit functional relation between the system
response f and the excitation (as in the case of [13]), it is
possible to obtain the coefficients of the truncated expansion
f̂ by minimizing the norm of the error between f and f̂ [13]
(also known as the Galerkin method).

But what happens when we do not have any functional rela-
tion describing f? In such a case, we have to resort to numer-
ical techniques for computation of the inner products 〈f, ψi〉.
The inner product is defined as

〈f, ψi〉 = E[f · ψi] =

Z
f(ξ) · ψi(ξ) · w(ξ)∂ξ (4)

where w(ξ) is the weight function (probability density func-
tion) corresponding to the distribution of ξ. For any general
distribution of ξ and any arbitrary f , the integral in (4) can
be estimated using a number of numerical techniques such as
Monte Carlo or generalized quadrature methods. These tech-
niques approximate the integral in (4) using a sum asZ

f(ξ) · ψi(ξ) · w(ξ)∂ξ =

mX
k=1

f(ξk) · ψi(ξk) · wk (5)

where ξk = (ξ1k, ξ2k, . . . , ξrk) is a point in the r-dimensional
parameter space and wk is the weight of the k-th point. How-
ever, for these approaches the number of samples m at which
the integrand needs to be evaluated for high accuracy can be
prohibitively large. Instead, for some specific distributions
such as Gaussian, Uniform etc., and smooth functions f , the
integral can be evaluated with a very high accuracy usingN+1
order Gaussian quadrature in each dimension, where N is the
order of the polynomial that can accurately approximate f .

For our library characterization problem, we observed that
the delay and slew can be modeled accurately using a second-
order expansion. Thus we use a third-order Gaussian quadra-
ture to estimate the inner products and thus the coefficients
of the expansion. In practice, the number of parameters used
for modeling gate and interconnect delay and slew is typically
not more than 6-7 (Vtn, Vtp, L, tox etc.) which results in 37 or
∼2000 evaluations. Since, the characterization has to be done
only once for a given library, this is a one time cost. Moreover
we show in section 3 that a method known as Smolyak quadra-
ture can be used to reduce the number of points to ∼100.

3. DELAY AND SLEW MODELING
The delay and slew of the logic gates of a CMOS library

vary with both the process variations (e.g., Vtn, Vtp, Tox, L)
that are typically modeled as Gaussian in nature and also de-
terministic parameters like load capacitance Ceff and power
supply Vdd. The deterministic variations are typically handled
through the use of look up tables. The process variations are
random (with/with-out correlations) in nature and are gen-
erally handled as perturbations in a ±3σ region around the
nominal values of the parameters.

In this work, we develop a model for delay & output slew as
a function of all these variables and input slew Sin. We first

model the delay as a multi-variate function of all these vari-
ables, treating all these variables as deterministic quantities,
through orthogonal polynomial interpolation (SPICE runs) on
a Smolyak grid of quadrature nodes [3, 7]. We model the delay
over the natural range of variations in Ceff, Sin that is typically
encountered in analysis and the variables Vtn, Vtp, Tox and L
in their ±4σ range. We then project this deterministic model
on to a second order Hermite polynomial basis in the process
variables and input slew. The coefficients of the second order
Hermite polynomial expansion, which are now functions of the
variable Ceff, can be readily obtained for various values of Ceff.

3.1 Smolyak Grid Interpolation
A widely used method in functional approximation is or-

thogonal polynomial based interpolation that ensures mean-
square optimality in convergence w.r.t. the order of expan-
sion. The response of interest is expressed as an N th order
series in orthogonal polynomial basis (e.g., Cheybshev, Legen-
dre, Laguerre etc.,) and is then interpolated on the zeros of
the (N +1)th order polynomials. These are called the quadra-
ture nodes and are the exact same nodes that are also used in
integration using the Gaussian quadrature method. However,
for multi-variate interpolation or integration in r variables, the
number of quadrature nodes increases as ∝ (N + 1)r, which is
well known as the curse-of-dimensionality.

To address this issue, we use an efficient approach based on
interpolation (SPICE runs) on a Smolyak grid [3, 7]. This ap-
proach ensures some optimality in convergence while reducing
the number of interpolation points for a given r as compared to
full quadrature integration. Let’s suppose that the variables
under consideration are ~Z = (Z1, ..., Zr) deterministic vari-
ables that are normalized to the range (−1, 1) and that the
response of interest is a (p)th order polynomial and (p + 1)th

order interpolation is being used.

• The Smolyak grid is defined as

Θ(r, p+ 1) =
[

p+1≤|i|≤p+r

“
W i1

1 ×W i2
2 ...×W ir

r

”
(6)

where i = (i1 + ... + ir) is the order of Smolyak inter-
polation and W i1

j indicates a set of zeros of orthogonal
polynomials of order i1 in the dimension of variable j,
j = 1, .., r. In this work, we use the zeros of the Cheby-
shev polynomials. If ij = 1, then Wj is taken as a set
with only one point {0}. This significantly reduces the
total number of interpolation points.

• It has been shown that interpolation on a Smolyak grid
assures an error bound for the mean-square error [3, 7]

ε ≤ cr,k n
−k (log n)(k+1)(r−1) where n is the number of

interpolation points and k is the order of the maximum
derivative that exists for the function d(~Z). For functions
like delay that are sufficiently smooth (K > 1), the rate
of convergence is faster with increase in n (which follows
from increase in the order i of interpolation).

• The number of Smolyak grid points increase as ∝ rp+1

(p+1)!
.

This cost increases much slowly as compared to full grid
based interpolation which increases as rp+1.

3.2 Delay & Slew as a deterministic function
Let’s suppose that we would like to model the delay of a

CMOS library gate in the ranges [p−4σ, p4σ] for each parame-
ter p, where p can be any of {L, Tox, Vtn, Vtp}. Also, for Ceff

and input slew Sin, the range is [C1, C2] and [Sin1 , Sin2 ] re-
spectively. We normalize them to range [-1,1] using
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p = (p−4σ + p4σ)/2 + Zi · (p4σ − p−4σ)/2

Ceff = (C1 + C2)/2 + Z5 (C2 − C1)/2

Sin = (Sin1 + Sin2)/2 + Z6 (Sin2 − Sin1)/2 (7)

where Zi, i = 1, 2, 3, 4 correspond to L, Tox, Vtn and Vtp re-
spectively. We then express the delay as a 2nd order Chebyshev
polynomial series in the variables ~Z and obtain the coefficients
based on 3rd interpolation on the Smolyak grid of Chebyshev
zeros using 84 interpolation points ( SPICE runs) for each
CMOS gate in the library. We thus have,

d(~Z) =

NX
i=0

αiΨi(~Z) = α0 +

6X
i=1

αiZi +

6X
i=1

α6+i(2Z
2
i − 1) +

+ α13Z1Z2 + · · ·+ αNZ5Z6

= f(L, Tox, Vtn, Vtp, Ceff, Sin) (8)

3.3 Statistical model using Galerkin
In the presence of process variations, for a particular value

of Ceff, we can express the process and slew variables as a func-
tion of normalized (zero mean, unit variance) random variables
ξ = (ξ1, ξ2, ξ3, ξ4, ξ5) as

Vtn = V̄tn + σVtnξ3, Vtp = V̄tp + σVtpξ4, L = L̄+ σLξ1,

Tox = T̄ox + σToxξ2, Sin = S̄in + σSinξ5 (9)

From (8) and (9), we have d(~Z) = f(L, Tox, Vtn, Vtp, Ceff , Sin)
= g(ξ). The delay now needs to be projected on to a second
order orthogonal polynomials in ξ1, ξ2, ξ3, ξ4 and a linear func-
tion in ξ5. The linear projection for slew variable ξ5 is neces-
sary to be able to propagate the delay expansions in the circuit.
For Gaussian variables, Hermite polynomials form the basis.
We then have

d(ξ)=

NX
i=0

βiHi(ξ) + βN+1ξ5 = β0 +

4X
i=1

βiξi +

4X
i=1

β4+i(ξ
2
i − 1)

+ β9ξ1ξ2 + · · ·+ βN+1ξ5. (10)

The coefficients βi can be then obtained optimally using the
Galerkin technique as βi = E(d(ξ).Hi(ξp ξq)).

The above procedure is repeated for each logic gate in the
CMOS library. We compared our delay models for all the
gates with those against 5000 Monte Carlo simulations and
on average, our approach lead to an error of < 1% in mean
and < 4% in variance. The major cost of the above procedure
is the interpolation (SPICE runs), which is a one time cost.
And mere substitutions are required from then onwards for
delay uncertainty propagation through the circuit. A model
for output slew is obtained in a similar fashion as discussed
above for the delay.

Interconnect delay and slew are modeled as a second order
Hermite polynomial series in the random variables. The coef-
ficients of the series are obtained through sampling (similar to
interpolation in gate delay modeling) on a variational intercon-
nect model obtained from a Galerkin minimization procedure
similar to that in [13].

4. PROCESS CHARACTERIZATION
Due to manufacturing variations, the parameter L and Vth

of each gate on a die is a random variable. Also for a partic-
ular manufactured die, the gate length and threshold voltage
are functions of location of the gate on the die. Thus these
random parameters can be modeled as a stochastic process
p(x, θ), where x = (x, y) is the location on the die and θ be-
longs to the space of manufactured outcomes. Given two gates
on a die located at x1 and x2, the random variables p(x1, θ)
and p(x2, θ) are correlated. Let the covariance function of

p(x2, θ) be represented by C(x1,x2). Hence, ideally for each
parameter, there are as many random variables as the number
of gates on a die.

In order to reduce the number of random variables in the
analysis, the process p(x, θ) can be represented using a Fourier-
series type representation

p(x, θ) =

∞X
n=1

√
λnξn(θ)φn(x), (11)

where {ξn(θ)} is a set of uncorrelated random variables, λn are
the eigenvalues, and {φn(x)} are orthonormal eigenfunctions
of C(x1,x2). That is they are solution of the equationZ

D

C(x1,x2)φn(x1)dx1 = λnφn(x2). (12)

The expansion (11) is known as the Karhunen-Loéve expan-
sion. In addition to treating the random variable correspond-
ing to the parameter of each gate as a separate random vari-
able, it can do so with a significantly small set of random
variables {ξn(θ)} [4]. For example, consider the isotropic co-
variance function C(r1, r2) = exp(−cr|r1 − r2|) = C(r1, r2),
where cr is the inverse of the correlation length in the radial
direction. The general solution of (12) for this covariance func-
tion has the form [6]

φn(r) = a1 cos(ωnr) + a2 sin(ωnr), λr,n =
2c

ω2
n + c2

, (13)

where ωn is the solution of c−ω tan(ωa) = 0 and ω+c tan(ωa) =
0 for odd and even n respectively. Also, a2 = 0 for odd n
and a1 = 0 for even n. The eigenvalues λn determine the
contribution of the n-th random variable to the variance of
p(r, θ). Since we can always order the eigenvalues such that
λn > λn+1, we truncate the expansion by finding the small-
est M such that λM (

PM
n=1 λn)−1 ≤ ε, where ε is a threshold

decided by the designer. In this work, we choose ε = 0.005.
Using this criteria, the KLE for p(x, θ) having a radial covari-
ance function was obtained and truncated to obtain M = 9.

The delay expansion of each gate i is obtained in terms of
a common set of random variables by substituting the KLE
corresponding to each random parameter of the gate i in its
delay expansion di. Once delays of all the gates have been
obtained, we perform SSTA to compute the circuit delay in
terms of the common set of variables.

5. STATISTICAL TIMING ANALYSIS
Let di and Ti represent the delay and output arrival time

respectively of gate i. Let si,in and si,out represent the input
and output slew respectively for gate i. Also, let L(m) be
the set of nodes at m-th level in the circuit. As discussed in
section 3, for each gate we have two expansions corresponding
to delay and output slew as a quadratic function of the random
variables and a linear function of the input slew. The input
slew at the primary inputs is either assumed to be available as
quadratic function of the same random variables which model
the parameters of the gates in the circuit or is modeled as a
deterministic quantity. Thus the output slew as well as the
output arrival times of all the gates in L(1) are absolutely
determined by functions of the underlying process variables.
That is

Ti =

nX
k=1

αikψk(ξ), si,out =

nX
k=1

βikψk(ξ) (14)

where i ∈ L(1). Let node j ∈ L(2) have fan-ins i1, i2, . . . im ∈
L(1). Now, for each input ik of node j the pin-to-pin delay
dikj depends on the output slew sik,out of node ik. The output
arrival time Tj for node j can then be written as

Tj = max{Tik + dikj : ik ∈ FI(j)} (15)
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where dikj =
Pn

`=1 γj`ψ`(ξ)+aj ·sik,out. Similarly, the output
slew sj,out of node j is modeled as

sj,out = max

 nX
`=1

βj`ψ`(ξ) + sik,out : ik ∈ FI(j)

ff
. (16)

Since ik ∈ L(1), its output slew sik,out is available as a PCE
from (14). Thus, for all the nodes in L(2), the slew and output
arrival times are only functions of the underlying random vari-
ables. Using the same reasoning as above, the output arrival
times of all the nodes the subsequent levels can be represented
as functions of the process random variables.

The next two sections discuss the computation of these two
operations for the case where the basis functions in the delay
and slew expansions are from the set {1, ξi, ξj , ξ

2
i − 1, ξ2j −

1, ξiξj : i, j = 1, . . . ,m}, where m = rp is the number of
random variables in the analysis.

Given two delay expansions d1 =
Pn

i=1 αiψi(ξ) and d2 =Pn
i=1 βiψi(ξ), their sum d1 + d2 can be obtained as

d1 + d2 =

nX
i=1

αiψi(ξ) +

nX
i=1

βiψi(ξ) =

nX
i

(αi + βi)ψi(ξ) (17)

Compared to sum, computation of the max operation is not
that straightforward. Since the set of random variables and
thus the basis functions is the same for all delay expansions
in our analysis, each delay expansion can be written in the
following canonical form.

d(α) = α0 +

rX
i=1

α1iξi +

rX
i=1

α2i(ξ
2
i − 1) +

rX
i,j=1
i<j

α3ijξiξj . (18)

where α = (α0, α11, . . . , α1r, α21, . . . , α2r, α312, α313, . . . , α3(r−1)r)
and α3ij = 0 for i, j = 1 . . . , r, j < i. Thus, each expansion is
uniquely determined by the set of the coefficients of the basis
functions. Let this mapping from the coefficients to the ex-
pansion be denoted by d(α) as defined in (18). Thus given
two expansions d(α) and d(β), we want to find an expan-
sion for dmax = max{d(α), d(β)}. Noting that dmax = d(α) +
max{0, d(β)− d(α)}, we need to find coefficients γ such that
d(γ) = max{0, d(β) − d(α)}. Also, note that d(β) − d(α) =
d(β − α), where δ = β − α is the component-wise difference
of the tuples for β and α.

From (4), we see that the coefficients γ can be obtained by
computing the following inner products

γ0 = 〈d(γ), 1〉 = 〈max{0, d(δ)}, 1〉 (19)

γ1i = 〈d(γ), ξi〉 = 〈max{0, d(δ)}, ξi〉 (20)

γ2i = 〈d(γ), ξ2i − 1〉 = 〈max{0, d(δ)}, ξ2i − 1〉 (21)

γ3ij = 〈d(γ), ξiξj〉 = 〈max{0, d(δ)}, ξiξj〉. (22)

and γ3ii = 0 for i, j = 1, . . . , r and j < i. We now describe how
to compute the inner product given by (20). The expansion
d(δ) is first written by separating the terms dependent on ξi

and those not dependent on ξi as follows

d(δ) = δ0 + δ1iξi + δ2i(ξ
2
i − 1) + ξi ·

rX
j=1

δ3ijξj +

+

rX
j=1
j 6=i

`
δ1jξj + δ2j(ξ

2
j − 1)

´
+

rX
j,k=1
j 6=i<k

δ3jkξjξk (23)

The above equation is in r-dimensional variability space. It is
a second order equation and we only need 3 quadrature points
in every dimension using the rule of Gaussian quadrature.
Thus an exact quadrature based approach would require 3r

points, which can be computationally very expensive for large
r. Thus we propose a moment matching based dimensionality

reduction technique that reduces this complexity to 33. This
method is based on mapping the last three terms in (23) to two
functions of new Gaussian random variables ζ1 and ζ2 using
moment matching by defining X =

Pr
j=1 δ3ijξj = a ζ1 and

Y =

rX
j=1
j 6=i

`
δ1jξj + δ2j(ξ

2
j − 1)

´
+

rX
j,k=1
j 6=i<k

δ3jkξjξk

= b1ζ2 + b2(ζ
2
2 − 1) (24)

The mean of both X (Gaussian) and Y above is zero and

a =
qPr

j=1 δ
2
3ij . In order to obtain b1 and b2, we minimize

the absolute difference between the skewness of the quantity
on the LHS and the RHS of (24) subject to their variance being
equal. The variance σ2 and skew κ of the quantity on the left
of (24) are σ2 =

Pr
j=1,j 6=i(2δ

3
2j + δ21j) and

κ =

rX
j=1,j 6=i

“
8δ32j + 6δ21jδ2j + 6δ23jk(δ2j + δ2k) +

+ 6δ3jk(δ1j + δ1k) + 6 ·
X

P
ijk=3

rY
j,k=1
j 6=i<k

δ
ijk

3jk

”
(25)

The last term in (25) above corresponds to the summation of
the product of the coefficients δ3jk of the cross-product terms
in (24) taken three at a time (

P
ijk = 3). The skew of the

reduced form on the RHS of (24) is κ̂ = 8b32 + 6b21b2. Thus the
skew minimization problem can be formulated as

min
b1,b2

|8b32 + 6b21b2 − κ|

subject to 2b22 + b21 = σ2

b1, b2 ∈ R
(26)

In [15], the authors give a method to solve the above problem
when |κ| ≤ 2

√
2σ3. We extend their method to analytically

solve the above minimization problem for any κ and σ. Re-
placing b21 from the constraint of (26) in the objective func-
tion, we can rewrite the objective function as |g(b2)|, where
g(b2) = 4b32 − 6σ2b2 + κ.

Theorem 5.1. The optimal solution of the skew minimiza-
tion problem (26) is

b?2 =

8><>:
σ√
2

if g( σ√
2
) ≥ 0

b̂2 if g( σ√
2
) ≤ 0 and g(−σ√

2
) ≥ 0

−σ√
2

if g(−σ√
2
) ≤ 0

(27)

where b̂2 ∈ [−σ√
2
, σ√

2
] is one of the real solutions of g(b2) = 0.

Proof. Since we want real solutions for b1 and b2, b2 ∈
[−σ√

2
, σ√

2
] for b1 to be real. Now consider the derivative of

g, g′(b2) = 12b22 − 6σ2. Over the domain of b2, g
′(b2) ≤ 0

and thus g(b2) is a decreasing function. Hence g(b2) can be
either positive (Case I), have only one real root (Case II) or
is negative in the range [−σ√

2
, σ√

2
]. For Case I and Case III,

the optimal solution lies on the boundary of the domain of
b2. For Case III, g( σ√

2
) ≤ 0 and g(−σ√

2
) ≥ 0. These conditions

translate to |κ| ≤ 2
√

2σ3 [15]. This condition is also equivalent
to the condition for the cubic g(b2) to have all three real roots.
Thus the roots for the cubic equation can be obtained and let
the one that lies in [−σ√

2
, σ√

2
] be b̂2.

Now that we have obtained a, b1 and b2, we can rewrite the
expansion d(δ) in (23) as

d(δ) = δ0 +δ1iξi +δ2i(ξ
2
i −1)+a ξiζ1 +b1ζ2 +b2(ζ

2
2 −1). (28)

However, the inner product 〈max{0, d(δ)}, ξi〉 cannot be eval-
uated at this time because ζ1 and ζ2 are correlated. In or-
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der to de-correlate them, we first need to obtain their co-
variance cov(ζ1, ζ2). To do this, we use the functional rela-
tion between cov(ζ1, ζ2) and cov(X,Y ), which is cov(X,Y ) =
a b1cov(ζ1, ζ2) [15]. Since X and Y are zero mean, their covari-
ance is same as the expectation of their product. Also, as X
and Y are functions of orthogonal polynomials, the expecta-
tion of their product can be written as cov(X,Y ) = E[X ·Y ] =Pr

j=1,j 6=i δ1jδ3ij . Hence

cov(ζ1, ζ2) =
“ 1

a b1

”
·

rX
j=1,j 6=i

δ1jδ3ij . (29)

Two correlated Gaussian variables ζ1 and ζ2 with correlation
ρ can be transformed into two new random variables χ1 and
χ2 using a linear transformation [9]. Thus, we have the de-
lay expansion d(δ) as function of only 3 independent Gaus-
sian random variables ξ1, χ1 and χ2. Hence, the inner prod-
uct 〈max{0, d(δ)}, ξi〉 can be computed using Gauss-Hermite
quadrature to obtain the coefficient γ1i.

The coefficients for the other basis vectors can also be ob-
tained in a similar manner. While computing the coefficients
of the cross product terms ξiξj , we need to keep the terms
containing ξi and ξj and reduce the dimensionality of the re-
maining set of random variables. For the cross product case,
the complexity for Gaussian quadrature will be 35 as there
will be two existing variables and 3 additional variables (one
each corresponding to the product terms with ξi and ξj and
another one for the rest of the terms). In this case we use
Smolyak quadrature to reduce the complexity to ∼ 70 quadra-
ture points. In practice, using our gate delay models and SSTA
on benchmark circuits, we found that neglecting cross product
terms does not result in significant error (less than 1% error in
both mean and standard deviation for all benchmarks). Ne-
glecting the cross terms results in the use of only 27 Gauss-
Hermite quadrature nodes and results in extremely fast run-
times. Thus these terms can be neglected to trade-off accuracy
for performance. Thus after computing d(γ), we can obtain
dmax = d(α) + d(γ).

For a gate with multiple fan-ins, the output arrival time
can be computed by successively performing the max of the
current max and the next fan-in.

6. NON-GAUSSIAN VARIATIONS
The method described in Section 5 can also be used to prop-

agate linear delay expansions of non-Gaussian variables. Once
we have independent non-Gaussian (say uniform) and Gaus-
sian variables ζ and ξ respectively, we can construct the or-
thonormal basis functions corresponding to the distributions
of the random variables ζ and ξ. The inner product in this
case is also defined by (4), with the weight function w(·) being
the joint distribution of ζ and ξ. Since the random variables
are independent, their joint probability distribution will be the
product of their marginal distributions. For any distribution,
the first order basis functions are of the form ψ(x) = a(x+ b).
Thus the first order delay expansion can be written as

d(α) = α0 +

r1X
i=1

α1i · a(ζi + b) +

r2X
i=1

α2iξi (30)

We can then follow a procedure similar to the case of Gaussian
variables to perform the max operation. While computing the
inner product 〈max{0, d(δ)}, a(ζi + b)〉, d(δ) in (23) can be
written as

d(δ) = δ0 +δ1i ·a(ζi +b)+

r1X
j=1,
j 6=i

δ1j · a(ζj + b) +

r2X
j=1,
j 6=i

δ2jξj (31)

Now the last two terms in (31) are sums of independent Gaus-
sian and non-Gaussian random variables. Hence, using the

Central Limit Theorem [9], they can be accurately modeled
using a Gaussian random variable using moment matching.
Thus the coefficients of the max can be computed efficiently
in this case as well. If the number of non-Gaussian random
variables is small 3, we do not need to approximate them using
a Gaussian RV and can keep them in the expansion as they are
during the computation of the inner product. As an extreme

(a) (b)

Figure 1: Max of two delay expansions with (a) one
non-Gaussian and a Gaussian RV in each, and (b) two
non-Gaussian and two Gaussian RVs in each

illustrative example, Figure 1 (a) shows the PDF of the max of
two expansions having one Gaussian and one uniform random
variable. As can be seen from the figure, our method provides
an accurate estimation of the max even for non-Gaussian RVs.
Even though the PDF shows significant deviation from the
Gaussian, as the number of non-Gaussian variables increases,
the non-Gaussian variables become less dominant. In such a
case, the non-linearity of the max operation becomes a major
source of error as compared to the error induced by neglecting
the non-Gaussian component (shown in Figure 1 (b)). Hence,
even in the presence of non-Gaussian sources of variations a
linear model will not suffice. Thus further study is required as
to what model (linear in non-Gaussian RVs and quadratic in
Gaussian RVs or quadratic in both types of RVs) provides the
best accuracy/performance trade-off.

7. EXPERIMENTAL RESULTS
We implemented the proposed framework in C++. The IS-

CAS89 benchmark circuits were mapped to a cell library in
SIS. They were then placed using UMpack [1]. The delay and
slew models for the cells in the library were obtained for a 90-
nm technology. The random variables considered in the anal-
ysis were gate length L, threshold voltage Vth and oxide thick-
ness tox. Correlations for each of these variables were modeled
using a radial exponential covariance function. The experi-
ments were run on a 1.25GHz machine with 1.25GB RAM.

Table 1 gives the comparison of our approach with 5000
Monte Carlo (MC) simulations on the ISCAS89 benchmark
circuits. QSSTA corresponds to our methodology based on
a quadratic delay model. During our library characterization,
we found that the cross terms were not significant even for 30%
3σ variations. Hence, we ignore the cross terms while perform-
ing SSTA. However, to make a fair comparison, the cross terms
are kept while performing the MC simulations. Thus MC com-
putes the delay based on the exact delay function consisting of
the cross terms. Since we are using non-linear delay models,
one measure of the non-linearity (or deviation from Gaussian-
ity) of a random variable is its skew. Hence in addition to the
mean and variance, we also compare the skew of the circuit
delay with that of the MC samples. For each sample in the
space of random variables, we evaluate the delay expansion for
the arrival time at the sink node of the circuit to obtain the
delay given for that sample by our SSTA. For MC, we obtain
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Circuit # Gates µd Comparison σd Comparison Skew Comparison Runtime (sec.)
QSSTA MC Diff. (%) QSSTA MC Diff. (%) QSSTA MC Diff. (%) QSSTA MC

C499 290 568 568 0.000 47.1 47.57 0.988 0.79 0.82 3.66 6 203
C880 227 564.6 565.1 0.088 47.8 47.6 -0.420 0.86 0.88 2.27 11 282
C1355 514 748.6 749.2 0.080 63.4 64.2 1.246 0.82 0.86 4.65 20 521
C2670 427 514.8 515.2 0.078 42.2 42.3 0.236 0.69 0.72 4.17 19 389
C3540 743 971.1 971.8 0.072 79.2 79.19 -0.013 0.76 0.8 5.00 20 402
C5315 946 898.8 899.8 0.111 74.7 75.1 0.533 0.79 0.83 4.82 21 2165
C6288 1688 2555 2556 0.039 209.7 210.2 0.238 0.72 0.75 4.00 55 2287
C7552 1262 741.6 742.1 0.067 61.61 61.67 0.097 0.79 0.82 3.66 41 1262
Average 0.067 0.363 4.028

Table 1: Results of SSTA for ISCAS89 benchmark circuits with a total of 27 random variables

the delay for each node in the gate corresponding to that sam-
ple and perform a run of Dijkstra’s algorithm to obtain the
true circuit delay. From the table, we can see that the average
error in the mean and standard deviation obtained using our
approach is less than 1% compared to 5000 MC samples. In
addition, the average error between the skew obtained using
our approach and that obtained using MC is ∼ 5%. Compared
to our approach an approach based on linear models resulted
in significant errors in the mean and variance with average er-
rors being ∼ 2% and ∼ 8% respectively. It should be noted
that while performing linear MC, we do not simply ignore the
higher order terms. Instead the variance corresponding to the
higher order terms is added to the variance of the first or-
der coefficients for each random variable. Figure 2(a) and (b)

(a) (b)

Figure 2: Comparison of the (a) PDF and (b) CDF
obtained using our approach with exact Monte Carlo
and linear Monte Carlo
compare the sample PDFs and CDFs respectively for our ap-
proach with the MC using a exact quadratic model and with
the MC performed assuming a linear model. As shown in the
figure, our approach matches extremely well with the exact
MC approach. The linear model based MC shows significant
deviation from the exact MC, which shows the importance of
using second order delay models. Again from the PDF and
CDF for C7552, we see that the cross-terms between the ran-
dom variable do not contribute much to the circuit delay. This
is similar to trend observed by [14].

The last two columns in Table 1 show the runtime in seconds
for our approach as well as the Monte Carlo approach. All the
benchmarks using our approach were solved in less than 60
seconds. Whereas, MC completed in ∼ 2400 sec. for some of
the cases. Thus compared to MC approach provides ∼ 40×
improvement in the runtime.

8. CONCLUSIONS
We propose an accurate approach for modeling the delay

using orthogonal polynomials. The intra-die correlations are
captured using Karhunen-Loéve Expansion which can reduce
the dimensionality of the variability space by ∼ 4× for similar
accuracy. We also propose a novel algorithm to propagate our

second order delay expansions through the circuit to perform
SSTA. Our method can take non-Gaussian sources of varia-
tions into account. The experimental results show less than
1% error in the mean and variance of the circuit delay com-
pared to MC simulations.

9. REFERENCES
[1] http://vlsicad.eecs.umich.edu/bk/pdtools/.
[2] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical

timing analysis for intra-die process variations with
spatial correlations. In Proc. of ICCAD, 2003.

[3] V. Barthelmann, E. Novak, and K. Ritter. High
dimensional polynomial interpolation on sparse grids.
Advances in Comp. Math., pages 273–288, 2000.

[4] S. Bhardwaj, S. Vrudhula, P. Ghanta, and Y. Cao.
Modeling of intra-die process variations for accurate
analysis and optimization of nano-scale circuits. In Proc.
of IEEE/ACM Design Automation Conference, 2006.

[5] H. Chang and S. Sapatnekar. Statistical timing analysis
considering spatial correlations using a single pert-like
traversal. In Proc. of ICCAD, 2003.

[6] R. G. Ghanem and P. Spanos. Stochastic Finite
Elements: A Spectral Approach. Springer-Verlag, 1991.

[7] A. Keese and H. G. Matthies. Numerical methods and
smolyak quadrature for nonlinear stochastic partial
differential equations. Technical report, Institute of
Scientific Computing, Brunswick, 2003.

[8] M. Orshansky and K. Kuetzer. A General Probabilistic
Framework for Worst Case Timing Analysis. In Proc. of
DAC, 2002.

[9] A. Papoulis. Probability, Random Variables and
Stochastic Processes. McGraw-Hill, 3rd edition, 1991.

[10] R. Rao, A. Devgan, D. Blaauw, and D. Sylvester.
Parametric yield estimation considering leakage
variability. In Proc. of DAC, 2004.

[11] J. Singh and S. Sapatnekar. Statistical Timing Analysis
with Correlated Non-Gaussian Parameters using
Independent Component Analysis. In IEEE TAU
Workshop, February 2006.

[12] C. Visweswariah et al. First-order incremental
Block-Based Statistical Timing Analysis. In IEEE/ACM
Design Automation Conference, pages 331–336, 2004.

[13] J. Wang, P. Ghanta, and S. Vrudhula. Stochastic
Analysis of Interconnect Performance in the Presence of
Process Variations. In Proc. of ICCAD, 2004.

[14] Y. Zhan et al. Correlation-aware statistical timing
analysis with non-gaussian delay distributions. In Proc.
of ICCAD, Nov 2005.

[15] L. Zhang, J. Shao, and C. C.-P. Chen. Non-Gaussian
Statistical Parameter Modeling for SSTA with
Confidence Interval Analysis. In International
Symposium on Physical Design, 2006.

[16] L. Zhang et al. Correlation-Preserved Non-Gaussian
Statistical Timing Analysis with Quadratic Timing
Model. In Proc. of DAC, 2005.

230


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

